Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 260
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 54(7): 1527-1542.e8, 2021 07 13.
Artículo en Inglés | MEDLINE | ID: mdl-34015256

RESUMEN

The precise mechanisms underlying the beneficial effects of regulatory T (Treg) cells on long-term tissue repair remain elusive. Here, using single-cell RNA sequencing and flow cytometry, we found that Treg cells infiltrated the brain 1 to 5 weeks after experimental stroke in mice. Selective depletion of Treg cells diminished oligodendrogenesis, white matter repair, and functional recovery after stroke. Transcriptomic analyses revealed potent immunomodulatory effects of brain-infiltrating Treg cells on other immune cells, including monocyte-lineage cells. Microglia depletion, but not T cell lymphopenia, mitigated the beneficial effects of transferred Treg cells on white matter regeneration. Mechanistically, Treg cell-derived osteopontin acted through integrin receptors on microglia to enhance microglial reparative activity, consequently promoting oligodendrogenesis and white matter repair. Increasing Treg cell numbers by delivering IL-2:IL-2 antibody complexes after stroke improved white matter integrity and rescued neurological functions over the long term. These findings reveal Treg cells as a neurorestorative target for stroke recovery.


Asunto(s)
Isquemia Encefálica/inmunología , Accidente Cerebrovascular Isquémico/inmunología , Microglía/inmunología , Osteopontina/inmunología , Recuperación de la Función/inmunología , Linfocitos T Reguladores/inmunología , Sustancia Blanca/inmunología , Animales , Modelos Animales de Enfermedad , Interleucina-2/inmunología , Macrófagos/inmunología , Masculino , Ratones , Ratones Endogámicos C57BL
2.
Proc Natl Acad Sci U S A ; 121(11): e2400272121, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38437534

RESUMEN

The endothelial lining of cerebral microvessels is damaged relatively early after cerebral ischemia/reperfusion (I/R) injury and mediates blood-brain barrier (BBB) disruption, neurovascular injury, and long-term neurological deficits. I/R induces BBB leakage within 1 h due to subtle structural alterations in endothelial cells (ECs), including reorganization of the actin cytoskeleton and subcellular redistribution of junctional proteins. Herein, we show that the protein peroxiredoxin-4 (Prx4) is an endogenous protectant against endothelial dysfunction and BBB damage in a murine I/R model. We observed a transient upregulation of Prx4 in brain ECs 6 h after I/R in wild-type (WT) mice, whereas tamoxifen-induced, selective knockout of Prx4 from endothelial cells (eKO) mice dramatically raised vulnerability to I/R. Specifically, eKO mice displayed more BBB damage than WT mice within 1 to 24 h after I/R and worse long-term neurological deficits and focal brain atrophy by 35 d. Conversely, endothelium-targeted transgenic (eTG) mice overexpressing Prx4 were resistant to I/R-induced early BBB damage and had better long-term functional outcomes. As demonstrated in cultures of human brain endothelial cells and in animal models of I/R, Prx4 suppresses actin polymerization and stress fiber formation in brain ECs, at least in part by inhibiting phosphorylation/activation of myosin light chain. The latter cascade prevents redistribution of junctional proteins and BBB leakage under conditions of Prx4 repletion. Prx4 also tempers microvascular inflammation and infiltration of destructive neutrophils and proinflammatory macrophages into the brain parenchyma after I/R. Thus, the evidence supports an indispensable role for endothelial Prx4 in safeguarding the BBB and promoting functional recovery after I/R brain injury.


Asunto(s)
Barrera Hematoencefálica , Accidente Cerebrovascular Isquémico , Animales , Humanos , Ratones , Atrofia , Células Endoteliales , Endotelio , Peroxirredoxinas
3.
Proc Natl Acad Sci U S A ; 120(25): e2300012120, 2023 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-37307473

RESUMEN

Aging compromises the repair and regrowth of brain vasculature and white matter during stroke recovery, but the underlying mechanisms remain elusive. To understand how aging jeopardizes brain tissue repair after stroke, we performed single-cell transcriptomic profiling of young adult and aged mouse brains at acute (3 d) and chronic (14 d) stages after ischemic injury, focusing a priori on the expression of angiogenesis- and oligodendrogenesis-related genes. We identified unique subsets of endothelial cells (ECs) and oligodendrocyte (OL) progenitors in proangiogenesis and pro-oligodendrogenesis phenotypic states 3 d after stroke in young mice. However, this early prorepair transcriptomic reprogramming was negligible in aged stroke mice, consistent with the impairment of angiogenesis and oligodendrogenesis observed during the chronic injury stages after ischemia. In the stroke brain, microglia and macrophages (MG/MΦ) may drive angiogenesis and oligodendrogenesis through a paracrine mechanism. However, this reparative cell-cell cross talk between MG/MΦ and ECs or OLs is impeded in aged brains. In support of these findings, permanent depletion of MG/MΦ via antagonism of the colony-stimulating factor 1 receptor resulted in remarkably poor neurological recovery and loss of poststroke angiogenesis and oligodendrogenesis. Finally, transplantation of MG/MΦ from young, but not aged, mouse brains into the cerebral cortices of aged stroke mice partially restored angiogenesis and oligodendrogenesis and rejuvenated sensorimotor function and spatial learning and memory. Together, these data reveal fundamental mechanisms underlying the age-related decay in brain repair and highlight MG/MΦ as effective targets for promoting stroke recovery.


Asunto(s)
Células Endoteliales , Accidente Cerebrovascular , Animales , Ratones , Encéfalo , Macrófagos , Análisis de Secuencia de ARN
4.
Proc Natl Acad Sci U S A ; 120(19): e2215590120, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37126693

RESUMEN

Chronic stress induces depression- and anxiety-related behaviors, which are common mental disorders accompanied not only by dysfunction of the brain but also of the intestine. Activating transcription factor 4 (ATF4) is a stress-induced gene, and we previously show that it is important for gut functions; however, the contribution of the intestinal ATF4 to stress-related behaviors is not known. Here, we show that chronic stress inhibits the expression of ATF4 in gut epithelial cells. ATF4 overexpression in the colon relieves stress-related behavioral alterations in male mice, as measured by open-field test, elevated plus-maze test, and tail suspension test, whereas intestine-specific ATF4 knockout induces stress-related behavioral alterations in male mice. Furthermore, glutamatergic neurons are inhibited in the paraventricular thalamus (PVT) of two strains of intestinal ATF4-deficient mice, and selective activation of these neurons alleviates stress-related behavioral alterations in intestinal ATF4-deficient mice. The highly expressed gut-secreted peptide trefoil factor 3 (TFF3) is chosen from RNA-Seq data from ATF4 deletion mice and demonstrated decreased in gut epithelial cells, which is directly regulated by ATF4. Injection of TFF3 reverses stress-related behaviors in ATF4 knockout mice, and the beneficial effects of TFF3 are blocked by inhibiting PVT glutamatergic neurons using DREADDs. In summary, this study demonstrates the function of ATF4 in the gut-brain regulation of stress-related behavioral alterations, via TFF3 modulating PVT neural activity. This research provides evidence of gut signals regulating stress-related behavioral alterations and identifies possible drug targets for the treatment of stress-related behavioral disorders.


Asunto(s)
Factor de Transcripción Activador 4 , Tálamo , Masculino , Animales , Ratones , Factor de Transcripción Activador 4/metabolismo , Tálamo/metabolismo , Neuronas/metabolismo , Ratones Noqueados , Colon/metabolismo
5.
Small ; : e2402669, 2024 Jul 06.
Artículo en Inglés | MEDLINE | ID: mdl-38970544

RESUMEN

Sonodynamic therapy (SDT), featuring noninvasive, deeper penetration, low cost, and repeatability, is a promising therapy approach for deep-seated tumors. However, the general or only utilization of SDT shows low efficiency and unsatisfactory treatment outcomes due to the complicated tumor microenvironment (TME) and SDT process. To circumvent the issues, three feasible approaches for enhancing SDT-based therapeutic effects, including sonosensitizer optimization, strategies for conquering hypoxia TME, and combinational therapy are summarized, with a particular focus on the combination therapy of SDT with other therapy modalities, including chemodynamic therapy, photodynamic therapy, photothermal therapy, chemotherapy, starvation therapy, gas therapy, and immunotherapy. In the end, the current challenges in SDT-based therapy on tumors are discussed and feasible approaches for enhanced therapeutic effects are provided. It is envisioned that this review will provide new insight into the strategic design of high-efficiency sonosensitizer-derived nanotheranostics, thereby augmenting SDT and accelerating the potential clinical transformation.

6.
Plant Biotechnol J ; 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38923257

RESUMEN

Oil-Camellia (Camellia oleifera), belonging to the Theaceae family Camellia, is an important woody edible oil tree species. The Camellia oil in its mature seed kernels, mainly consists of more than 90% unsaturated fatty acids, tea polyphenols, flavonoids, squalene and other active substances, which is one of the best quality edible vegetable oils in the world. However, genetic research and molecular breeding on oil-Camellia are challenging due to its complex genetic background. Here, we successfully report a chromosome-scale genome assembly for a hexaploid oil-Camellia cultivar Changlin40. This assembly contains 8.80 Gb genomic sequences with scaffold N50 of 180.0 Mb and 45 pseudochromosomes comprising 15 homologous groups with three members each, which contain 135 868 genes with an average length of 3936 bp. Referring to the diploid genome, intragenomic and intergenomic comparisons of synteny indicate homologous chromosomal similarity and changes. Moreover, comparative and evolutionary analyses reveal three rounds of whole-genome duplication (WGD) events, as well as the possible diversification of hexaploid Changlin40 with diploid occurred approximately 9.06 million years ago (MYA). Furthermore, through the combination of genomics, transcriptomics and metabolomics approaches, a complex regulatory network was constructed and allows to identify potential key structural genes (SAD, FAD2 and FAD3) and transcription factors (AP2 and C2H2) that regulate the metabolism of Camellia oil, especially for unsaturated fatty acids biosynthesis. Overall, the genomic resource generated from this study has great potential to accelerate the research for the molecular biology and genetic improvement of hexaploid oil-Camellia, as well as to understand polyploid genome evolution.

7.
Neurochem Res ; 49(1): 222-233, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37715822

RESUMEN

The role of microglia in traumatic brain injury (TBI) has gained considerable attention. The present study aims to elucidate the potential mechanisms of Long intergenic non-protein coding RNA 707 (LINC00707) in TBI-induced microglia activation and inflammatory factor release. An in vivo model of rat TBI and in vitro microglia model was established using Controlled cortex injury (CCI) and lipopolysaccharide (LPS) stimulation. RT-qPCR to detect LINC00707 levels in rat cerebral cortex or cells. Modified Neurological Impairment Score (mNSS) and Morris Water Maze test was conducted to assess the neurological deficits and cognitive impairment. ELISA analysis of pro-inflammatory factors levels. CCK-8 and flow cytometry for cell viability and apoptosis levels. Dual-luciferase report and RIP assay to validate the targeting relationship between LINC00707 and miR-30a-5p. LINC00707 was elevated in the TBI rat cerebral cortex and LPS-induced microglia, while miR-30a-5p was noticeably decreased (P < 0.05). Increased mNSS, cognitive dysfunction, and brain edema in TBI rats were all prominently reversed by silencing of LINC00707, but this reversal was partially abrogated by decreasing miR-30a-5p (P < 0.05). Inhibition of LINC00707 suppressed the overproduction of inflammatory factors in TBI rats (P < 0.05). LPS decreased microglial cell viability, increased apoptosis, and promoted inflammatory overproduction than control, but the silencing of LINC00707 reversed its effect. Suppression of miR-30a-5p attenuated this reversal (P < 0.05). miR-30a-5p was the target miRNA of LINC00707. All in all, the results suggested that inhibiting LINC00707/miR-30a-5p axis could alleviate the progression of TBI by suppressing the inflammation and apoptosis of microglia cells.


Asunto(s)
Lesiones Traumáticas del Encéfalo , MicroARNs , Ratas , Animales , Microglía , Lipopolisacáridos/farmacología , MicroARNs/genética , Inflamación/genética , Apoptosis
8.
J Nanobiotechnology ; 22(1): 258, 2024 May 16.
Artículo en Inglés | MEDLINE | ID: mdl-38755644

RESUMEN

Electrical stimulation (ES) is considered a promising therapy for chronic wounds via conductive dressing. However, the lack of a clinically suitable conductive dressing is a serious challenge. In this study, a suitable conductive biomaterial with favorable biocompatibility and conductivity was screened by means of an inherent structure derived from the body based on electrical conduction in vivo. Ions condensed around the surface of the microtubules (MTs) derived from the cell's cytoskeleton are allowed to flow in the presence of potential differences, effectively forming a network of biological electrical wires, which is essential to the bioelectrical communication of cells. We hypothesized that MT dressing could improve chronic wound healing via the conductivity of MTs applied by ES. We first developed an MT-MAA hydrogel by a double cross-linking method using UV and calcium chloride to improve chronic wound healing by ES. In vitro studies showed good conductivity, mechanical properties, biocompatibility, and biodegradability of the MT-MAA hydrogel, as well as an elevated secretion of growth factors with enhanced cell proliferation and migration ability in response to ES. The in vivo experimental results from a full-thickness diabetic wound model revealed rapid wound closure within 7d in C57BL/6J mice, and the wound bed dressed by the MT-MAA hydrogel was shown to have promoted re-epithelization, enhanced angiogenesis, accelerated nerve growth, limited inflammation phases, and improved antibacterial effect under the ES treatment. These preclinical findings suggest that the MT-MAA hydrogel may be an ideal conductive dressing for chronic wound healing. Furthermore, biomaterials based on MTs may be also promising for treating other diseases.


Asunto(s)
Conductividad Eléctrica , Hidrogeles , Ratones Endogámicos C57BL , Microtúbulos , Cicatrización de Heridas , Animales , Cicatrización de Heridas/efectos de los fármacos , Hidrogeles/química , Hidrogeles/farmacología , Ratones , Microtúbulos/metabolismo , Materiales Biocompatibles/química , Materiales Biocompatibles/farmacología , Masculino , Humanos , Estimulación Eléctrica , Proliferación Celular/efectos de los fármacos , Movimiento Celular/efectos de los fármacos , Vendajes
9.
Med Sci Monit ; 30: e944196, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380474

RESUMEN

The authors have requested retraction due to the identification of errors in the data. Reference: Xiaoming Hu, Dongzhe Zhu. Rehmannia Radix Extract Relieves Bleomycin-Induced Pulmonary Fibrosis in Mice via Transforming Growth Factor ß1 (TGF-ß1). Med Sci Monit, 2020; 26: e927240. DOI: 10.12659/MSM.927240.

10.
Med Sci Monit ; 30: e944195, 2024 02 21.
Artículo en Inglés | MEDLINE | ID: mdl-38380472

RESUMEN

The authors have requested retraction due to the identification of errors in the data. Reference: Xiaoming Hu, Xiaolan Huang. Alleviation of Inflammatory Response of Pulmonary Fibrosis in Acute Respiratory Distress Syndrome by Puerarin via Transforming Growth Factor (TGF-ß1). Med Sci Monit, 2019; 25: 6523-6531. DOI: 10.12659/MSM.915570.

11.
Angew Chem Int Ed Engl ; 63(15): e202401036, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38362791

RESUMEN

Developing Type-I photosensitizers provides an attractive approach to solve the dilemma of inadequate efficacy of photodynamic therapy (PDT) caused by the inherent oxygen consumption of traditional Type-II PDT and anoxic tumor microenvironment. The challenge for the exploration of Type-I PSs is to facilitate the electron transfer ability of photosensitization molecules for transforming oxygen or H2O to reactive oxygen species (ROS). Herein, we propose an electronic acceptor-triggered photoinduced electron transfer (a-PET) strategy promoting the separation of electron-hole pairs by marriage of two organic semiconducting molecules of a non-fullerene scaffold-based photosensitizer and a perylene diimide that significantly boost the Type-I PDT pathway to produce plentiful ROS, especially, inducing 3.5-fold and 2.5-fold amplification of hydroxyl (OH⋅) and superoxide (O2 -⋅) generation. Systematic mechanism exploration reveals that intermolecular electron transfer and intramolecular charge separation after photoirradiation generate a competent production of radical ion pairs that promote the Type-I PDT process by theoretical calculation and ultrafast femtosecond transient absorption (fs-TA) spectroscopy. By complementary tumor diagnosis with photoacoustic imaging and second near-infrared fluorescence imaging, this as-prepared nanoplatform exhibits fabulous photocytotoxicity in harsh hypoxic conditions and terrific cancer revoked abilities in living mice. We envision that this work will broaden the insight into high-efficiency Type-I PDT for cancer phototheranostics.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Ratones , Animales , Oxígeno , Fotoquimioterapia/métodos , Especies Reactivas de Oxígeno/metabolismo , Electrones , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/uso terapéutico , Fármacos Fotosensibilizantes/química , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Microambiente Tumoral
12.
Plant J ; 110(3): 881-898, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-35306701

RESUMEN

The section Oleifera (Theaceae) has attracted attention for the high levels of unsaturated fatty acids found in its seeds. Here, we report the chromosome-scale genome of the sect. Oleifera using diploid wild Camellia lanceoleosa with a final size of 3.00 Gb and an N50 scaffold size of 186.43 Mb. Repetitive sequences accounted for 80.63% and were distributed unevenly across the genome. Camellia lanceoleosa underwent a whole-genome duplication event approximately 65 million years ago (65 Mya), prior to the divergence of C. lanceoleosa and Camellia sinensis (approx. 6-7 Mya). Syntenic comparisons of these two species elucidated the genomic rearrangement, appearing to be driven in part by the activity of transposable elements. The expanded and positively selected genes in C. lanceoleosa were significantly enriched in oil biosynthesis, and the expansion of homomeric acetyl-coenzyme A carboxylase (ACCase) genes and the seed-biased expression of genes encoding heteromeric ACCase, diacylglycerol acyltransferase, glyceraldehyde-3-phosphate dehydrogenase and stearoyl-ACP desaturase could be of primary importance for the high oil and oleic acid content found in C. lanceoleosa. Theanine and catechins were present in the leaves of C. lanceoleosa. However, caffeine can not be dectected in the leaves but was abundant in the seeds and roots. The functional and transcriptional divergence of genes encoding SAM-dependent N-methyltransferases may be associated with caffeine accumulation and distribution. Gene expression profiles, structural composition and chromosomal location suggest that the late-acting self-incompatibility of C. lanceoleosa is likely to have favoured a novel mechanism co-occurring with gametophytic self-incompatibility. This study provides valuable resources for quantitative and qualitative improvements and genome assembly of polyploid plants in sect. Oleifera.


Asunto(s)
Camellia sinensis , Camellia , Cafeína/metabolismo , Camellia/genética , Camellia/metabolismo , Camellia sinensis/genética , Camellia sinensis/metabolismo , Cromosomas , Evolución Molecular
13.
Stroke ; 54(4): 1088-1098, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36912142

RESUMEN

BACKGROUND: Stroke is the primary cause of chronic disability in the elderly, as there are no neurorestorative treatments for those who do not qualify for recanalization therapy. Experimental evidence in stroke animals suggests that transplantation of bone marrow-derived human mesenchymal stem cells (hMSCs) holds promise, but hMSC transplantation has not been systematically tested in aged animals. We tested the hypothesis that poststroke hMSC transplantation improves stroke recovery in aged mice by promoting brain repair. METHODS: Permanent focal cerebral ischemia was induced in 20-month-old C57BL/6 male mice by distal middle cerebral artery occlusion. Bone marrow-derived hMSCs were expanded in vitro and then administrated intravenously into mice (1×106 cells in PBS) 24 hours after distal middle cerebral artery occlusion. Sensorimotor and cognitive functions, brain atrophy, and brain repair processes (neurogenesis, angiogenesis, oligodendrogenesis) were assessed for up to 56 days after stroke. RESULTS: Poststroke hMSC transplantation did not mitigate brain atrophy or improve neuronal survival at 56 days after distal middle cerebral artery occlusion. However, hMSC-treated mice displayed superior neurobehavioral performances in the open field, rotarod, adhesive removal, novel object, and Morris water maze tests compared with PBS-treated controls. hMSCs promoted white matter integrity and enhanced angiogenesis and oligodendrogenesis-but not neurogenesis-in the stroke brain. Positive correlations between neurobehavioral performance and brain repair profiles or white matter integrity were observed in stroke mice. CONCLUSIONS: Poststroke hMSC transplantation improves long-term stroke recovery in aged mice, likely via mechanisms involving enhanced microvascular regeneration and white matter restoration.


Asunto(s)
Isquemia Encefálica , Células Madre Mesenquimatosas , Accidente Cerebrovascular , Ratones , Humanos , Masculino , Animales , Anciano , Lactante , Infarto de la Arteria Cerebral Media/cirugía , Ratones Endogámicos C57BL , Encéfalo , Accidente Cerebrovascular/terapia , Isquemia Encefálica/cirugía , Modelos Animales de Enfermedad
14.
Neurobiol Dis ; 180: 106078, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36914076

RESUMEN

Traumatic brain injury (TBI) is commonly followed by intractable psychiatric disorders and long-term changes in affect, such as anxiety. The present study sought to investigate the effect of repetitive intranasal delivery of interleukin-4 (IL-4) nanoparticles on affective symptoms after TBI in mice. Adult male C57BL/6 J mice (10-12 weeks of age) were subjected to controlled cortical impact (CCI) and assessed by a battery of neurobehavioral tests up to 35 days after CCI. Neuron numbers were counted in multiple limbic structures, and the integrity of limbic white matter tracts was evaluated using ex vivo diffusion tensor imaging (DTI). As STAT6 is a critical mediator of IL-4-specific transcriptional activation, STAT6 knockout mice were used to explore the role of endogenous IL-4/STAT6 signaling axis in TBI-induced affective disorders. We also employed microglia/macrophage (Mi/Mϕ)-specific PPARγ conditional knockout (mKO) mice to test if Mi/Mϕ PPARγ critically contributes to IL-4-afforded beneficial effects. We observed anxiety-like behaviors up to 35 days after CCI, and these measures were exacerbated in STAT6 KO mice but mitigated by repetitive IL-4 delivery. We discovered that IL-4 protected against neuronal loss in limbic structures, such as the hippocampus and the amygdala, and improved the structural integrity of fiber tracts connecting the hippocampus and amygdala. We also observed that IL-4 boosted a beneficial Mi/Mϕ phenotype (CD206+/Arginase 1+/PPARγ+ triple-positive) in the subacute injury phase, and that the numbers of Mi/Mϕ appositions with neurons were robustly correlated with long-term behavioral performances. Remarkably, PPARγ-mKO completely abolished IL-4-afforded protection. Thus, CCI induces long-term anxiety-like behaviors in mice, but these changes in affect can be attenuated by transnasal IL-4 delivery. IL-4 prevents the long-term loss of neuronal somata and fiber tracts in key limbic structures, perhaps due to a shift in Mi/Mϕ phenotype. Exogenous IL-4 therefore holds promise for future clinical management of mood disturbances following TBI.


Asunto(s)
Lesiones Traumáticas del Encéfalo , Microglía , Ratones , Masculino , Animales , PPAR gamma , Interleucina-4 , Imagen de Difusión Tensora , Ratones Endogámicos C57BL , Ratones Noqueados , Ansiedad/etiología , Neuronas
15.
Neurobiol Dis ; 179: 106063, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36889482

RESUMEN

Recent research highlights the function of regulatory T cells (Tregs) in white matter integrity in CNS diseases. Approaches that expand the number of Tregs have been utilized to improve stroke recovery. However, it remains unclear if Treg augmentation preserves white matter integrity early after stroke or promotes white matter repair. This study evaluates the effect of Treg augmentation on white matter injury and repair after stroke. Adult male C57/BL6 mice randomly received Treg or splenocyte (2 million, iv) transfer 2 h after transient (60 min) middle cerebral artery occlusion (tMCAO). Immunostaining showed improved white matter recovery after tMCAO in Treg-treated mice compared to mice received splenocytes. In another group of mice, IL-2/IL-2 antibody complexes (IL-2/IL-2Ab) or isotype IgG were administered (i.p) for 3 consecutive days starting 6 h after tMCAO, and repeated on day 10, 20 and 30. The IL-2/IL-2Ab treatment boosted the number of Tregs in blood and spleen and increased Treg infiltration into the ischemic brain. Longitudinal in vivo and ex vivo diffusion tensor imaging analysis revealed an increase in fractional anisotropy 28d and 35d, but not 14d, after stroke in IL-2/IL-2Ab-treated mice compared to isotype-treated mice, suggesting a delayed improvement in white matter integrity. IL-2/IL-2Ab also improved sensorimotor functions (rotarod test and adhesive removal test) 35d after stroke. There were correlations between white matter integrity and behavior performance. Immunostaining confirmed the beneficial effects of IL-2/IL-2Ab on white matter structures 35d after tMCAO. IL-2/IL-2Ab treatment starting as late as 5d after stroke still improved white matter integrity 21d after tMCAO, suggesting long-term salutary effects of Tregs on the late-stage tissue repair. We also found that IL-2/IL-2Ab treatment reduced the number of dead/dying OPCs and oligodendrocytes in the brain 3d after tMCAO. To confirm the direct effect of Tregs on remyelination, Tregs were cocultured with lysophosphatidyl choline (LPC)-treated organotypic cerebella. LPC exposure for 17 h induced demyelination in organotypic cultures, followed by gradual spontaneous remyelination upon removal of LPC. Co-culture with Tregs accelerated remyelination in organotypic cultures 7d after LPC. In conclusion, Boosting the number of Tregs protects oligodendrocyte lineage cells early after stroke and promotes long-term white matter repair and functional recovery. IL-2/IL-2Ab represents a feasible approach of Treg expansion for stroke treatment.


Asunto(s)
Accidente Cerebrovascular , Sustancia Blanca , Ratones , Masculino , Animales , Linfocitos T Reguladores , Imagen de Difusión Tensora , Interleucina-2/farmacología , Ratones Endogámicos C57BL
16.
Neurobiol Dis ; 184: 106196, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37315905

RESUMEN

Reactive microglia are observed with aging and in Lewy body disorders, including within the olfactory bulb of men with Parkinson's disease. However, the functional impact of microglia in these disorders is still debated. Resetting these reactive cells by a brief dietary pulse of the colony-stimulating factor 1 receptor (CSF1R) inhibitor PLX5622 may hold therapeutic potential against Lewy-related pathologies. To our knowledge, withdrawal of PLX5622 after short-term exposure has not been tested in the preformed α-synuclein fibril (PFF) model, including in aged mice of both sexes. Compared to aged female mice, we report that aged males on the control diet showed higher numbers of phosphorylated α-synuclein+ inclusions in the limbic rhinencephalon after PFFs were injected in the posterior olfactory bulb. However, aged females displayed larger inclusion sizes compared to males. Short-term (14-day) dietary exposure to PLX5622 followed by control chow reduced inclusion numbers and levels of insoluble α-synuclein in aged males-but not females-and unexpectedly raised inclusion sizes in both sexes. Transient delivery of PLX5622 also improved spatial reference memory in PFF-infused aged mice, as evidenced by an increase in novel arm entries in a Y-maze. Superior memory was positively correlated with inclusion sizes but negatively correlated with inclusion numbers. Although we caution that PLX5622 delivery must be tested further in models of α-synucleinopathy, our data suggest that larger-sized-but fewer-α-synucleinopathic structures are associated with better neurological outcomes in PFF-infused aged mice.


Asunto(s)
Enfermedad por Cuerpos de Lewy , Enfermedad de Parkinson , Sinucleinopatías , Masculino , Femenino , Ratones , Animales , alfa-Sinucleína , Sinucleinopatías/patología , Enfermedad por Cuerpos de Lewy/patología , Enfermedad de Parkinson/patología
17.
FASEB J ; 36(10): e22541, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36083102

RESUMEN

Impairment of gluconeogenesis is a key factor responsible for hyperglycemia in patients with type 2 diabetes. As an important member of the suppressors of cytokine signaling (SOCS) protein family, many physiological functions of cytokine-inducible SH2-containing protein (CISH) have been described; however, the role of hepatic CISH in gluconeogenesis is poorly understood. In the present study, we observed that hepatic CISH expression was reduced in fasted wild-type (WT) mice. Overexpression of CISH decreased glucose production in mouse primary hepatocytes, while silencing of CISH had the opposite effects. In addition, adenovirus-mediated hepatic CISH overexpression resulted in improved glucose tolerance and decreased gluconeogenesis in WT and leptin receptor-deficient diabetic (db/db) mice. In contrast, adenovirus-mediated hepatic CISH knockdown impaired glucose tolerance and increased gluconeogenesis in WT mice. We also generated liver-specific CISH knockout (LV-CISH KO) mice and discovered that these mice had a similar phenotype in glucose tolerance and gluconeogenesis as mice injected with adenoviruses that knockdown CISH expression. Mechanistically, we found that CISH overexpression decreased and CISH knockdown increased the mRNA and protein levels of glucose-6-phosphatase (G6Pase) and phosphoenolpyruvate carboxykinase 1 (PEPCK), two key enzymes involved in gluconeogenesis, in vitro, and in vivo. Moreover, we discovered that the phosphorylation of cAMP-responsive element binding protein 1 (CREB), a transcription factor of G6pase and Pepck, was required for regulating gluconeogenesis by CISH. Taken together, this study identifies hepatic CISH as an important regulator of gluconeogenesis. Our results also provide important insights into the metabolic functions of the SOCS protein family and the potential targets for the treatment of diabetes.


Asunto(s)
Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Gluconeogénesis , Proteínas Supresoras de la Señalización de Citocinas/metabolismo , Animales , Citocinas/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Glucosa/metabolismo , Glucosa-6-Fosfatasa/genética , Hepatocitos/metabolismo , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL
18.
Int J Clin Pract ; 2023: 5407912, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36908299

RESUMEN

Background: Due to a lack of accessibility and individual differences in surgical procedures, many previous studies on keyholes are not practical. Objective: To study the surface landmarks for optimal keyhole placement in the retrosigmoid approach. Methods: The three-dimensional (3D) skull images of 79 patients were reconstructed using workstations, with a total of 149 hemiskull base 3D images then analyzed. Skull-surface landmarks were marked, the lateral-skull surface was observed, and the positional relationships between the asterion and the extension line of the posterior margin of the mastoid process were measured. The position of the superior curvature of the sigmoid sinus groove was located before it was projected onto the lateral surface of the skull and defined as the keypoint. The positional relationship between the keypoint and the skull-surface landmarks was observed in an established coordinate system using spatial proportion relationships. Results: The asterion was located around the extension line of the posterior margin of the mastoid process, and the vertical distance from the extension line was <15 mm. It was found that 93.29% (139/149) of the keypoints were located in a 7 mm radius circle, with the center at (-0.41, -3.01) in the coordinate system in the 3D computed tomography images. Conclusion: When using this method, the spatial proportion relationship of the anatomical marks can accurately locate keyholes, therefore providing technical support when employing the retrosigmoid approach.


Asunto(s)
Craneotomía , Cráneo , Humanos , Craneotomía/métodos , Cráneo/cirugía , Imagenología Tridimensional/métodos , Senos Craneales/cirugía , Tomografía
19.
Proc Natl Acad Sci U S A ; 117(51): 32679-32690, 2020 12 22.
Artículo en Inglés | MEDLINE | ID: mdl-33293423

RESUMEN

Intracerebral hemorrhage (ICH) is a devastating form of stroke affecting millions of people worldwide. Parenchymal hematoma triggers a series of reactions leading to primary and secondary brain injuries and permanent neurological deficits. Microglia and macrophages carry out hematoma clearance, thereby facilitating functional recovery after ICH. Here, we elucidate a pivotal role for the interleukin (IL)-4)/signal transducer and activator of transcription 6 (STAT6) axis in promoting long-term recovery in both blood- and collagenase-injection mouse models of ICH, through modulation of microglia/macrophage functions. In both ICH models, STAT6 was activated in microglia/macrophages (i.e., enhanced expression of phospho-STAT6 in Iba1+ cells). Intranasal delivery of IL-4 nanoparticles after ICH hastened STAT6 activation and facilitated hematoma resolution. IL-4 treatment improved long-term functional recovery in young and aged male and young female mice. In contrast, STAT6 knockout (KO) mice exhibited worse outcomes than WT mice in both ICH models and were less responsive to IL-4 treatment. The construction of bone marrow chimera mice demonstrated that STAT6 KO in either the CNS or periphery exacerbated ICH outcomes. STAT6 KO impaired the capacity of phagocytes to engulf red blood cells in the ICH brain and in primary cultures. Transcriptional analyses identified lower level of IL-1 receptor-like 1 (ST2) expression in microglia/macrophages of STAT6 KO mice after ICH. ST2 KO diminished the beneficial effects of IL-4 after ICH. Collectively, these data confirm the importance of IL-4/STAT6/ST2 signaling in hematoma resolution and functional recovery after ICH. Intranasal IL-4 treatment warrants further investigation as a clinically feasible therapy for ICH.


Asunto(s)
Hemorragia Cerebral/metabolismo , Hematoma/metabolismo , Accidente Cerebrovascular Hemorrágico/metabolismo , Interleucina-4/metabolismo , Factor de Transcripción STAT6/metabolismo , Animales , Hemorragia Cerebral/tratamiento farmacológico , Hemorragia Cerebral/patología , Modelos Animales de Enfermedad , Femenino , Hematoma/tratamiento farmacológico , Hematoma/patología , Accidente Cerebrovascular Hemorrágico/tratamiento farmacológico , Accidente Cerebrovascular Hemorrágico/patología , Proteína 1 Similar al Receptor de Interleucina-1/genética , Proteína 1 Similar al Receptor de Interleucina-1/metabolismo , Interleucina-4/administración & dosificación , Interleucina-4/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Masculino , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/metabolismo , Prueba del Laberinto Acuático de Morris/efectos de los fármacos , Fagocitosis/efectos de los fármacos , Fagocitosis/fisiología , Prueba de Desempeño de Rotación con Aceleración Constante , Factor de Transcripción STAT6/genética , Transducción de Señal
20.
Sensors (Basel) ; 23(15)2023 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-37571595

RESUMEN

Visual measurement methods are extensively used in various fields, such as aerospace, biomedicine, agricultural production, and social life, owing to their advantages of high speed, high accuracy, and non-contact. However, traditional camera-based measurement systems, relying on the pinhole imaging model, face challenges in achieving three-dimensional measurements using a single camera by one shot. Moreover, traditional visual systems struggle to meet the requirements of high precision, efficiency, and compact size simultaneously. With the development of light field theory, the light field camera has garnered significant attention as a novel measurement method. Due to its special structure, the light field camera enables high-precision three-dimensional measurements with a single camera through only one shot. This paper presents a comprehensive overview of light field camera measurement technologies, including the imaging principles, calibration methods, reconstruction algorithms, and measurement applications. Additionally, we explored future research directions and the potential application prospects of the light field camera.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA