Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Eur Spine J ; 33(4): 1424-1439, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38285276

RESUMEN

PURPOSE: Although studies have suggested that gut microbiota may be associated with intervertebral disk disease, their causal relationship is unclear. This study aimed to investigate the causal relationship between the gut microbiota and its metabolic pathways with the risk of intervertebral disk degeneration (IVDD), low back pain (LBP), and sciatica. METHODS: Genetic variation data for 211 gut microbiota taxa at the phylum to genus level were obtained from the MiBioGen consortium. Genetic variation data for 105 taxa at the species level and 205 metabolic pathways were obtained from the Dutch Microbiome Project. Genetic variation data for disease outcomes were obtained from the FinnGen consortium. The causal relationships between the gut microbiota and its metabolic pathways and the risk of IVDD, LBP, and sciatica were evaluated via Mendelian randomization (MR). The robustness of the results was assessed through sensitivity analysis. RESULTS: Inverse variance weighting identified 46 taxa and 33 metabolic pathways that were causally related to IVDD, LBP, and sciatica. After correction by weighted median and MR-PRESSO, 15 taxa and nine pathways remained stable. After FDR correction, only the effect of the genus_Eubacterium coprostanoligenes group on IVDD remained stable. Sensitivity analyses showed no evidence of horizontal pleiotropy, heterogeneity, or reverse causation. CONCLUSION: Some microbial taxa and their metabolic pathways are causally related to IVDD, LBP, and sciatica and may serve as potential intervention targets. This study provides new insights into the mechanisms of gut microbiota-mediated development of intervertebral disk disease.


Asunto(s)
Microbioma Gastrointestinal , Degeneración del Disco Intervertebral , Desplazamiento del Disco Intervertebral , Dolor de la Región Lumbar , Ciática , Humanos , Ciática/epidemiología , Ciática/genética , Degeneración del Disco Intervertebral/epidemiología , Degeneración del Disco Intervertebral/genética , Dolor de la Región Lumbar/epidemiología , Dolor de la Región Lumbar/genética , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo
2.
J Am Chem Soc ; 145(32): 17845-17855, 2023 Aug 16.
Artículo en Inglés | MEDLINE | ID: mdl-37545096

RESUMEN

Charge plays a crucial role in the function of molecular and supramolecular systems, but coordination hosts capable of orthogonal charge regulation remain elusive so far. In this study, we report the condition-dependent self-assembly of charge-reversible lanthanide-organic tetra-capped octahedral cages, i.e., [Ln6(H3L)4]6+ and [Ln6L4]6-, from a series of lanthanide ions (Ln3+; Ln = Lu, Yb, Eu) and a tritopic tetradentate acylhydrazone ligand (H6L) featuring multiple deprotonation states and propeller conformations. While direct self-assembly under basic conditions produced a mixture of various ΔxΛ6-x-[Ln6L4]6- (x = 0-6) stereoisomers, racemic Δ6- and Λ6-[Ln6L4]6- could be exclusively obtained from the first self-assembly of Δ6- and Λ6-[Ln6(H3L)4]6+ under neutral conditions followed by post-assembly deprotonation. Rich isomerism on the tetra-capped octahedral cages arising from the coupling between the metal-centered Δ/Λ chirality and the ligand conformations has been discussed based on X-ray single-crystal structures of the C3-symmetric Δ3Λ3-Ln6L4 and T-symmetric Δ6/Λ6-Ln6L4 complexes. Host-guest studies confirmed that positively charged rac-Δ6/Λ6-[Ln6(H3L)4]6+ could bind anionic sulfonates, and negatively charged rac-Δ6/Λ6-[Ln6L4]6- exhibited strong encapsulation ability toward ammonium guests, where acid/base-triggered guest uptake/release could be realized taking advantage of the charge reversibility of the cage. Moreover, photophysical studies revealed visible-light-sensitized and guest-encapsulation-enhanced NIR emissions on the rac-Δ6/Λ6-Yb6L4 cage. This work not only enriches the library of functional lanthanide-organic cages but also provides a promising candidate with charge reversibility for the development of smart supramolecular materials.

3.
J Am Chem Soc ; 145(42): 23121-23130, 2023 Oct 25.
Artículo en Inglés | MEDLINE | ID: mdl-37844009

RESUMEN

Upconversion (UC) is a fascinating anti-Stokes-like optical process with promising applications in diverse fields. However, known UC mechanisms are mainly based on direct energy transfer between metal ions, which constrains the designability and tunability of the structures and properties. Here, we synthesize two types of Ln8L12-type (Ln for lanthanide ion; L for organic ligand L1 or L2R/S) lanthanide-organic complexes with assembly induced excited-multimer states. The Yb8(L2R/S)12 assembly exhibits upconverted multimer green fluorescence under 980 nm excitation through a cooperative sensitization process. Furthermore, upconverted red emission from Eu3+ on the heterometallic (Yb/Eu)8L12 assemblies is also realized via excited-multimer mediated energy relay. Our findings demonstrate a new strategy for designing UC materials, which is crucial for exploiting photofunctions of multicomponent lanthanide-organic complexes.

4.
Connect Tissue Res ; 64(4): 337-349, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37004174

RESUMEN

AIM: Intervertebral disc (IVD) degeneration is a common disease initiated by the degeneration of the nucleus pulposus (NP). The pyroptosis of degenerated NP cells (dNPCs) plays an important role in NP degeneration. The purpose of this study is to identify a feasible solution that can inhibit NP cell pyroptosis to therapy the degeneration of the intervertebral disc. METHODS: Cell viability and proliferation were quantified by Cell Counting Kit-8 assay. The measurement of cellular reactive oxygen species (ROS) was detected by 2,7-Dichlorodi-hydrofluorescein diacetate. The death of cells was analyzed by the Terminal Deoxynucleotidyl Transferase-mediated dUTP Nick-End Labeling (TUNEL) method of fluorescence analysis. The pyroptosis of cells was assessed by flow cytometry analyses. The contents of sulfate glycosaminoglycans were detected by a blyscan assay kit. RESULT: In this study, we determined the effects of retinoic acid (RA) on dNPCs and investigated the underlying mechanism of RA-mediated pyroptosis in dNPCs. We also verified the effects of RA on IVD degeneration in vivo. Our results demonstrated that RA significantly increased the proliferation and the protein expression of sox9, aggrecan, and collagen II of dNPCs. Pyroptosis-related proteins and the pyroptosis rate of dNPCs were significantly decreased by RA. We found that Sirt1-SOD2 signaling was activated, while ROS generation and TXNIP/NLRP3 signaling in dNPCs were inhibited after the addition of RA. Furthermore, RA also recovered the structure of NP and increased the contents of sulfated glycosaminoglycans and collagen in vivo. CONCLUSION: Our study demonstrated that RA could inhibit the pyroptosis and increase the extracellular matrix synthesis function of dNPCs and verified that RA has a protective effect on IVD degeneration.


Asunto(s)
Degeneración del Disco Intervertebral , Núcleo Pulposo , Humanos , Núcleo Pulposo/metabolismo , Piroptosis , Tretinoina/metabolismo , Tretinoina/farmacología , Especies Reactivas de Oxígeno/metabolismo , Sirtuina 1/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Glicosaminoglicanos/metabolismo
5.
Inorg Chem ; 62(21): 8293-8299, 2023 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-37184566

RESUMEN

We report the syntheses and host-guest chemistry of two interconvertible coordination cages, Pd2L2 and Pd1L1, from a dynamic macrocycle ligand (L) and a cis-blocking (tmen)Pd(NO3)2 (tmen = tetramethylethylenediamine) unit (Pd). The water-soluble macrocyclic L, which can bind various polycyclic aromatic hydrocarbon (PAH) guests in its cis-conformation, was constructed via four pyridinium bonds between two 2,4,6-tri(4-pyridyl)-1,3,5-triazine [TPT] panels and two p-xylene bridges. We selectively formed each cage either by changing the reaction concentration/solvent/temperature or through induced-fit guest encapsulation, while direct assembly of L and Pd resulted in a mixture of Pd2L2 and Pd1L1 in equilibrium. X-ray structures of the free ligand and the host-guest complexes confirmed the induce-fit adaptive changes in the ligand's conformation and the cage's cavity. This work demonstrates a useful strategy for designing multistimuli-responsive supramolecular hosts by coordination self-assembly with macrocyclic ligands featuring rich conformational freedom.

6.
J Am Chem Soc ; 144(9): 4244-4253, 2022 03 09.
Artículo en Inglés | MEDLINE | ID: mdl-35195993

RESUMEN

Chiral luminescent lanthanide-organic cages have many potential applications in enantioselective recognition, sensing, and asymmetric catalysis. However, due to the paucity of structures and their limited cavities, host-guest chemistry with lanthanide-organic cages has remained elusive so far. Herein, we report a guest-driven self-assembly and chiral induction approach for the construction of otherwise inaccessible Ln4L4-type (Ln = lanthanide ions, i.e., EuIII, TbIII; L = ligand) tetrahedral hosts. Single crystal analyses on a series of host-guest complexes reveal remarkable guest-adaptive cavity breathing on the tetrahedral cages, reflecting the advantage of the variation tolerance on coordination geometry of the f-elements. Meanwhile, noncovalent confinement of pyrene within the lanthanide cage not only leads to diminishment of its excimer emission but also facilitates guest to host energy transfer, opening up a new sensitization window for the lanthanide luminescence on the cage. Moreover, stereoselective self-assembly of either Λ4- or Δ4- type Eu4L4 cages has been realized via chiral induction with R/S-BINOL or R/S-SPOL templates, as confirmed by NMR, circular dichroism (CD), and circularly polarized luminescence (CPL) with high dissymmetry factors (glum) up to ±0.125.


Asunto(s)
Elementos de la Serie de los Lantanoides , Dicroismo Circular , Europio/química , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Estereoisomerismo
7.
Inorg Chem ; 61(23): 8854-8860, 2022 Jun 13.
Artículo en Inglés | MEDLINE | ID: mdl-35642338

RESUMEN

We present here the coordination self-assembly of a new heteroleptic (bpyPd)4L1L22 coordination complex (1) from one novel pyridinium-functionalized bis-2,4,6-tris(pyridin-3-yl)-1,3,5-triazine (bis-3-TPT, L1) macrocyclic ligand, two separate 3-TPT (L2) ligands, and four cis-blocking bpyPd(NO3)2 (bpy = 2,2'-bipyridine). While homoleptic self-assemblies with either L1 or L2 gave dynamic mixtures of products, a single thermodynamic heteroleptic complex was obtained driven by the shape complementarity of building blocks. Moreover, the redox-active nature of the heteroleptic assembly facilitates the highly efficient catalytic aerobic photo-oxidation of aromatic secondary alcohols under mild conditions.

8.
Inorg Chem ; 61(42): 16814-16821, 2022 Oct 24.
Artículo en Inglés | MEDLINE | ID: mdl-36206535

RESUMEN

Structurally well-defined discrete d/f heterometallic complexes show diverse application potential in electrooptic and magnetic materials. However, precise control of the component and topology of such heterometallic compounds with fine-tuned photophysical properties is still challenging. Herein, we report the stereocontrolled syntheses of a series of LnIII-PtII heterometallic cages through coordination-driven self-assembly of enantiopure alkynylplatinum-based metalloligands (L1R/S, L2R/S) with lanthanide ions (Ln = EuIII, YbIII, NdIII, LuIII). Taking advantage of the metal-to-ligand charge transfer (MLCT) excited state on the designed alkynylplatinum ligands, the excitation window for the sensitized near-infrared (NIR) luminescence on the YbIII- and NdIII-containing cages can be extended to the visible region (up to 500 nm). Linear temperature-dependent red and NIR emissions observed on the Ln4(L2R/S)6 (LnIII = EuIII and YbIII, respectively) complexes suggest their potential applications as luminescent temperature sensors, with sensitivities of -0.54% (LnIII = EuIII, 77-250 K) and -0.17% (LnIII = YbIII, 77-300 K) per K achieved. This work not only offers a good strategy to prepare new d/f heterometallic supramolecular cages but also paves the way for the design of stimuli-responsive luminescent materials.

9.
Angew Chem Int Ed Engl ; 61(42): e202209879, 2022 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-36036434

RESUMEN

Artificial hosts with rich conformational dynamics are attractive to supramolecular chemists due to their adaptive guest-binding properties and enzyme-like catalytic functions. We report here the adaptive self-assembly and host-guest catalysis of a new water-soluble organo-palladium host (Pd2 L2 ) built from a pyridinium-bonded macrocyclic ligand (L) and cis-blocked palladium corners (Pd). While the direct self-assembly of L with Pd gives rise to a dynamic mixture of products, both neutral polyaromatic hydrocarbons and an anionic polyoxometalate cluster (W10 O32 4- ) can template the dominant formation of the Pd2 L2 host. Guest-adaptive conformational changes and induced-fit cavity deformation of the Pd2 L2 host have been clearly observed in the crystal structures. Moreover, the installation of the electron-rich W10 O32 4- cluster within the cationic redox-active host (W10 O32 ⊂Pd2 L2 ) facilitates the efficient and selective C-H photooxidation of toluene derivatives to aldehyde products under mild conditions, thus representing an ideal platform for green supramolecular catalysis.

10.
J Am Chem Soc ; 143(39): 16087-16094, 2021 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-34553600

RESUMEN

One important feature of enzyme catalysis is the induced-fit conformational change after binding substrates. Herein, we report a biomimetic water-soluble molecular capsule featuring adaptive structural change toward substrate binding, which offers an ideal platform for efficient photocatalysis. The molecular capsule was coordination-assembled from three anthracene-bridged bis-TPT [TPT = 2,4,6-tris(4-pyridyl)-1,3,5-triazine] ligands and six (bpy)Pd(NO3)2 (bpy = 2,2'-bipyridine). Once substrates bind to its hydrophobic cavity, this capsule would undergo quantitative capsule-to-bowl transformation. Visible-light absorption brought about by both the anthracene units and the charge-transfer absorption on the late-formed quintuple π-π stacked host-guest complex efficiently facilitates aerobic photooxidation for the sulfide guests by visible-light irradiation under mild conditions. Desired turnover numbers and product selectivity (sulfoxide over sulfone) have been achieved by the transformable nature of the catalyst and the hydrophilicity of the sulfoxide product. Such a photocatalytic process enabled by an adaptive coordination capsule and substrates as the allosteric effector paves the way for constructing artificial systems to mimic enzyme catalysis.


Asunto(s)
2,2'-Dipiridil , Biomimética , Procesos Fotoquímicos , 2,2'-Dipiridil/química , Catálisis , Luz , Estructura Molecular , Oxidación-Reducción
11.
J Am Chem Soc ; 143(16): 6202-6210, 2021 04 28.
Artículo en Inglés | MEDLINE | ID: mdl-33871254

RESUMEN

Biological macromolecules always function through a collective behavior of the aggregated constituents, which usually are self-assembled together via noncovalent interactions. Likewise, artificial supramolecular assemblies, whose properties and functions are mainly derived from their primary and secondary structures, may also aggregate into high-order architectures with emergent functions not available on the individual components. Here we report the first example of an insulin-like hexamerization of lanthanide triple helicates toward a 4 nm diameter hexameric capsule via consecutive metal-directed and anion-directed assembly processes. Hierarchical chiral-sorting self-assembly endows hexamers with aggregation-induced stability and emission enhancement. Furthermore, emergent guest-encapsulation function and enantioselectivity toward terpene drugs have been realized in the late-formed central cavity of the hexamers. This study not only provides a feasible strategy for constructing sophisticated and multifunctional lanthanide-organic materials but also sheds some light on the self-assembly processes in nature.

12.
J Nanobiotechnology ; 19(1): 264, 2021 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-34488795

RESUMEN

Exosome therapy is a promising therapeutic approach for intervertebral disc degeneration (IVDD) and achieves its therapeutic effects by regulating metabolic disorders, the microenvironment and cell homeostasis with the sustained release of microRNAs, proteins, and transcription factors. However, the rapid clearance and disruption of exosomes are the two major challenges for the application of exosome therapy in IVDD. Herein, a thermosensitive acellular extracellular matrix (ECM) hydrogel coupled with adipose-derived mesenchymal stem cell (ADSC) exosomes (dECM@exo) that inherits the superior properties of nucleus pulposus tissue and ADSCs was fabricated to ameliorate IVDD. This thermosensitive dECM@exo hydrogel system can provide not only in situ gelation to replenish ECM leakage in nucleus pulposus cells (NPCs) but also an environment for the growth of NPCs. In addition, sustained release of ADSC-derived exosomes from this system regulates matrix synthesis and degradation by regulating matrix metalloproteinases (MMPs) and inhibits pyroptosis by mitigating the inflammatory response in vitro. Animal results demonstrated that the dECM@exo hydrogel system maintained early IVD microenvironment homeostasis and ameliorated IVDD. This functional system can serve as a powerful platform for IVD drug delivery and biotherapy and an alternative therapy for IVDD.


Asunto(s)
Exosomas/metabolismo , Matriz Extracelular/efectos de los fármacos , Hidrogeles/farmacología , Degeneración del Disco Intervertebral/tratamiento farmacológico , Piroptosis , Animales , Humanos , Degeneración del Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/patología , Degeneración del Disco Intervertebral/cirugía , Masculino , Metaloproteinasa 13 de la Matriz/genética , Células Madre Mesenquimatosas , MicroARNs/metabolismo , Núcleo Pulposo/efectos de los fármacos , Núcleo Pulposo/metabolismo , Ratas , Ingeniería de Tejidos
13.
J Am Chem Soc ; 142(38): 16409-16419, 2020 09 23.
Artículo en Inglés | MEDLINE | ID: mdl-32882131

RESUMEN

Lanthanide-containing functional complexes have found a variety of applications in materials science and biomedicine because of their unique electroptical and magnetic properties. However, the poor stability and solubility in water of multicomponent lanthanide organic assemblies significantly limit their practical applications. We report here a series of water-stable anionic Ln2nL3n-type (n = 2, 3, 4, and 5) lanthanide organic polyhedra (LOPs) constructed by deprotonation self-assembly of three fully conjugated ligands (H4L1 and H4L2a/b) featuring a 2,6-pyridine bitetrazolate chelating moiety. The outcomes of the LOPs formation reactions were found to be very sensitive toward the reaction conditions including base, metal source, solvents, and concentrations as characterized by a combination of NMR, high-resolution ESI-MS and X-ray crystallography. Ligands H4L2a/b manifested an excellent sensitization toward lanthanide ions (Ln = EuIII and TbIII), with high luminescent quantum yields for Tb8L2a12 (Φ = 11.2% in water) and Eu8L2b12 (Φ = 76.8% in DMSO) measured in polar solvents. Furthermore, due to the giant molecular weight and rigidity of the polyhedral skeleton, Gd8L2b12 showed a very high longitudinal relaxivity (r1) of 400.53 mM-1S-1. The performance of Gd8L2b12 as potential magnetic resonance imaging contrast agents (CAs) in vivo was evaluated with much longer retention time in the tumor sites compared with the commercial GdIII-based CAs. Dual-modal imaging potential has also been demonstrated with the mixed Eu/Gd LOPs. Our results not only provide a new design route toward water-stable multinuclear lanthanide organic assemblies but also offer potential candidates of supramolecular-edifices for bioimaging and drug delivery.


Asunto(s)
Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Luminiscencia , Imagen por Resonancia Magnética , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Complejos de Coordinación/síntesis química , Complejos de Coordinación/farmacología , Humanos , Elementos de la Serie de los Lantanoides/farmacología , Estructura Molecular , Solubilidad , Estereoisomerismo , Agua/química
14.
Inorg Chem ; 59(19): 14023-14030, 2020 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-32960581

RESUMEN

A series of multinuclear lanthanide-covalent organic polyhedra (LnCOPs), including pillar-typed triangular prisms 1-Ln3 and tetrahedra 2-Ln4 (Ln = LaIII, SmIII, EuIII), have been constructed for the first time, through either one-pot subcomponent self-assembly or postassembly metalation. In contrast to the known tetrahedral cages based on transition metals, the pillar-typed polyhedra were favored from the same organic components in the presence of lanthanides. Besides this, facile transmetalations between the 1-Ln3 polyhedra endow cascade chameleonic luminescence. Meanwhile, the open metal sites and pendent amine groups on 1-Ln3 enable these polyhedra to catalyze the Henry reaction efficiently.

15.
Angew Chem Int Ed Engl ; 59(52): 23569-23573, 2020 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-32902925

RESUMEN

We report here a guest-reaction-induced mitosis-like host transformation from a known Pd4 L2 cage 1 to a conjoined Pd6 L3 twin-cage 2 featuring two separate cavities. The encapsulation of 1-hydroxymethyl-2-naphthol (G1), a known ortho-quinone methide (o-QMs) precursor, within the hydrophobic cavity of cage 1 is found crucial to realize the cage to twin-cage conversion. Confined G1 molecules within the nanocavity undergo self-coupling dimerization reaction to form 2,2'-dihydroxy-1,1'-dinaphthylmethane (G2) which then triggers the cage to twin-cage mitosis. The same conversion also proceeds, in a much faster rate, via the direct templation of G2, confirming the induced-fit transformation mechanism. The structure of the (G2)2 ⊂2 host-guest complex has been established by X-ray crystallographic study, where cis- to trans- conformational switch on one bridging ligand is revealed.

16.
Molecules ; 23(2)2018 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-29425118

RESUMEN

Materials with aggregation-induced emission (AIE) properties have received increased attention recently due to their potential applications in light-emitting devices, chemo/biosensors and biomedical diagnostics. In general, AIE requires the forced aggregation of the AIEgens induced by the poor solvent or close arrangement of AIEgens covalently attached to polymer chains. Here, we report two coordination-enhanced fluorescent supramolecular complexes featuring hierarchically restricted intramolecular motions via the self-assembly of tetraphenylethylene (TPE)-based tetra-dentate (La) and bidentate (Lb) ligands and the cis-Pd(en)(NO3)2 (en = ethylenediamine) unit. While the free ligands are non-emissive in dilute solution and show typical AIE properties in both mixed solvent system and the solid state, the self-assembled complexes maintain their fluorescent nature in the solution state. In particular, the Pd4(La)2 complex shows remarkable 6-fold fluorescent enhancement over La in dilute solution. We anticipate that these kinds of coordination-enhanced emissive supramolecules will find applications in biomedical sensing or labeling.


Asunto(s)
Complejos de Coordinación/química , Colorantes Fluorescentes/química , Paladio/química , Estilbenos/química , Dimerización , Isomerismo , Ligandos , Estructura Molecular , Espectrometría de Fluorescencia/métodos
17.
Dalton Trans ; 53(10): 4772-4780, 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38363173

RESUMEN

Controlled self-assembly of predetermined multi-nuclear lanthanide organic polyhedra (LOPs) still presents a challenge, primarily due to the unpredictable coordination numbers and labile coordination geometries of lanthanide ions. In this study, through introducing triazole-based chelates to increase the chelating angle of C2-symmetric linear ligands and stabilize the coordination geometry of Eu(III) centers, M4L6-type (M = EuIII, L = ligand) tetrahedra were efficiently synthesized, especially a biphenyl-bridged ligand which is well known to form M2L3-type helicates. A series of LOPs were formed and characterized by high-resolution electrospray ionization time-of-flight mass spectroscopy (ESI-TOF-MS) and X-ray crystallography. Moreover, the europium complexes exhibit bright emission (luminescence quantum yield up to 42.4%) and circularly polarized luminescence properties (|glum| up to 4.5 × 10-2). This study provides a feasible strategy for constructing multi-nuclear luminescent LOPs towards potential applications.

18.
Front Oncol ; 14: 1375525, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38737897

RESUMEN

Background: The gut microbiota has been significantly associated with differentiated thyroid cancer (DTC). However, the causal relationship between the gut microbiota and DTC remains unexplored. Methods: Genome-wide association study (GWAS) summary databases were utilized to select exposures and outcomes. The Mendelian randomization (MR) method was employed to investigate the causal relationship between the gut microbiota and DTC. A sensitivity analysis was performed to assess the reliability of the findings. Results: Four bacterial traits were associated with the risk of DTC: Class Mollicutes [odds ratio (OR) = 10.953, 95% confidence interval (95% CI): 2.333-51.428, p = 0.002], Phylum Tenericutes (OR = 10.953, 95% CI: 2.333-51.428, p = 0.002), Genus Eggerthella (OR = 3.219, 95% CI: 1.033-10.024, p = 0.044), and Order Rhodospirillales (OR = 2.829, 95% CI: 1.096-7.299, p = 0.032). The large 95% CI range for the Class Mollicutes and the Phylum Tenericutes may be attributed to the small sample size. Additionally, four other bacterial traits were negatively associated with DTC: Genus Eubacterium fissicatena group (OR = 0.381, 95% CI: 0.148-0.979, p = 0.045), Genus Lachnospiraceae UCG008 (OR = 0.317, 95% CI: 0.125-0.801, p = 0.015), Genus Christensenellaceae R-7 group (OR = 0.134, 95% CI: 0.020-0.886, p = 0.037), and Genus Escherichia Shigella (OR = 0.170, 95% CI: 0.037-0.769, p = 0.021). Conclusion: These findings contribute to our understanding of the pathological mechanisms underlying DTC and provide novel insights for the clinical treatment of DTC.

19.
Org Lett ; 26(19): 4152-4157, 2024 May 17.
Artículo en Inglés | MEDLINE | ID: mdl-38722029

RESUMEN

An efficient approach was developed for the synthesis of the well-known BlueCage by pre-bridging two 2,4,6-tris(4-pyridyl)-1,3,5-triazine (TPT) panels with one linker followed by cage formation in a much improved yield and shortened reaction time. Such a stepwise methodology was further applied to synthesize three new pyridinium organic cages, C2, C3, and C4, where the low-symmetry cages C3 and C4 with angled panels demonstrated better recognition properties toward 1,1'-bi-2-naphthol (BINOL) than the high-symmetry analogue C2 featuring parallel platforms.

20.
Bioact Mater ; 37: 1-13, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38515611

RESUMEN

Low back pain is among the most grave public health concerns worldwide and the major clinical manifestation of intervertebral disc degeneration (IVDD). The destruction of annulus fibrosus (AF) is the primary cause of IVDD. A sustainable and stable treatment system for IVDD is lacking because of the special organizational structure and low nutrient supply of AF. We here found that IVDD results in the impaired mitochondrial function of AF tissue, and mitochondrial autophagy (mitophagy) plays a protective role in this process. We therefore reported a thread-structural microneedle (T-MN) matching the ring structure of AF. Based on the adsorption effect of laminin, our T-MN could load with bone marrow mesenchymal stem cell-derived exosomes to envelope the regulating mitophagy microRNA (miRNA 378), named as T-MN@EXO@miR-378. In general, we offered in situ locking in the defect site of AF to prevent nucleus pulposus leakage and promoted AF repair. The design of the thread structure was aimed at bionically matching the layered AF structure, thereby providing stronger adhesion. The T-MN@EXO@miR-378 effectively attached to AF and slowly released therapeutic engineered exosomes, and prevented IVDD progression by restoring mitophagy, promoting AF cell proliferation and migration, and inhibiting the pathological remodeling of the extracellular matrix. This functional system can be used as an excellent tool for sustained drug release and has a certain prospect in substituting the conventional treatment of IVDD.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA