Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Ann Neurol ; 95(3): 471-486, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38061895

RESUMEN

OBJECTIVE: Older people with multiple sclerosis (MS) have a less active radiological and clinical presentation, but many still attain significant levels of disability; but what drives worsening disability in this group? METHODS: We used data from the UK MS Register to characterize demographics and clinical features of late-onset multiple sclerosis (LOMS; symptom onset at ≥50 years), compared with adult-onset MS (AOMS; onset 18-49 years). We performed a pathology study of a separate MS cohort with a later onset (n = 18, mean age of onset 54 years) versus AOMS (n = 23, mean age of onset 29 years). RESULTS: In the Register cohort, there were 1,608 (9.4%) with LOMS. When compared with AOMS, there was a lower proportion of women, a higher proportion of primary progressive MS, a higher level of disability at diagnosis (median MS impact scale 36.7 vs. 28.3, p < 0.001), and a higher proportion of gait-related initial symptoms. People with LOMS were less likely to receive a high efficacy disease-modifying treatment and attained substantial disability sooner. Controlling for age of death and sex, neuron density in the thalamus and pons decreased with onset-age, whereas actively demyelinating lesions and compartmentalized inflammation was greatest in AOMS. Only neuron density, and not demyelination or the extent of compartmentalized inflammation, correlated with disability outcomes in older-onset MS patients. INTERPRETATION: The more progressive nature of older-onset MS is associated with significant neurodegeneration, but infrequent inflammatory demyelination. These findings have implications for the assessment and treatment of MS in older people. ANN NEUROL 2024;95:471-486.


Asunto(s)
Esclerosis Múltiple , Patología Clínica , Adulto , Humanos , Femenino , Anciano , Persona de Mediana Edad , Esclerosis Múltiple/epidemiología , Esclerosis Múltiple/diagnóstico , Estudios de Cohortes , Edad de Inicio , Progresión de la Enfermedad , Inflamación , Demografía
2.
Ann Neurol ; 96(1): 1-20, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38568026

RESUMEN

Clinical, pathological, and imaging evidence in multiple sclerosis (MS) suggests that a smoldering inflammatory activity is present from the earliest stages of the disease and underlies the progression of disability, which proceeds relentlessly and independently of clinical and radiological relapses (PIRA). The complex system of pathological events driving "chronic" worsening is likely linked with the early accumulation of compartmentalized inflammation within the central nervous system as well as insufficient repair phenomena and mitochondrial failure. These mechanisms are partially lesion-independent and differ from those causing clinical relapses and the formation of new focal demyelinating lesions; they lead to neuroaxonal dysfunction and death, myelin loss, glia alterations, and finally, a neuronal network dysfunction outweighing central nervous system (CNS) compensatory mechanisms. This review aims to provide an overview of the state of the art of neuropathological, immunological, and imaging knowledge about the mechanisms underlying the smoldering disease activity, focusing on possible early biomarkers and their translation into clinical practice. ANN NEUROL 2024;96:1-20.


Asunto(s)
Biomarcadores , Progresión de la Enfermedad , Esclerosis Múltiple , Humanos , Biomarcadores/metabolismo , Esclerosis Múltiple/patología , Esclerosis Múltiple/diagnóstico por imagen , Esclerosis Múltiple/metabolismo , Recurrencia
3.
Ann Neurol ; 92(4): 670-685, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35748636

RESUMEN

Leptomeningeal and perivenular infiltrates are important contributors to cortical grey matter damage and disease progression in multiple sclerosis (MS). Whereas perivenular inflammation induces vasculocentric lesions, leptomeningeal involvement follows a subpial "surface-in" gradient. To determine whether similar gradient of damage occurs in deep grey matter nuclei, we examined the dorsomedial thalamic nuclei and cerebrospinal fluid (CSF) samples from 41 postmortem secondary progressive MS cases compared with 5 non-neurological controls and 12 controls with other neurological diseases. CSF/ependyma-oriented gradient of reduction in NeuN+ neuron density was present in MS thalamic lesions compared to controls, greatest (26%) in subventricular locations at the ependyma/CSF boundary and least with increasing distance (12% at 10 mm). Concomitant graded reduction in SMI31+ axon density was observed, greatest (38%) at 2 mm from the ependyma/CSF boundary and least at 10 mm (13%). Conversely, gradient of major histocompatibility complex (MHC)-II+ microglia density increased by over 50% at 2 mm at the ependyma/CSF boundary and only by 15% at 10 mm and this gradient inversely correlated with the neuronal (R = -0.91, p < 0.0001) and axonal (R = -0.79, p < 0.0001) thalamic changes. Observed gradients were also detected in normal-appearing thalamus and were associated with rapid/severe disease progression; presence of leptomeningeal tertiary lymphoid-like structures; large subependymal infiltrates, enriched in CD20+ B cells and occasionally containing CXCL13+ CD35+ follicular dendritic cells; and high CSF protein expression of a complex pattern of soluble inflammatory/neurodegeneration factors, including chitinase-3-like-1, TNFR1, parvalbumin, neurofilament-light-chains and TNF. Substantial "ependymal-in" gradient of pathological cell alterations, accompanied by presence of intrathecal inflammation, compartmentalized either in subependymal lymphoid perivascular infiltrates or in CSF, may play a key role in MS progression. SUMMARY FOR SOCIAL MEDIA: Imaging and neuropathological evidences demonstrated the unique feature of "surface-in" gradient of damage in multiple sclerosis (MS) since early pediatric stages, often associated with more severe brain atrophy and disease progression. In particular, increased inflammation in the cerebral meninges has been shown to be strictly associated with an MS-specific gradient of neuronal, astrocyte, and oligodendrocyte loss accompanied by microglial activation in subpial cortical layers, which is not directly related to demyelination. To determine whether a similar gradient of damage occurs in deep grey matter nuclei, we examined the potential neuronal and microglia alterations in the dorsomedial thalamic nuclei from postmortem secondary progressive MS cases in combination with detailed neuropathological characterization of the inflammatory features and protein profiling of paired CSF samples. We observed a substantial "subependymal-in" gradient of neuro-axonal loss and microglia activation in active thalamic lesions of progressive MS cases, in particular in the presence of increased leptomeningeal and cerebrospinal fluid (CSF) inflammation. This altered graded pathology was found associated with more severe and rapid progressive MS and increased inflammatory degree either in large perivascular subependymal infiltrates, enriched in B cells, or within the paired CSF, in particular with elevated levels of a complex pattern of soluble inflammatory and neurodegeneration factors, including chitinase 3-like-1, TNFR1, parvalbumin, neurofilament light-chains and TNF. These data support a key role for chronic, intrathecally compartmentalized inflammation in specific disease endophenotypes. CSF biomarkers, together with advance imaging tools, may therefore help to improve not only the disease diagnosis but also the early identification of specific MS subgroups that would benefit of more personalized treatments. ANN NEUROL 2022;92:670-685.


Asunto(s)
Quitinasas , Esclerosis Múltiple Crónica Progresiva , Esclerosis Múltiple , Corteza Cerebral/metabolismo , Progresión de la Enfermedad , Epéndimo , Humanos , Inflamación/complicaciones , Esclerosis Múltiple/patología , Esclerosis Múltiple Crónica Progresiva/complicaciones , Parvalbúminas/metabolismo , Receptores Tipo I de Factores de Necrosis Tumoral/metabolismo , Tálamo/patología
4.
PLoS Biol ; 18(12): e3001008, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33315860

RESUMEN

Changes to the structure of nodes of Ranvier in the normal-appearing white matter (NAWM) of multiple sclerosis (MS) brains are associated with chronic inflammation. We show that the paranodal domains in MS NAWM are longer on average than control, with Kv1.2 channels dislocated into the paranode. These pathological features are reproduced in a model of chronic meningeal inflammation generated by the injection of lentiviral vectors for the lymphotoxin-α (LTα) and interferon-γ (IFNγ) genes. We show that tumour necrosis factor (TNF), IFNγ, and glutamate can provoke paranodal elongation in cerebellar slice cultures, which could be reversed by an N-methyl-D-aspartate (NMDA) receptor blocker. When these changes were inserted into a computational model to simulate axonal conduction, a rapid decrease in velocity was observed, reaching conduction failure in small diameter axons. We suggest that glial cells activated by pro-inflammatory cytokines can produce high levels of glutamate, which triggers paranodal pathology, contributing to axonal damage and conduction deficits.


Asunto(s)
Esclerosis Múltiple/patología , Nódulos de Ranvier/patología , Sustancia Blanca/patología , Adulto , Anciano , Anciano de 80 o más Años , Axones/patología , Encéfalo/patología , Sinapsis Eléctricas/patología , Sinapsis Eléctricas/efectos de la radiación , Femenino , Humanos , Inflamación/patología , Masculino , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/diagnóstico por imagen , Vaina de Mielina/patología , Neuroglía/patología , Neuroinmunomodulación/inmunología , Neuroinmunomodulación/fisiología , Nódulos de Ranvier/fisiología , Sustancia Blanca/diagnóstico por imagen , Sustancia Blanca/inmunología
5.
Proc Natl Acad Sci U S A ; 117(11): 5749-5760, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32132201

RESUMEN

Dysregulated cholesterol metabolism is implicated in a number of neurological disorders. Many sterols, including cholesterol and its precursors and metabolites, are biologically active and important for proper brain function. However, spatial cholesterol metabolism in brain and the resulting sterol distributions are poorly defined. To better understand cholesterol metabolism in situ across the complex functional regions of brain, we have developed on-tissue enzyme-assisted derivatization in combination with microliquid extraction for surface analysis and liquid chromatography-mass spectrometry to locate sterols in tissue slices (10 µm) of mouse brain. The method provides sterolomic analysis at 400-µm spot diameter with a limit of quantification of 0.01 ng/mm2 It overcomes the limitations of previous mass spectrometry imaging techniques in analysis of low-abundance and difficult-to-ionize sterol molecules, allowing isomer differentiation and structure identification. Here we demonstrate the spatial distribution and quantification of multiple sterols involved in cholesterol metabolic pathways in wild-type and cholesterol 24S-hydroxylase knockout mouse brain. The technology described provides a powerful tool for future studies of spatial cholesterol metabolism in healthy and diseased tissues.


Asunto(s)
Encéfalo/metabolismo , Colesterol/análogos & derivados , Hidroxicolesteroles/metabolismo , Espectrometría de Masas/métodos , Animales , Química Encefálica , Colesterol/análisis , Colesterol/metabolismo , Hidroxicolesteroles/análisis , Límite de Detección , Masculino , Espectrometría de Masas/normas , Ratones , Ratones Endogámicos C57BL
6.
J Lipid Res ; 62: 100078, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33891937

RESUMEN

Cerebrotendinous xanthomatosis (CTX) is caused by autosomal recessive loss-of-function mutations in CYP27A1, a gene encoding cytochrome p450 oxidase essential for bile acid synthesis, resulting in altered bile acid and lipid metabolism. Here, we aimed to identify metabolic aberrations that drive ongoing neurodegeneration in some patients with CTX despite chenodeoxycholic acid (CDCA) supplementation, the standard treatment in CTX. Using chromatographic separation techniques coupled to mass spectrometry, we analyzed 26 sterol metabolites in serum and cerebrospinal fluid (CSF) of patients with CTX and in one CTX brain. Comparing samples of drug naive patients to patients treated with CDCA and healthy controls, we identified 7α,12α-dihydroxycholest-4-en-3-one as the most prominently elevated metabolite in serum and CSF of drug naive patients. CDCA treatment substantially reduced or even normalized levels of all metabolites increased in untreated patients with CTX. Independent of CDCA treatment, metabolites of the 27-hydroxylation pathway were nearly absent in all patients with CTX. 27-hydroxylated metabolites accounted for ∼45% of total free sterol content in CSF of healthy controls but <2% in patients with CTX. Metabolic changes in brain tissue corresponded well with findings in CSF. Interestingly, 7α,12α-dihydroxycholest-4-en-3-one and 5α-cholestanol did not exert toxicity in neuronal cell culture. In conclusion, we propose that increased 7α,12α-dihydroxycholest-4-en-3-one and lack of 27-hydroxycholesterol may be highly sensitive metabolic biomarkers of CTX. As CDCA cannot reliably prevent disease progression despite reduction of most accumulated metabolites, supplementation of 27-hydroxylated bile acid intermediates or replacement of CYP27A1 might be required to counter neurodegeneration in patients with progressive disease despite CDCA treatment.


Asunto(s)
Xantomatosis Cerebrotendinosa
7.
Anal Chem ; 93(11): 4932-4943, 2021 03 23.
Artículo en Inglés | MEDLINE | ID: mdl-33687199

RESUMEN

Despite being a critical molecule in the brain, mass spectrometry imaging (MSI) of cholesterol has been under-reported compared to other lipids due to the difficulty in ionizing the sterol molecule. In the present work, we have employed an on-tissue enzyme-assisted derivatization strategy to improve detection of cholesterol in brain tissue sections. We report distribution and levels of cholesterol across specific structures of the mouse brain, in a model of Niemann-Pick type C1 disease, and during brain development. MSI revealed that in the adult mouse, cholesterol is the highest in the pons and medulla and how its distribution changes during development. Cholesterol was significantly reduced in the corpus callosum and other brain regions in the Npc1 null mouse, confirming hypomyelination at the molecular level. Our study demonstrates the potential of MSI to the study of sterols in neuroscience.


Asunto(s)
Colesterol , Enfermedad de Niemann-Pick Tipo C , Animales , Encéfalo/diagnóstico por imagen , Espectrometría de Masas , Ratones , Enfermedad de Niemann-Pick Tipo C/diagnóstico por imagen , Esteroles
8.
Ann Neurol ; 83(4): 739-755, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29518260

RESUMEN

OBJECTIVE: Gray matter (GM) damage and meningeal inflammation have been associated with early disease onset and a more aggressive disease course in multiple sclerosis (MS), but can these changes be identified in the patient early in the disease course? METHODS: To identify possible biomarkers linking meningeal inflammation, GM damage, and disease severity, gene and protein expression were analyzed in meninges and cerebrospinal fluid (CSF) from 27 postmortem secondary progressive MS and 14 control cases. Combined cytokine/chemokine CSF profiling and 3T magnetic resonance imaging (MRI) were performed at diagnosis in 2 independent cohorts of MS patients (35 and 38 subjects) and in 26 non-MS patients. RESULTS: Increased expression of proinflammatory cytokines (IFNγ, TNF, IL2, and IL22) and molecules related to sustained B-cell activity and lymphoid-neogenesis (CXCL13, CXCL10, LTα, IL6, and IL10) was detected in the meninges and CSF of postmortem MS cases with high levels of meningeal inflammation and GM demyelination. Similar proinflammatory patterns, including increased levels of CXCL13, TNF, IFNγ, CXCL12, IL6, IL8, and IL10, together with high levels of BAFF, APRIL, LIGHT, TWEAK, sTNFR1, sCD163, MMP2, and pentraxin III, were detected in the CSF of MS patients with higher levels of GM damage at diagnosis. INTERPRETATION: A common pattern of intrathecal (meninges and CSF) inflammatory profile strongly correlates with increased cortical pathology, both at the time of diagnosis and at death. These results suggest a role for detailed CSF analysis combined with MRI as a prognostic marker for more aggressive MS. Ann Neurol 2018 Ann Neurol 2018;83:739-755.


Asunto(s)
Corteza Cerebral/patología , Citocinas/líquido cefalorraquídeo , Sustancia Gris/patología , Meninges/metabolismo , Esclerosis Múltiple/patología , Adulto , Anciano , Anciano de 80 o más Años , Autopsia , Corteza Cerebral/diagnóstico por imagen , Estudios de Cohortes , Progresión de la Enfermedad , Femenino , Sustancia Gris/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Masculino , Meninges/diagnóstico por imagen , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/diagnóstico por imagen , Curva ROC
9.
Ann Neurol ; 84(6): 829-842, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30362156

RESUMEN

OBJECTIVE: Cortical gray matter (GM) pathology, involving demyelination and neurodegeneration, associated with meningeal inflammation, could be important in determining disability progression in multiple sclerosis (MS). However, we need to know more about how cortical demyelination, neurodegeneration, and meningeal inflammation contribute to pathology at early stages of MS to better predict long-term outcome. METHODS: Tissue blocks from short disease duration MS (n = 12, median disease duration = 2 years), progressive MS (n = 21, disease duration = 25 years), non-diseased controls (n = 11), and other neurological inflammatory disease controls (n = 6) were quantitatively analyzed by immunohistochemistry, immunofluorescence, and in situ hybridization. RESULTS: Cortical GM demyelination was extensive in some cases of acute MS (range = 1-48% of total cortical GM), and subpial lesions were the most common type (62%). The numbers of activated (CD68+ ) microglia/macrophages were increased in cases with subpial lesions, and the density of neurons was significantly reduced in acute MS normal appearing and lesion GM, compared to controls (p < 0.005). Significant meningeal inflammation and lymphoid-like structures were seen in 4 of 12 acute MS cases. The extent of meningeal inflammation correlated with microglial/macrophage activation (p < 0.05), but not the area of cortical demyelination, reflecting the finding that lymphoid-like structures were seen adjacent to GM lesions as well as areas of partially demyelinated/remyelinated, cortical GM. INTERPRETATION: Our findings demonstrate that cortical demyelination, neuronal loss, and meningeal inflammation are notable pathological hallmarks of acute MS and support the need to identify early biomarkers of this pathology to better predict outcome. Ann Neurol 2018;84:829-842.


Asunto(s)
Corteza Cerebral/patología , Inflamación/complicaciones , Meninges/patología , Esclerosis Múltiple/complicaciones , Vaina de Mielina/patología , Adulto , Anciano , Antígenos CD/metabolismo , Corteza Cerebral/metabolismo , Estudios de Cohortes , Proteínas de Unión al ADN/metabolismo , Progresión de la Enfermedad , Femenino , Sustancia Gris/metabolismo , Sustancia Gris/patología , Humanos , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Meninges/metabolismo , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Vaina de Mielina/metabolismo , Factores de Transcripción/metabolismo , Adulto Joven
10.
Mult Scler ; 25(4): 523-531, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-29421990

RESUMEN

BACKGROUND: CD59, a broadly expressed glycosylphosphatidylinositol-anchored protein, is the principal cell inhibitor of complement membrane attack on cells. In the demyelinating disorders, multiple sclerosis (MS) and neuromyelitis optica spectrum disorder (NMOSD), elevated complement protein levels, including soluble CD59 (sCD59), were reported in cerebrospinal fluid (CSF). OBJECTIVES: We compared sCD59 levels in CSF and matched plasma in controls and patients with MS, NMOSD and clinically isolated syndrome (CIS) and investigated the source of CSF sCD59 and whether it was microparticle associated. METHODS: sCD59 was quantified using enzyme-linked immunosorbent assay (ELISA; Hycult; HK374-02). Patient and control CSF was subjected to western blotting to characterise anti-CD59-reactive materials. CD59 was localised by immunostaining and in situ hybridisation. RESULTS: CSF sCD59 levels were double those in plasma (CSF, 30.2 ng/mL; plasma, 16.3 ng/mL). Plasma but not CSF sCD59 levels differentiated MS from NMOSD, MS from CIS and NMOSD/CIS from controls. Elimination of microparticles confirmed that CSF sCD59 was not membrane anchored. CONCLUSION: CSF levels of sCD59 are not a biomarker of demyelinating diseases. High levels of sCD59 in CSF relative to plasma suggest an intrathecal source; CD59 expression in brain parenchyma was low, but expression was strong on choroid plexus (CP) epithelium, immediately adjacent the CSF, suggesting that this is the likely source.


Asunto(s)
Antígenos CD59/líquido cefalorraquídeo , Plexo Coroideo/metabolismo , Enfermedades Desmielinizantes/líquido cefalorraquídeo , Esclerosis Múltiple/líquido cefalorraquídeo , Neuromielitis Óptica/líquido cefalorraquídeo , Adulto , Antígenos CD59/sangre , Enfermedades Desmielinizantes/sangre , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/sangre , Neuromielitis Óptica/sangre
11.
Pract Neurol ; 19(4): 342-349, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31243138

RESUMEN

Long-term outcomes in multiple sclerosis (MS) are highly varied and treatment with disease-modifying therapies carries significant risks. Finding tissue biomarkers that can predict clinical outcomes would be valuable in individualising treatment decisions for people with MS. Several candidate biomarkers-reflecting inflammation, neurodegeneration and glial pathophysiology-show promise for predicting outcomes. However, many candidates still require validation in cohorts with long-term follow-up and evaluation for their independent contribution in predicting outcome when models are adjusted for known demographic, clinical and radiological predictors. Given the complexity of MS pathophysiology, heterogeneous panels comprising a combination of biomarkers that encompass the various aspects of neurodegenerative, glial and immune pathology seen in MS, may enhance future predictions of outcome.


Asunto(s)
Mediadores de Inflamación/sangre , Esclerosis Múltiple/sangre , Esclerosis Múltiple/diagnóstico , Biomarcadores/sangre , Humanos , Esclerosis Múltiple/terapia , Pronóstico , Resultado del Tratamiento
12.
J Neuroinflammation ; 13(1): 161, 2016 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-27333900

RESUMEN

BACKGROUND: The symptoms of multiple sclerosis (MS) are caused by damage to myelin and nerve cells in the brain and spinal cord. Inflammation is tightly linked with neurodegeneration, and it is the accumulation of neurodegeneration that underlies increasing neurological disability in progressive MS. Determining pathological mechanisms at play in MS grey matter is therefore a key to our understanding of disease progression. METHODS: We analysed complement expression and activation by immunocytochemistry and in situ hybridisation in frozen or formalin-fixed paraffin-embedded post-mortem tissue blocks from 22 progressive MS cases and made comparisons to inflammatory central nervous system disease and non-neurological disease controls. RESULTS: Expression of the transcript for C1qA was noted in neurons and the activation fragment and opsonin C3b-labelled neurons and glia in the MS cortical and deep grey matter. The density of immunostained cells positive for the classical complement pathway protein C1q and the alternative complement pathway activation fragment Bb was significantly increased in cortical grey matter lesions in comparison to control grey matter. The number of cells immunostained for the membrane attack complex was elevated in cortical lesions, indicating complement activation to completion. The numbers of classical (C1-inhibitor) and alternative (factor H) pathway regulator-positive cells were unchanged between MS and controls, whilst complement anaphylatoxin receptor-bearing microglia in the MS cortex were found closely apposed to cortical neurons. Complement immunopositive neurons displayed an altered nuclear morphology, indicative of cell stress/damage, supporting our finding of significant neurodegeneration in cortical grey matter lesions. CONCLUSIONS: Complement is activated in the MS cortical grey matter lesions in areas of elevated numbers of complement receptor-positive microglia and suggests that complement over-activation may contribute to the worsening pathology that underlies the irreversible progression of MS.


Asunto(s)
Sistema Nervioso Central/patología , Proteínas del Sistema Complemento/metabolismo , Encefalitis/patología , Sustancia Gris/patología , Esclerosis Múltiple/patología , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Clusterina/metabolismo , Estudios de Cohortes , Proteínas Inactivadoras del Complemento 1/metabolismo , Proteína Inhibidora del Complemento C1 , Proteínas del Sistema Complemento/genética , Femenino , Antígenos HLA-D/genética , Antígenos HLA-D/metabolismo , Humanos , Masculino , Microglía/patología , Persona de Mediana Edad , Glicoproteína Mielina-Oligodendrócito/metabolismo , Adulto Joven
13.
Hum Mol Genet ; 22(5): 927-40, 2013 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-23184146

RESUMEN

Glycinergic neurotransmission is a major inhibitory influence in the CNS and its disruption triggers a paediatric and adult startle disorder, hyperekplexia. The postsynaptic α(1)-subunit (GLRA1) of the inhibitory glycine receptor (GlyR) and the cognate presynaptic glycine transporter (SLC6A5/GlyT2) are well-established genes of effect in hyperekplexia. Nevertheless, 52% of cases (117 from 232) remain gene negative and unexplained. Ligand-gated heteropentameric GlyRs form chloride ion channels that contain the α(1) and ß-subunits (GLRB) in a 2α(1):3ß configuration and they form the predominant population of GlyRs in the postnatal and adult human brain, brainstem and spinal cord. We screened GLRB through 117 GLRA1- and SLC6A5-negative hyperekplexia patients using a multiplex-polymerase chain reaction and Sanger sequencing approach. The screening identified recessive and dominant GLRB variants in 12 unrelated hyperekplexia probands. This primarily yielded homozygous null mutations, with nonsense (n = 3), small indel (n = 1), a large 95 kb deletion (n = 1), frameshifts (n = 1) and one recurrent splicing variant found in four cases. A further three cases were found with two homozygous and one dominant GLRB missense mutations. We provide strong evidence for the pathogenicity of GLRB mutations using splicing assays, deletion mapping, cell-surface biotinylation, expression studies and molecular modelling. This study describes the definitive assignment of GLRB as the third major gene for hyperekplexia and impacts on the genetic stratification and biological causation of this neonatal/paediatric disorder. Driven principally by consanguineous homozygosity of GLRB mutations, the study reveals long-term additive phenotypic outcomes for affected cases such as severe apnoea attacks, learning difficulties and developmental delay.


Asunto(s)
Epilepsia/genética , Enfermedades Genéticas Ligadas al Cromosoma X/genética , Hipertonía Muscular/genética , Receptores de Glicina/genética , Reflejo Anormal/genética , Adolescente , Adulto , Secuencia de Aminoácidos , Niño , Preescolar , Epilepsia/fisiopatología , Femenino , Enfermedades Genéticas Ligadas al Cromosoma X/fisiopatología , Predisposición Genética a la Enfermedad , Proteínas de Transporte de Glicina en la Membrana Plasmática/genética , Proteínas de Transporte de Glicina en la Membrana Plasmática/metabolismo , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Hipertonía Muscular/fisiopatología , Mutación , Linaje , Conformación Proteica , Sitios de Empalme de ARN/genética , Receptores de Glicina/química , Receptores de Glicina/metabolismo , Relación Estructura-Actividad
14.
Neuropathol Appl Neurobiol ; 41(6): 798-813, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25421634

RESUMEN

AIMS: Multiple sclerosis (MS) is a progressive inflammatory neurological disease affecting myelin, neurons and glia. Demyelination and neurodegeneration of cortical grey matter contribute to a more severe disease, and inflammation of the forebrain meninges associates with pathology of the underlying neocortical grey matter, particularly in deep sulci. We assessed the extent of meningeal inflammation of the cerebellum, another structure with a deeply folded anatomy, to better understand the association between subarachnoid inflammation and grey matter pathology in progressive MS. METHODS: We examined demyelinating and neuronal pathology in the context of meningeal inflammation in cerebellar tissue blocks from a cohort of 27 progressive MS cases previously characterized on the basis of the absence/presence of lymphoid-like aggregates in the forebrain meninges, in comparison with 11 non-neurological controls. RESULTS: Demyelination and meningeal inflammation of the cerebellum was greatest in those cases previously characterized as harbouring lymphoid-like structures in the forebrain regions. Meningeal inflammation was mild to moderate in cerebellar tissue blocks, and no lymphoid-like structures were seen. Quantification of meningeal macrophages, CD4+, CD8+ T lymphocytes, B cells and plasma cells revealed that the density of meningeal macrophages associated with microglial activation in the grey matter, and the extent of grey matter demyelination correlated with the density of macrophages and plasma cells in the overlying meninges, and activated microglia of the parenchyma. CONCLUSIONS: These data suggest that chronic inflammation is widespread throughout the subarachnoid space and contributes to a more severe subpial demyelinating pathology in the cerebellum.


Asunto(s)
Cerebelo/patología , Encefalitis/patología , Sustancia Gris/patología , Esclerosis Múltiple/patología , Espacio Subaracnoideo/patología , Adulto , Anciano , Anciano de 80 o más Años , Encefalitis/complicaciones , Femenino , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple/complicaciones , Neuronas/patología
15.
J Biol Chem ; 288(47): 33745-33759, 2013 Nov 22.
Artículo en Inglés | MEDLINE | ID: mdl-24108130

RESUMEN

Hyperekplexia is a syndrome of readily provoked startle responses, alongside episodic and generalized hypertonia, that presents within the first month of life. Inhibitory glycine receptors are pentameric ligand-gated ion channels with a definitive and clinically well stratified linkage to hyperekplexia. Most hyperekplexia cases are caused by mutations in the α1 subunit of the human glycine receptor (hGlyR) gene (GLRA1). Here we analyzed 68 new unrelated hyperekplexia probands for GLRA1 mutations and identified 19 mutations, of which 9 were novel. Electrophysiological analysis demonstrated that the dominant mutations p.Q226E, p.V280M, and p.R414H induced spontaneous channel activity, indicating that this is a recurring mechanism in hGlyR pathophysiology. p.Q226E, at the top of TM1, most likely induced tonic activation via an enhanced electrostatic attraction to p.R271 at the top of TM2, suggesting a structural mechanism for channel activation. Receptors incorporating p.P230S (which is heterozygous with p.R65W) desensitized much faster than wild type receptors and represent a new TM1 site capable of modulating desensitization. The recessive mutations p.R72C, p.R218W, p.L291P, p.D388A, and p.E375X precluded cell surface expression unless co-expressed with α1 wild type subunits. The recessive p.E375X mutation resulted in subunit truncation upstream of the TM4 domain. Surprisingly, on the basis of three independent assays, we were able to infer that p.E375X truncated subunits are incorporated into functional hGlyRs together with unmutated α1 or α1 plus ß subunits. These aberrant receptors exhibit significantly reduced glycine sensitivity. To our knowledge, this is the first suggestion that subunits lacking TM4 domains might be incorporated into functional pentameric ligand-gated ion channel receptors.


Asunto(s)
Regulación de la Expresión Génica , Rigidez Muscular/metabolismo , Mutación Missense , Receptores de Glicina/metabolismo , Sustitución de Aminoácidos , Femenino , Humanos , Masculino , Rigidez Muscular/genética , Estructura Secundaria de Proteína , Estructura Terciaria de Proteína , Receptores de Glicina/genética
16.
Brain ; 136(Pt 12): 3596-608, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-24176976

RESUMEN

A substantial proportion of cases with secondary progressive multiple sclerosis have extensive inflammation in the leptomeninges that is associated with increased subpial demyelination, neuronal loss and an exacerbated disease course. However, the mechanisms underlying this extensive subpial pathology are poorly understood. We hypothesize that pro-inflammatory cytokine production within the meninges may be a key to this process. Post-mortem cerebrospinal fluid and dissected cerebral leptomeningeal tissue from patients with multiple sclerosis were used to study the presence of tumour necrosis factor and interferon gamma protein and messenger RNA levels. A novel model of subpial cortical grey matter demyelination was set up in Dark Agouti rats and analysed using quantitative immunohistochemistry. Increased expression of the pro-inflammatory cytokines tumour necrosis factor and interferon gamma was found in the meninges of cases with secondary progressive multiple sclerosis exhibiting tertiary lymphoid-like structures. Injection of tumour necrosis factor and interferon gamma into the subarachnoid space of female Dark Agouti rats pre-immunized with a subclinical dose of myelin oligodendrocyte glycoprotein mimicked the pathology seen in multiple sclerosis, including infiltration of lymphocytes (CD4+ and CD8+ T cells and CD79+ B cells) into the meninges and extensive subpial demyelination. Extensive microglial/macrophage activation was present in a gradient from the pial surface to deeper cortical layers. Demyelination did not occur in control animals immunized with incomplete Freund's adjuvant and injected with cytokines. These results support the hypothesis that pro-inflammatory molecules produced in the meninges play a major role in cortical demyelination in multiple sclerosis, but also emphasize the involvement of an anti-myelin immune response.


Asunto(s)
Encéfalo/metabolismo , Corteza Cerebral/metabolismo , Corteza Cerebral/patología , Citocinas/metabolismo , Neuronas/fisiología , Espacio Subaracnoideo/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Animales , Citocinas/genética , Citocinas/farmacología , Modelos Animales de Enfermedad , Relación Dosis-Respuesta a Droga , Encefalomielitis Autoinmune Experimental/inducido químicamente , Encefalomielitis Autoinmune Experimental/complicaciones , Encefalomielitis Autoinmune Experimental/inmunología , Femenino , Humanos , Masculino , Microglía/efectos de los fármacos , Microglía/metabolismo , Microglía/patología , Persona de Mediana Edad , Esclerosis Múltiple/líquido cefalorraquídeo , Esclerosis Múltiple/patología , Glicoproteína Mielina-Oligodendrócito/inmunología , Glicoproteína Mielina-Oligodendrócito/metabolismo , Glicoproteína Mielina-Oligodendrócito/toxicidad , Neuronas/efectos de los fármacos , Cambios Post Mortem , Ratas , Espacio Subaracnoideo/efectos de los fármacos
17.
iScience ; 27(1): 108670, 2024 Jan 19.
Artículo en Inglés | MEDLINE | ID: mdl-38155767

RESUMEN

Dysregulated cholesterol metabolism has been linked to neurodegeneration. We previously found that free, non-esterified, 7α,(25R)26-dihydroxycholesterol (7α,26-diHC), was significantly elevated in the cerebrospinal fluid of patients with Parkinson's disease (PD). In this study we investigated the role of 7α,26-diHC in midbrain dopamine (mDA) neuron development and survival. We report that 7α,26-diHC induces apoptosis and reduces the number of mDA neurons in hESC-derived cultures and in mouse progenitor cultures. Voriconazole, an oxysterol 7α-hydroxylase (CYP7B1) inhibitor, increases the number of mDA neurons and prevents the loss of mDA neurons induced by 7α,26-diHC. These effects are specific since neither 7α,26-diHC nor voriconazole alter the number of Islet1+ oculomotor neurons. Furthermore, our results suggest that elevated 24(S),25-epoxycholesterol, which has been shown to promote mDA neurogenesis, may be partially responsible for the effect of voriconazole on mDA neurons. These findings suggest that voriconazole, and/or other azole CYP7B1 inhibitors may have implications in PD therapy development.

18.
Brain ; 135(Pt 10): 2925-37, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22907116

RESUMEN

The primary progressive form of multiple sclerosis is characterized by accrual of neurological dysfunction from disease onset without remission and it is still a matter of debate whether this disease course results from different pathogenetic mechanisms compared with secondary progressive multiple sclerosis. Inflammation in the leptomeninges has been identified as a key feature of secondary progressive multiple sclerosis and may contribute to the extensive cortical pathology that accompanies progressive disease. Our aim was to investigate the extent of perivascular and meningeal inflammation in primary progressive multiple sclerosis in order to understand their contribution to the pathogenetic mechanisms associated with cortical pathology. A comprehensive immunohistochemical analysis was performed on post-mortem brain tissue from 26 cases with primary progressive multiple sclerosis. A variable extent of meningeal immune cell infiltration was detected and more extensive demyelination and neurite loss in the cortical grey matter was found in cases exhibiting an increased level of meningeal inflammation. However, no tertiary lymphoid-like structures were found. Profound microglial activation and reduction in neuronal density was observed in both the lesions and normal appearing grey matter compared with control cortex. Furthermore, cases with primary progressive multiple sclerosis with extensive meningeal immune cell infiltration exhibited a more severe clinical course, including a shorter disease duration and younger age at death. Our data suggest that generalized diffuse meningeal inflammation and the associated inflammatory milieu in the subarachnoid compartment plays a role in the pathogenesis of cortical grey matter lesions and an increased rate of clinical progression in primary progressive multiple sclerosis.


Asunto(s)
Inflamación/inmunología , Inflamación/patología , Meninges/inmunología , Meninges/patología , Esclerosis Múltiple Crónica Progresiva/patología , Adulto , Anciano , Anciano de 80 o más Años , Enfermedades Desmielinizantes/inmunología , Enfermedades Desmielinizantes/patología , Progresión de la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Esclerosis Múltiple Crónica Progresiva/inmunología , Factores de Tiempo
19.
Nat Rev Neurol ; 19(8): 461-476, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37400550

RESUMEN

Growing evidence from cerebrospinal fluid samples and post-mortem brain tissue from individuals with multiple sclerosis (MS) and rodent models indicates that the meninges have a key role in the inflammatory and neurodegenerative mechanisms underlying progressive MS pathology. The subarachnoid space and associated perivascular spaces between the membranes of the meninges are the access points for entry of lymphocytes, monocytes and macrophages into the brain parenchyma, and the main route for diffusion of inflammatory and cytotoxic molecules from the cerebrospinal fluid into the brain tissue. In addition, the meningeal spaces act as an exit route for CNS-derived antigens, immune cells and metabolites. A number of studies have demonstrated an association between chronic meningeal inflammation and a more severe clinical course of MS, suggesting that the build-up of immune cell aggregates in the meninges represents a rational target for therapeutic intervention. Therefore, understanding the precise cell and molecular mechanisms, timing and anatomical features involved in the compartmentalization of inflammation within the meningeal spaces in MS is vital. Here, we present a detailed review and discussion of the cellular, molecular and radiological evidence for a role of meningeal inflammation in MS, alongside the clinical and therapeutic implications.


Asunto(s)
Esclerosis Múltiple , Humanos , Sustancia Gris/metabolismo , Sustancia Gris/patología , Corteza Cerebral/patología , Meninges/metabolismo , Meninges/patología , Inflamación , Progresión de la Enfermedad
20.
Front Cell Neurosci ; 17: 1094106, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37032838

RESUMEN

Background: The extent of cortical pathology is an important determinant of multiple sclerosis (MS) severity. Cortical demyelination and neurodegeneration are related to inflammation of the overlying leptomeninges, a more inflammatory CSF milieu and with parenchymal microglia and astroglia activation. These are all components of the compartmentalised inflammatory response. Compartmentalised inflammation is a feature of progressive MS, which is not targeted by disease modifying therapies. Complement is differentially expressed in the MS CSF and complement, and complement receptors, are associated with demyelination and neurodegeneration. Methods: To better understand if complement activation in the leptomeninges is associated with underlying cortical demyelination, inflammation, and microglial activation, we performed a neuropathological study of progressive MS (n = 22, 14 females), neuroinflammatory (n = 8), and non-neurological disease controls (n = 10). We then quantified the relative extent of demyelination, connective tissue inflammation, complement, and complement receptor positive microglia/macrophages. Results: Complement was elevated at the leptomeninges, subpial, and within and around vessels of the cortical grey matter. The extent of complement C1q immunoreactivity correlated with connective tissue infiltrates, whilst activation products C4d, Bb, and C3b associated with grey matter demyelination, and C3a receptor 1+ and C5a receptor 1+ microglia/macrophages closely apposed C3b labelled cells. The density of C3a receptor 1+ and C5a receptor 1+ cells was increased at the expanding edge of subpial and leukocortical lesions. C5a receptor 1+ cells expressed TNFα, iNOS and contained puncta immunoreactive for proteolipid protein, neurofilament and synaptophysin, suggesting their involvement in grey matter lesion expansion. Interpretation: The presence of products of complement activation at the brain surfaces, their association with the extent of underlying pathology and increased complement anaphylatoxin receptor positive microglia/macrophages at expanding cortical grey matter lesions, could represent a target to modify compartmentalised inflammation and cortical demyelination.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA