Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(6): 1376-1392.e8, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37164013

RESUMEN

Phage-displayed immunoprecipitation sequencing (PhIP-seq) has enabled high-throughput profiling of human antibody repertoires. However, a comprehensive overview of environmental and genetic determinants shaping human adaptive immunity is lacking. In this study, we investigated the effects of genetic, environmental, and intrinsic factors on the variation in human antibody repertoires. We characterized serological antibody repertoires against 344,000 peptides using PhIP-seq libraries from a wide range of microbial and environmental antigens in 1,443 participants from a population cohort. We detected individual-specificity, temporal consistency, and co-housing similarities in antibody repertoires. Genetic analyses showed the involvement of the HLA, IGHV, and FUT2 gene regions in antibody-bound peptide reactivity. Furthermore, we uncovered associations between phenotypic factors (including age, cell counts, sex, smoking behavior, and allergies, among others) and particular antibody-bound peptides. Our results indicate that human antibody epitope repertoires are shaped by both genetics and environmental exposures and highlight specific signatures of distinct phenotypes and genotypes.


Asunto(s)
Anticuerpos , Bacteriófagos , Humanos , Antígenos , Epítopos/genética , Péptidos
2.
Immunity ; 56(6): 1393-1409.e6, 2023 06 13.
Artículo en Inglés | MEDLINE | ID: mdl-37164015

RESUMEN

Inflammatory bowel diseases (IBDs), e.g., Crohn's disease (CD) and ulcerative colitis (UC), are chronic immune-mediated inflammatory diseases. A comprehensive overview of an IBD-specific antibody epitope repertoire is, however, lacking. Using high-throughput phage-display immunoprecipitation sequencing (PhIP-Seq), we identified antibodies against 344,000 antimicrobial, immune, and food antigens in 497 individuals with IBD compared with 1,326 controls. IBD was characterized by 373 differentially abundant antibody responses (202 overrepresented and 171 underrepresented), with 17% shared by both IBDs, 55% unique to CD, and 28% unique to UC. Antibody reactivities against bacterial flagellins dominated in CD and were associated with ileal involvement, fibrostenotic disease, and anti-Saccharomyces cerevisiae antibody positivity, but not with fecal microbiome composition. Antibody epitope repertoires accurately discriminated CD from controls (area under the curve [AUC] = 0.89), and similar discrimination was achieved when using only ten antibodies (AUC = 0.87). Individuals with IBD thus show a distinct antibody repertoire against selected peptides, allowing clinical stratification and discovery of immunological targets.


Asunto(s)
Bacteriófagos , Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Humanos , Anticuerpos , Epítopos
3.
Prostaglandins Other Lipid Mediat ; 170: 106803, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38040190

RESUMEN

Resolvin (Rv) and lipoxin (Lx) play important regulative roles in the development of several inflammation-related diseases. The dysregulation of their metabolic network is believed to be closely related to the occurrence and development of asthma. The Hyssopus Cuspidatus Boriss extract (SXCF) has long been used as a treatment for asthma, while the mechanism of anti-inflammatory and anti-asthma action targeting Rv and Lx has not been thoroughly investigated. In this study, we aimed to investigate the effects of SXCF on Rv, Lx in ovalbumin (OVA)-sensitized asthmatic mice. The changes of Rv, Lx before and after drug administration were analyzed based on high sensitivity chromatography-multiple response monitoring (UHPLC-MRM) analysis and multivariate statistics. The pathology exploration included behavioral changes of mice, IgE in serum, cytokines in BALF, and lung tissue sections stained with H&E. It was found that SXCF significantly modulated the metabolic disturbance of Rv, Lx due to asthma. Its modulation effect was significantly better than that of dexamethasone and rosmarinic acid which is the first-line clinical medicine and the main component of Hyssopus Cuspidatus Boriss, respectively. SXCF is demonstrated to be a potential anti-asthmatic drug with significant disease-modifying effects on OVA-induced asthma. The modulation of Rv and Lx is a possible underlying mechanism of the SXCF effects.


Asunto(s)
Antiasmáticos , Asma , Lipoxinas , Ratones , Animales , Lipoxinas/farmacología , Asma/inducido químicamente , Asma/tratamiento farmacológico , Asma/metabolismo , Antiasmáticos/efectos adversos , Pulmón/metabolismo , Citocinas/metabolismo , Extractos Vegetales/farmacología , Ratones Endogámicos BALB C , Modelos Animales de Enfermedad
4.
Gut ; 72(8): 1472-1485, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36958817

RESUMEN

OBJECTIVE: Inflammatory bowel disease (IBD) is a multifactorial immune-mediated inflammatory disease of the intestine, comprising Crohn's disease and ulcerative colitis. By characterising metabolites in faeces, combined with faecal metagenomics, host genetics and clinical characteristics, we aimed to unravel metabolic alterations in IBD. DESIGN: We measured 1684 different faecal metabolites and 8 short-chain and branched-chain fatty acids in stool samples of 424 patients with IBD and 255 non-IBD controls. Regression analyses were used to compare concentrations of metabolites between cases and controls and determine the relationship between metabolites and each participant's lifestyle, clinical characteristics and gut microbiota composition. Moreover, genome-wide association analysis was conducted on faecal metabolite levels. RESULTS: We identified over 300 molecules that were differentially abundant in the faeces of patients with IBD. The ratio between a sphingolipid and L-urobilin could discriminate between IBD and non-IBD samples (AUC=0.85). We found changes in the bile acid pool in patients with dysbiotic microbial communities and a strong association between faecal metabolome and gut microbiota. For example, the abundance of Ruminococcus gnavus was positively associated with tryptamine levels. In addition, we found 158 associations between metabolites and dietary patterns, and polymorphisms near NAT2 strongly associated with coffee metabolism. CONCLUSION: In this large-scale analysis, we identified alterations in the metabolome of patients with IBD that are independent of commonly overlooked confounders such as diet and surgical history. Considering the influence of the microbiome on faecal metabolites, our results pave the way for future interventions targeting intestinal inflammation.


Asunto(s)
Arilamina N-Acetiltransferasa , Colitis Ulcerosa , Enfermedades Inflamatorias del Intestino , Humanos , Estudio de Asociación del Genoma Completo , Enfermedades Inflamatorias del Intestino/metabolismo , Colitis Ulcerosa/metabolismo , Metaboloma , Heces , Arilamina N-Acetiltransferasa/metabolismo
5.
BMC Med ; 21(1): 287, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37542259

RESUMEN

BACKGROUND: Disrupted intestinal epithelial barrier is one of the major causes of Crohn's disease (CD). Novel molecular targets for intestinal epithelial barrier are essential to treatment of CD. Transmembrane and immunoglobulin domain-containing protein 1 (TMIGD1) is an adhesion molecule that regulates cell adhesion, migration, and enterocyte differentiation. However, the function and mechanism of TMIGD1 in CD and intestinal epithelial barrier has rarely been studied. Furthermore, the association between TMIGD1 and the clinical features of CD remains unclear. METHODS: Transcriptome analysis on colonic mucosa from CD patients and healthy individuals were performed to identify dysregulated genes. Multi-omics integration of the 1000IBD cohort including genomics, transcriptomics of intestinal biopsies, and serum proteomics identified the association between genes and characteristics of CD. Inflammation was assessed by cytokine production in cell lines, organoids and intestinal-specific Tmigd1 knockout (Tmigd1INT-KO) mice. Epithelial barrier integrity was evaluated by trans-epithelium electrical resistance (TEER), paracellular permeability, and apical junction complex (AJC) expression. Co-immunoprecipitation, GST pull-down assays, mass spectrometry, proteomics, and transcriptome analysis were used to explore downstream mechanisms. RESULTS: Multi-omics integration suggested that TMIGD1 was negatively associated with inflammatory characteristics of CD. TMIGD1 was downregulated in inflamed intestinal mucosa of patients with CD and mice colitis models. Tmigd1INT-KO mice were more susceptible to chemically induced colitis. In epithelial cell lines and colonic organoids, TMIGD1 knockdown caused impaired intestinal barrier integrity evidenced by increased paracellular permeability and reduced TEER and AJC expression. TMIGD1 knockdown in intestinal epithelial cells also induced pro-inflammatory cytokine production. Mechanistically, TMIGD1 directly interacted with cytoplasmic BAF nuclear assembly factor 1 (BANF1) to inhibit NF-κB activation. Exogenous expression of TMIGD1 and BANF1 restored intestinal barrier function and inhibited inflammation in vitro and in vivo. TMIGD1 expression predicted response to anti-TNF treatment in patients with CD. CONCLUSIONS: Our study demonstrated that TMIGD1 maintained intestinal barrier integrity and inactivated inflammation, and was therefore a potential therapeutic target for CD.


Asunto(s)
Colitis , Enfermedad de Crohn , Animales , Ratones , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/patología , Enfermedad de Crohn/genética , Citocinas/metabolismo , Inflamación/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , FN-kappa B/metabolismo , FN-kappa B/uso terapéutico , Inhibidores del Factor de Necrosis Tumoral/efectos adversos , Inhibidores del Factor de Necrosis Tumoral/metabolismo
6.
BMC Med ; 21(1): 179, 2023 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-37170220

RESUMEN

BACKGROUND: Oxidative stress (OS) is a key pathophysiological mechanism in Crohn's disease (CD). OS-related genes can be affected by environmental factors, intestinal inflammation, gut microbiota, and epigenetic changes. However, the role of OS as a potential CD etiological factor or triggering factor is unknown, as differentially expressed OS genes in CD can be either a cause or a subsequent change of intestinal inflammation. Herein, we used a multi-omics summary data-based Mendelian randomization (SMR) approach to identify putative causal effects and underlying mechanisms of OS genes in CD. METHODS: OS-related genes were extracted from the GeneCards database. Intestinal transcriptome datasets were collected from the Gene Expression Omnibus (GEO) database and meta-analyzed to identify differentially expressed genes (DEGs) related to OS in CD. Integration analyses of the largest CD genome-wide association study (GWAS) summaries with expression quantitative trait loci (eQTLs) and DNA methylation QTLs (mQTLs) from the blood were performed using SMR methods to prioritize putative blood OS genes and their regulatory elements associated with CD risk. Up-to-date intestinal eQTLs and fecal microbial QTLs (mbQTLs) were integrated to uncover potential interactions between host OS gene expression and gut microbiota through SMR and colocalization analysis. Two additional Mendelian randomization (MR) methods were used as sensitivity analyses. Putative results were validated in an independent multi-omics cohort from the First Affiliated Hospital of Sun Yat-sen University (FAH-SYS). RESULTS: A meta-analysis from six datasets identified 438 OS-related DEGs enriched in intestinal enterocytes in CD from 817 OS-related genes. Five genes from blood tissue were prioritized as candidate CD-causal genes using three-step SMR methods: BAD, SHC1, STAT3, MUC1, and GPX3. Furthermore, SMR analysis also identified five putative intestinal genes, three of which were involved in gene-microbiota interactions through colocalization analysis: MUC1, CD40, and PRKAB1. Validation results showed that 88.79% of DEGs were replicated in the FAH-SYS cohort. Associations between pairs of MUC1-Bacillus aciditolerans and PRKAB1-Escherichia coli in the FAH-SYS cohort were consistent with eQTL-mbQTL colocalization. CONCLUSIONS: This multi-omics integration study highlighted that OS genes causal to CD are regulated by DNA methylation and host-microbiota interactions. This provides evidence for future targeted functional research aimed at developing suitable therapeutic interventions and disease prevention.


Asunto(s)
Enfermedad de Crohn , Microbioma Gastrointestinal , Humanos , Enfermedad de Crohn/genética , Estudio de Asociación del Genoma Completo , Metilación de ADN/genética , Microbioma Gastrointestinal/genética , Análisis de la Aleatorización Mendeliana/métodos , Multiómica , Transcriptoma , Inflamación , Estrés Oxidativo/genética
7.
Gut ; 70(2): 285-296, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32651235

RESUMEN

OBJECTIVE: Both the gut microbiome and host genetics are known to play significant roles in the pathogenesis of IBD. However, the interaction between these two factors and its implications in the aetiology of IBD remain underexplored. Here, we report on the influence of host genetics on the gut microbiome in IBD. DESIGN: To evaluate the impact of host genetics on the gut microbiota of patients with IBD, we combined whole exome sequencing of the host genome and whole genome shotgun sequencing of 1464 faecal samples from 525 patients with IBD and 939 population-based controls. We followed a four-step analysis: (1) exome-wide microbial quantitative trait loci (mbQTL) analyses, (2) a targeted approach focusing on IBD-associated genomic regions and protein truncating variants (PTVs, minor allele frequency (MAF) >5%), (3) gene-based burden tests on PTVs with MAF <5% and exome copy number variations (CNVs) with site frequency <1%, (4) joint analysis of both cohorts to identify the interactions between disease and host genetics. RESULTS: We identified 12 mbQTLs, including variants in the IBD-associated genes IL17REL, MYRF, SEC16A and WDR78. For example, the decrease of the pathway acetyl-coenzyme A biosynthesis, which is involved in short chain fatty acids production, was associated with variants in the gene MYRF (false discovery rate <0.05). Changes in functional pathways involved in the metabolic potential were also observed in participants carrying rare PTVs or CNVs in CYP2D6, GPR151 and CD160 genes. These genes are known for their function in the immune system. Moreover, interaction analyses confirmed previously known IBD disease-specific mbQTLs in TNFSF15. CONCLUSION: This study highlights that both common and rare genetic variants affecting the immune system are key factors in shaping the gut microbiota in the context of IBD and pinpoints towards potential mechanisms for disease treatment.


Asunto(s)
Secuenciación del Exoma , Microbioma Gastrointestinal/genética , Predisposición Genética a la Enfermedad/genética , Enfermedades Inflamatorias del Intestino/etiología , Proteínas Adaptadoras Transductoras de Señales/genética , Adulto , Estudios de Casos y Controles , Variaciones en el Número de Copia de ADN/genética , Femenino , Frecuencia de los Genes/genética , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/microbiología , Masculino , Proteínas de la Membrana/genética , Metagenómica , Persona de Mediana Edad , Sitios de Carácter Cuantitativo/genética , Receptores de Interleucina-17/genética , Factores de Transcripción/genética , Proteínas de Transporte Vesicular/genética
8.
Am J Transplant ; 21(9): 3133-3147, 2021 09.
Artículo en Inglés | MEDLINE | ID: mdl-33445220

RESUMEN

Thrombosis after liver transplantation substantially impairs graft- and patient survival. Inevitably, heritable disorders of coagulation originating in the donor liver are transmitted by transplantation. We hypothesized that genetic variants in donor thrombophilia genes are associated with increased risk of posttransplant thrombosis. We genotyped 775 donors for adult recipients and 310 donors for pediatric recipients transplanted between 1993 and 2018. We determined the association between known donor thrombophilia gene variants and recipient posttransplant thrombosis. In addition, we performed a genome-wide association study (GWAS) and meta-analyzed 1085 liver transplantations. In our donor cohort, known thrombosis risk loci were not associated with posttransplant thrombosis, suggesting that it is unnecessary to exclude liver donors based on thrombosis-susceptible polymorphisms. By performing a meta-GWAS from children and adults, we identified 280 variants in 55 loci at suggestive genetic significance threshold. Downstream prioritization strategies identified biologically plausible candidate genes, among which were AK4 (rs11208611-T, p = 4.22 × 10-05 ) which encodes a protein that regulates cellular ATP levels and concurrent activation of AMPK and mTOR, and RGS5 (rs10917696-C, p = 2.62 × 10-05 ) which is involved in vascular development. We provide evidence that common genetic variants in the donor, but not previously known thrombophilia-related variants, are associated with increased risk of thrombosis after liver transplantation.


Asunto(s)
Trasplante de Hígado , Trombosis , Adulto , Niño , Estudio de Asociación del Genoma Completo , Supervivencia de Injerto , Humanos , Trasplante de Hígado/efectos adversos , Donadores Vivos , Estudios Retrospectivos , Factores de Riesgo , Trombosis/genética , Donantes de Tejidos
9.
J Autoimmun ; 108: 102422, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32033836

RESUMEN

The respective effects of tissue alarmins interleukin (IL)-15 and interferon beta (IFNß), and IL-21 produced by T cells on the reprogramming of cytotoxic T lymphocytes (CTLs) that cause tissue destruction in celiac disease is poorly understood. Transcriptomic and epigenetic profiling of primary intestinal CTLs showed massive and distinct temporal transcriptional changes in response to tissue alarmins, while the impact of IL-21 was limited. Only anti-viral pathways were induced in response to all the three stimuli, albeit with differences in dynamics and strength. Moreover, changes in gene expression were primarily independent of changes in H3K27ac, suggesting that other regulatory mechanisms drive the robust transcriptional response. Finally, we found that IL-15/IFNß/IL-21 transcriptional signatures could be linked to transcriptional alterations in risk loci for complex immune diseases. Together these results provide new insights into molecular mechanisms that fuel the activation of CTLs under conditions that emulate the inflammatory environment in patients with autoimmune diseases.


Asunto(s)
Alarminas/metabolismo , Citocinas/metabolismo , Regulación de la Expresión Génica , Linfocitos Intraepiteliales/inmunología , Linfocitos Intraepiteliales/metabolismo , Linfocitos T Citotóxicos/inmunología , Linfocitos T Citotóxicos/metabolismo , Autoinmunidad , Enfermedad Celíaca/etiología , Enfermedad Celíaca/metabolismo , Enfermedad Celíaca/patología , Perfilación de la Expresión Génica , Humanos , Enfermedades Inflamatorias del Intestino/etiología , Enfermedades Inflamatorias del Intestino/metabolismo , Enfermedades Inflamatorias del Intestino/patología , Interleucina-15/metabolismo , Mucosa Intestinal/inmunología , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patología , Regiones Promotoras Genéticas
11.
Mol Genet Genomics ; 292(5): 1111-1121, 2017 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-28631230

RESUMEN

Both natural and artificial selection play a critical role in animals' adaptation to the environment. Detection of the signature of selection in genomic regions can provide insights for understanding the function of specific phenotypes. It is generally assumed that laboratory mice may experience intense artificial selection while wild mice more natural selection. However, the differences of selection signature in the mouse genome and underlying genes between wild and laboratory mice remain unclear. In this study, we used two mouse populations: chromosome 1 (Chr 1) substitution lines (C1SLs) derived from Chinese wild mice and mouse genome project (MGP) sequenced inbred strains and two selection detection statistics: Fst and Tajima's D to identify the signature of selection footprint on Chr 1. For the differentiation between the C1SLs and MGP, 110 candidate selection regions containing 47 protein coding genes were detected. A total of 149 selection regions which encompass 7.215 Mb were identified in the C1SLs by Tajima's D approach. While for the MGP, we identified nearly twice selection regions (243) compared with the C1SLs which accounted for 13.27 Mb Chr 1 sequence. Through functional annotation, we identified several biological processes with significant enrichment including seven genes in the olfactory transduction pathway. In addition, we searched the phenotypes associated with the 47 candidate selection genes identified by Fst. These genes were involved in behavior, growth or body weight, mortality or aging, and immune systems which align well with the phenotypic differences between wild and laboratory mice. Therefore, the findings would be helpful for our understanding of the phenotypic differences between wild and laboratory mice and applications for using this new mouse resource (C1SLs) for further genetics studies.


Asunto(s)
Adaptación Fisiológica/genética , Genoma/genética , Selección Genética/genética , Animales , Secuencia de Bases , Mapeo Cromosómico , Fenómenos Genéticos , Secuenciación de Nucleótidos de Alto Rendimiento , Ratones , Ratones Endogámicos C57BL , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Análisis de Secuencia de ADN
12.
EBioMedicine ; 99: 104934, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38103512

RESUMEN

BACKGROUND: Mitochondrial dysfunction has been linked to the development of inflammatory bowel disease (IBD), but the genetic pathophysiology was not fully elucidated. We employed Mendelian randomization and colocalization analyses to investigate the associations between mitochondrial-related genes and IBD via integrating multi-omics. METHODS: Summary-level data of mitochondrial gene methylation, expression and protein abundance levels were obtained from corresponding methylation, expression and protein quantitative trait loci studies, respectively. We obtained genetic associations with IBD and its two subtypes from the Inflammatory Bowel Disease Genetics Consortium (discovery), the UK Biobank (replication), and the FinnGen study (replication). We performed summary-data-based Mendelian randomization analysis to assess the associations of mitochondrial gene-related molecular features with IBD. Colocalization analysis was further conducted to assess whether the identified signal pairs shared a causal genetic variant. FINDINGS: After integrating the multi-omics data between mQTL-eQTL and eQTL-pQTL, we identified two mitochondrial genes, i.e., PARK7 and ACADM, with tier 1 evidence for their associations with IBD and ulcerative colitis (UC). PDK1 and FISI genes were associated with UC risk with tier 2 and tier 3 evidence, respectively. The methylation of cg05467918 in ACADM was associated with lower expression of ACADM, which fits with the positive effect of cg05467918 methylation on UC risk. Consistently, the inverse associations between gene methylation and gene expression were also observed in PARK7 (cg10385390) and PDK1 (cg17679246), which were corroborated with the protective role in UC. At circulating protein level, genetically predicted higher levels of PARK7 (OR 0.36, 95% CI 0.25-0.52) and HINT1 (OR 0.47, 95% CI 0.30-0.74) were inversely associated with IBD risk; genetically predicted higher level of HINT1 was associated with a decreased risk of Crohn's disease (CD) (OR 0.26, 95% CI 0.14-0.49) and a higher level of ACADM (OR 0.67, 95% CI 0.55-0.83), PDK1 (OR 0.63, 95% CI 0.49-0.81), FIS1 (OR 0.63, 95% CI 0.47-0.83) was associated with a decreased risk of UC. INTERPRETATION: We found that the mitochondrial PARK7 gene was putatively associated with IBD risk, and mitochondrial FIS1, PDK1, and ACADM genes were associated with UC risk with evidence from multi-omics levels. This study identified mitochondrial genes in relation to IBD, which may enhance the understanding of the pathogenic mechanisms of IBD development. FUNDING: XL is supported by the Natural Science Fund for Distinguished Young Scholars of Zhejiang Province (LR22H260001) and Healthy Zhejiang One Million People Cohort (K-20230085).


Asunto(s)
Colitis Ulcerosa , Enfermedad de Crohn , Enfermedades Inflamatorias del Intestino , Enfermedades Mitocondriales , Humanos , Multiómica , Enfermedades Inflamatorias del Intestino/genética , Colitis Ulcerosa/genética , Enfermedad de Crohn/genética , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Proteínas del Tejido Nervioso/genética
13.
Hepatol Commun ; 8(6)2024 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-38836837

RESUMEN

BACKGROUND: Abnormal phospholipid metabolism is linked to metabolic dysfunction-associated steatotic liver disease (MASLD) development and progression. We aimed to clarify whether genetic variants of phospholipid metabolism modify these relationships. METHODS: This case-control study consecutively recruited 600 patients who underwent MRI-based proton density fat fraction examination (240 participants with serum metabonomics analysis, 128 biopsy-proven cases) as 3 groups: healthy control, nonobese MASLD, and obese MASLD, (n = 200 cases each). Ten variants of phospholipid metabolism-related genes [phospholipase A2 Group VII rs1805018, rs76863441, rs1421378, and rs1051931; phospholipase A2 receptor 1 (PLA2R1) rs35771982, rs3828323, and rs3749117; paraoxonase-1 rs662 and rs854560; and ceramide synthase 4 (CERS4) rs17160348)] were genotyped using SNaPshot. RESULTS: The T-allele of CERS4 rs17160348 was associated with a higher risk of both obese and nonobese MASLD (OR: 1.95, 95% CI: 1.20-3.15; OR: 1.76, 95% CI: 1.08-2.86, respectively). PLA2R1 rs35771982-allele is a risk factor for nonobese MASLD (OR: 1.66, 95% CI: 1.11-1.24), moderate-to-severe steatosis (OR: 3.24, 95% CI: 1.96-6.22), and steatohepatitis (OR: 2.61, 95% CI: 1.15-3.87), while the paraoxonase-1 rs854560 T-allele (OR: 0.50, 95% CI: 0.26-0.97) and PLA2R1 rs3749117 C-allele (OR: 1.70, 95% CI: 1.14-2.52) are closely related to obese MASLD. After adjusting for sphingomyelin level, the effect of the PLA2R1 rs35771982CC allele on MASLD was attenuated. Furthermore, similar effects on the association between the CERS4 rs17160348 C allele and MASLD were observed for phosphatidylcholine, phosphatidic acid, sphingomyelin, and phosphatidylinositol. CONCLUSIONS: The mutations in PLA2R1 rs35771982 and CERS4 rs17160348 presented detrimental impact on the risk of occurrence and disease severity in nonobese MASLD through altered phospholipid metabolism.


Asunto(s)
Genotipo , Receptores de Fosfolipasa A2 , Humanos , Masculino , Femenino , Persona de Mediana Edad , Estudios de Casos y Controles , Receptores de Fosfolipasa A2/genética , Fosfolípidos/sangre , Adulto , Obesidad/genética , Polimorfismo de Nucleótido Simple , Hígado Graso/genética , Predisposición Genética a la Enfermedad/genética
14.
Gigascience ; 132024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-38217406

RESUMEN

BACKGROUND: The rumen of neonatal calves has limited functionality, and establishing intestinal microbiota may play a crucial role in their health and performance. Thus, we aim to explore the temporal colonization of the gut microbiome and the benefits of early microbial transplantation (MT) in newborn calves. RESULTS: We followed 36 newborn calves for 2 months and found that the composition and ecological interactions of their gut microbiomes likely reached maturity 1 month after birth. Temporal changes in the gut microbiome of newborn calves are widely associated with changes in their physiological statuses, such as growth and fiber digestion. Importantly, we observed that MT reshapes the gut microbiome of newborns by altering the abundance and interaction of Bacteroides species, as well as amino acid pathways, such as arginine biosynthesis. Two-year follow-up of those calves further showed that MT improves their later milk production. Notably, MT improves fiber digestion and antioxidant capacity of newborns while reducing diarrhea. MT also contributes to significant changes in the metabolomic landscape, and with putative causal mediation analysis, we suggest that altered gut microbial composition in newborns may influence physiological status through microbial-derived metabolites. CONCLUSIONS: Our study provides a metagenomic and metabolomic atlas of the temporal development of the gut microbiome in newborn calves. MT can alter the gut microbiome of newborns, leading to improved physiological status and later milk production. The data may help develop strategies to manipulate the gut microbiota during early life, which may be relevant to the health and production of newborn calves.


Asunto(s)
Microbioma Gastrointestinal , Animales , Bovinos , Metagenoma , Metabolómica , Fenotipo
15.
Inflamm Bowel Dis ; 2024 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-38289995

RESUMEN

BACKGROUND: A pathogenic mutation in the manganese transporter ZIP8 (A391T; rs13107325) increases the risk of Crohn's disease. ZIP8 regulates manganese homeostasis and given the shared need for metals between the host and resident microbes, there has been significant interest in alterations of the microbiome in carriers of ZIP8 A391T. Prior studies have not examined the ileal microbiome despite associations between ileal disease and ZIP8 A391T. METHODS: Here, we used the Pediatric Risk Stratification Study (RISK)  cohort to perform a secondary analysis of 16S ribosomal RNA gene sequencing data obtained from ileal and rectal mucosa to study associations between ZIP8 A391T carrier status and microbiota composition. RESULTS: We found sequence variants mapping to Veillonella were decreased in the ileal mucosa of ZIP8 A391T carriers. Prior human studies have demonstrated the sensitivity of Veillonella to bile acid abundance. We therefore hypothesized that bile acid homeostasis is differentially regulated in carriers of ZIP8 A391T. Using a mouse model of ZIP8 A391T, we demonstrate an increase in total bile acids in the liver and stool and decreased fibroblast growth factor 15 (Fgf15) signaling, consistent with our hypothesis. We confirmed dysregulation of FGF19 in the 1000IBD cohort, finding that plasma FGF19 levels are lower in ZIP8 A391T carriers with ileocolonic Crohn's disease. CONCLUSIONS: In the search for genotype-specific therapeutic paradigms for patients with Crohn's disease, these data suggest targeting the FGF19 pathway in ZIP8 A391T carriers. Aberrant bile acid metabolism may precede development of Crohn's disease and prioritize study of the interactions between manganese homeostasis, bile acid metabolism and signaling, and complicated ileal Crohn's disease.


A pathogenic mutation in the manganese transporter ZIP8 A391T increases the risk of ileal Crohn's disease. Analysis of the ileal microbiome revealed decreased bile acid­sensitive microbes. Animal and human studies confirmed aberrant bile acid signaling ZIP8 A391T carriers.

16.
ISME J ; 18(1)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38365257

RESUMEN

The colonization of microbes in the gut is key to establishing a healthy host-microbiome symbiosis for newborns. We longitudinally profiled the gut microbiome in a model consisting of 36 neonatal oxen from birth up to 2 months postpartum and carried out microbial transplantation to reshape their gut microbiome. Genomic reconstruction of deeply sequenced fecal samples resulted in a total of 3931 metagenomic-assembled genomes from 472 representative species, of which 184 were identified as new species when compared with existing databases of oxen. Single nucleotide level metagenomic profiling shows a rapid influx of microbes after birth, followed by dynamic shifts during the first few weeks of life. Microbial transplantation was found to reshape the genetic makeup of 33 metagenomic-assembled genomes (FDR < 0.05), mainly from Prevotella and Bacteroides species. We further linked over 20 million microbial single nucleotide variations to 736 plasma metabolites, which enabled us to characterize 24 study-wide significant associations (P < 4.4 × 10-9) that identify the potential microbial genetic regulation of host immune and neuro-related metabolites, including glutathione and L-dopa. Our integration analyses further revealed that microbial genetic variations may influence the health status and growth performance by modulating metabolites via structural regulation of their encoded proteins. For instance, we found that the albumin levels and total antioxidant capacity were correlated with L-dopa, which was determined by single nucleotide variations via structural regulations of metabolic enzymes. The current results indicate that temporal colonization and transplantation-driven strain replacement are crucial for newborn gut development, offering insights for enhancing newborn health and growth.


Asunto(s)
Microbioma Gastrointestinal , Microbiota , Recién Nacido , Humanos , Femenino , Microbioma Gastrointestinal/fisiología , Nucleótidos , Levodopa , Heces , Metagenómica/métodos
17.
Nat Commun ; 15(1): 1470, 2024 Feb 17.
Artículo en Inglés | MEDLINE | ID: mdl-38368394

RESUMEN

Disrupted host-microbe interactions at the mucosal level are key to the pathophysiology of IBD. This study aimed to comprehensively examine crosstalk between mucosal gene expression and microbiota in patients with IBD. To study tissue-specific interactions, we perform transcriptomic (RNA-seq) and microbial (16S-rRNA-seq) profiling of 697 intestinal biopsies (645 derived from 335 patients with IBD and 52 from 16 non-IBD controls). Mucosal gene expression patterns in IBD are mainly determined by tissue location and inflammation, whereas the mucosal microbiota composition shows a high degree of individual specificity. Analysis of transcript-bacteria interactions identifies six distinct groups of inflammation-related pathways that are associated with intestinal microbiota (adjusted P < 0.05). An increased abundance of Bifidobacterium is associated with higher expression of genes involved in fatty acid metabolism, while Bacteroides correlates with increased metallothionein signaling. In patients with fibrostenosis, a transcriptional network dominated by immunoregulatory genes is associated with Lachnoclostridium bacteria in non-stenotic tissue (adjusted P < 0.05), while being absent in CD without fibrostenosis. In patients using TNF-α-antagonists, a transcriptional network dominated by fatty acid metabolism genes is linked to Ruminococcaceae (adjusted P < 0.05). Mucosal microbiota composition correlates with enrichment of intestinal epithelial cells, macrophages, and NK-cells. Overall, these data demonstrate the presence of context-specific mucosal host-microbe interactions in IBD, revealing significantly altered inflammation-associated gene-taxa modules, particularly in patients with fibrostenotic CD and patients using TNF-α-antagonists. This study provides compelling insights into host-microbe interactions that may guide microbiota-directed precision medicine and fuels the rationale for microbiota-targeted therapeutics as a strategy to alter disease course in IBD.


Asunto(s)
Interacciones Microbiota-Huesped , Enfermedades Inflamatorias del Intestino , Humanos , Interacciones Microbiota-Huesped/genética , Factor de Necrosis Tumoral alfa/genética , Enfermedades Inflamatorias del Intestino/patología , Fenotipo , Inflamación/genética , Inflamación/patología , Ácidos Grasos , Mucosa Intestinal/patología
18.
J Periodontol ; 94(2): 204-216, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-35960608

RESUMEN

BACKGROUND: The association between periodontitis and allergic symptoms has been investigated. However, the difference in immune signatures between them remains poorly understood. This cross-sectional study assessed the relationship between serum immunoglobulin G (IgG) antibodies to periodontal pathogens and allergic symptoms in a nationwide population cohort. METHODS: Two phases of the Third National Health and Nutrition Examination Survey (NHANES III) were used as discovery dataset (n = 3700) and validation dataset (n = 4453), respectively. Based on the antibodies against 19 periodontal pathogens, we performed an unsupervised hierarchical clustering to categorize the population into three clusters. In the discovery dataset, cluster 1 (n = 2847) had the highest level of IgG antibodies, followed by clusters 2 (n = 588) and 3 (n = 265). Data on allergic symptoms (asthma, hay fever, and wheezing) were obtained using a self-reported questionnaire. Survey-weighted multivariable logistic regression evaluated the association between these clusters and allergic symptoms. RESULTS: In the discovery dataset, the participants with lower levels of antibodies to periodontal pathogens exhibited a higher risk of asthma (odds ratio [OR]cluster 3 vs. cluster 1 = 1.820, 95% confidence interval [CI]: 1.153-2.873) and wheezing (ORcluster 3 vs. cluster 1 = 1.550, 95% CI: 1.095-2.194) compared to those with higher periodontal antibodies, but the non-significant association with hay fever. Consistent results were found in the validation dataset. CONCLUSIONS: Serum IgG titers to periodontal pathogens were inversely associated with the risk of asthma and wheezing, suggesting the potentially protective role against allergic conditions.


Asunto(s)
Asma , Rinitis Alérgica Estacional , Humanos , Encuestas Nutricionales , Estudios Transversales , Ruidos Respiratorios , Anticuerpos Antibacterianos , Inmunoglobulina G
19.
Nutrients ; 15(12)2023 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-37375648

RESUMEN

Adherence to healthy dietary patterns is associated with a reduced risk of kidney dysfunction. Nevertheless, the age-related mechanisms that underpin the relationship between diet and kidney function remain undetermined. This study aimed to investigate the mediating role of serum α-Klotho, an anti-aging protein, in the link between a healthy diet and kidney function. A cross-sectional study was conducted on a cohort of 12,817 individuals aged between 40 and 79 years who participated in the National Health and Nutrition Examination Survey (NHANES) from 2007 to 2016. For each participant, the Healthy Eating Index 2015 (HEI-2015) score was calculated as a measure of a healthy dietary pattern. Creatinine-based estimated glomerular filtration rate (eGFR) was used to assess kidney function. Multivariable regression models were used to analyze the association between the standardized HEI-2015 score and eGFR after adjusting for potential confounders. Causal mediation analysis was performed to assess whether serum α-Klotho influenced this association. The mean (±SD) eGFR of all individuals was 86.8 ± 19.8 mL/min per 1.73 m2. A high standardized HEI-2015 score was associated with a high eGFR (ß [95% CI], 0.94 [0.64-1.23]; p < 0.001). The mediation analysis revealed that serum α-Klotho accounted for 5.6-10.5% of the association of standardized overall HEI-2015 score, total fruits, whole fruits, greens and beans, and whole grain with eGFR in the NHANES. According to the results from the subgroup analysis, serum α-Klotho exerted a mediating effect in the participants aged 60-79 years and in males. A healthy diet may promote kidney function by up-regulating serum anti-aging α-Klotho. This novel pathway suggests important implications for dietary recommendations and kidney health.


Asunto(s)
Envejecimiento , Dieta , Masculino , Humanos , Adulto , Persona de Mediana Edad , Anciano , Encuestas Nutricionales , Estudios Transversales , Riñón
20.
Gastroenterol Rep (Oxf) ; 11: goad031, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37324545

RESUMEN

Background: Achalasia is a primary esophageal motility disorder with potential molecular pathogenesis remaining uncertain. This study aimed to identify the differentially expressed proteins and potential pathways among achalasia subtypes and controls to further reveal the molecular pathogenesis of achalasia. Methods: Paired lower esophageal sphincter (LES) muscle and serum samples from 24 achalasia patients were collected. We also collected 10 normal serum samples from healthy controls and 10 normal LES muscle samples from esophageal cancer patients. The 4D label-free proteomic analysis was performed to identify the potential proteins and pathways involved in achalasia. Results: Analysis of Similarities showed distinct proteomic patterns of serum and muscle samples between achalasia patients and controls (both P < 0.05). Functional enrichment analysis suggested that these differentially expressed proteins were immunity-, infection-, inflammation-, and neurodegeneration-associated. The mfuzz analysis in LES specimens showed that proteins involved in the extracellular matrix-receptor interaction increased sequentially between the control group, type III, type II, and type I achalasia. Only 26 proteins altered in the same directions in serum and muscle samples. Conclusions: This first 4D label-free proteomic study of achalasia indicated that there were specific protein alterations in both the serum and muscle of achalasia, involving immunity, inflammation, infection, and neurodegeneration pathways. Distinct protein clusters between types I, II, and III revealed the potential molecular pathways associated with different disease stages. Analysis of proteins changed in both muscle and serum samples highlighted the importance of further studies on LES muscle and revealed potential autoantibodies.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA