Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 88
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 120(1): e2209990120, 2023 01 03.
Artículo en Inglés | MEDLINE | ID: mdl-36577069

RESUMEN

Microglia play a critical role in the clearance of myelin debris, thereby ensuring functional recovery from neural injury. Here, using mouse model of demyelination following two-point LPC injection, we show that the microglial autophagic-lysosomal pathway becomes overactivated in response to severe demyelination, leading to lipid droplet accumulation and a dysfunctional and pro-inflammatory microglial state, and finally failed myelin debris clearance and spatial learning deficits. Data from genetic approaches and pharmacological modulations, via microglial Atg5 deficient mice and intraventricular BAF A1 administration, respectively, demonstrate that staged suppression of excessive autophagic-lysosomal activation in microglia, but not sustained inhibition, results in better myelin debris degradation and exerts protective effects against demyelination. Combined multi-omics results in vitro further showed that enhanced lipid metabolism, especially the activation of the linoleic acid pathway, underlies this protective effect. Supplementation with conjugated linoleic acid (CLA), both in vivo and in vitro, could mimic these effects, including attenuating inflammation and restoring microglial pro-regenerative properties, finally resulting in better recovery from demyelination injuries and improved spatial learning function, by activating the peroxisome proliferator-activated receptor (PPAR-γ) pathway. Therefore, we propose that pharmacological inhibition targeting microglial autophagic-lysosomal overactivation or supplementation with CLA could represent a potential therapeutic strategy in demyelinated disorders.


Asunto(s)
Enfermedades Desmielinizantes , Microglía , Ratones , Animales , Microglía/metabolismo , Ácido Linoleico/metabolismo , Autofagia , Enfermedades Desmielinizantes/metabolismo , Regeneración
2.
J Am Chem Soc ; 2023 Nov 07.
Artículo en Inglés | MEDLINE | ID: mdl-37933858

RESUMEN

Bioorthogonal decaging chemistry with both fast kinetics and high efficiency is highly demanded for in vivo applications but remains very sporadic. Herein, we describe a new bioorthogonal decaging chemistry between N-oxide and silylborane. A simple replacement of "C" in boronic acid with "Si" was able to substantially accelerate the N-oxide decaging kinetics by 106 fold (k2: up to 103 M-1 s-1). Moreover, a new N-oxide-masked self-immolative spacer was developed for the traceless release of various payloads upon clicking with silylborane with fast kinetics and high efficiency (>90%). Impressively, one such N-oxide-based self-assembled bioorthogonal nano-prodrug in combination with silylborane led to significantly enhanced tumor suppression effects as compared to the parent drug in a 4T1 mouse breast tumor model. In aggregate, this new bioorthogonal click-and-release chemistry is featured with fast kinetics and high efficiency and is perceived to find widespread applications in chemical biology and drug delivery.

3.
Int J Mol Sci ; 24(15)2023 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-37569577

RESUMEN

α-Ketoglutarate decarboxylase is a crucial enzyme in the tricarboxylic acid cycle of cyanobacteria, catalyzing the non-oxidative decarboxylation of α-ketoglutarate to produce succinate semialdehyde and CO2. The decarboxylation process is reliant on the cofactor of thiamine diphosphate. However, this enzyme's biochemical and structural properties have not been well characterized. In this work, two α-ketoglutarate decarboxylases encoded by MAE_06010 and MiAbw_01735 genes from Microcystis aeruginosa NIES-843 (MaKGD) and NIES-4325 (MiKGD), respectively, were overexpressed and purified by using an Escherichia coli expression system. It was found that MaKGD exhibited 9.2-fold higher catalytic efficiency than MiKGD, which may be attributed to the absence of glutamate decarboxylase in Microcystis aeruginosa NIES-843. Further biochemical investigation of MaKGD demonstrated that it displayed optimum activity at pH 6.5-7.0 and was most activated by Mg2+. Additionally, MaKGD showed substrate specificity towards α-ketoglutarate. Structural modeling and autodocking results revealed that the active site of MaKGD contained a distinct binding pocket where α-ketoglutarate and thiamine diphosphate interacted with specific amino acid residues via hydrophobic interactions, hydrogen bonds and salt bridges. Furthermore, the mutagenesis study provided strong evidence supporting the importance of certain residues in the catalysis of MaKGD. These findings provide new insights into the structure-function relationships of α-ketoglutarate decarboxylases from cyanobacteria.


Asunto(s)
Carboxiliasas , Microcystis , Microcystis/genética , Tiamina Pirofosfato/metabolismo , Ácidos Cetoglutáricos/metabolismo , Carboxiliasas/metabolismo
4.
J Autoimmun ; 133: 102944, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36401985

RESUMEN

OBJECTIVES: To investigate the landscape of T-B cell interaction, immune receptor profiles and effects of different types of immune responses in the involved tissues of IgG4-RD. METHODS: Single cell RNA sequencing, bulk sample RNA sequencing, immune receptor repertoire analysis (both BCR and TCR), multi-color flow cytometry, and in-vitro assays with model cells (e.g. EBV-immortalized B cells from IgG4-RD patient) and histologic methods were applied to investigate the immunopathological features of IgG4-RD from multiple aspects. RESULTS: Ectopic germinal center formation was observed in IgG4-RD patients at advanced disease stage, and a large part of B cells in involved tissue were germinal center B cell-like. Germinal center reaction in IgG4-RD led to the irregularities of both TCR and BCR clones in the involved tissues, and limited clonal overlaps among different samples. Enhanced Th1- and Th2-type responses were observed in involved tissues of IgG4-RD and patients with both increased Th1- and Th2-type response related cell subsets possessed more severe inflammatory indices. Analyses to the origin of IGHG4 transcripts in IgG4-RD indicated that IgG4 could be switched from IgM directly, or from other IgG subclasses. In vitro assays with EBV-immortalized B cells, fibroblasts and epithelial cells revealed the effects of Th1-type and Th2-type responses on germinal center reaction, ectopic expression of MHC-II molecules, and formation of tertiary lymphoid structures. CONCLUSIONS: Synergistic effects of Th1- and Th2-type responses were involved in the pathogenesis of IgG4-RD via their influences on both acute inflammatory processes and the chronicity and complexity of IgG4-RD.


Asunto(s)
Linfocitos B , Análisis de Expresión Génica de una Sola Célula , Humanos
5.
Molecules ; 27(5)2022 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-35268699

RESUMEN

Previous studies have reported that recombinant tumor necrosis factor (TNF)-α has powerful antiviral activity but severe systematic side effects. Jasminin is a common bioactive component found in Chinese herbal medicine beverage "Jasmine Tea". Here, we report that jasminin-induced endogenous TNF-α showed antiviral activity in vitro. The underlying TNF-α-inducing action of jasminin was also investigated in RAW264.7 cells. The level of endogenous TNF-α stimulated by jasminin was first analyzed by an enzyme-linked immunosorbent assay (ELISA) from the cell culture supernatant of RAW264.7 cells. The supernatants were then collected to investigate the potential antiviral effect against herpes simplex virus 1 (HSV-1). The antiviral effects of jasminin alone or its supernatants were evaluated by a plaque reduction assay. The potential activation of the PI3K-Akt pathway, three main mitogen-activated protein kinases (MAPKs), and nuclear factor (NF)-κB signaling pathways that induce TNF-α production were also investigated. Jasminin induces TNF-α protein expression in RAW264.7 cells without additional stimuli 10-fold more than the control. No significant up-expression of type I, II, and III interferons; interleukins 2 and 10; nor TNF-ß were observed by the jasminin stimuli. The supernatants, containing jasminin-induced-TNF-α, showed antiviral activity against HSV-1. The jasminin-stimulated cells caused the simultaneous activation of the Akt, MAPKs, and NF-κB signal pathways. Furthermore, the pretreatment of the cells with the Akt, MAPKs, and NF-κB inhibitors effectively suppressed jasminin-induced TNF-α production. Our research provides evidence that endogenous TNF-α can be used as a strategy to encounter viral infections. Additionally, the Akt, MAPKs, and NF-κB signaling pathways are involved in the TNF-α synthesis that induced by jasminin.


Asunto(s)
Fosfatidilinositol 3-Quinasas , Factor de Necrosis Tumoral alfa , Antivirales/farmacología , Lipopolisacáridos/farmacología , FN-kappa B/metabolismo , Fosfatidilinositol 3-Quinasas/metabolismo , Factor de Necrosis Tumoral alfa/metabolismo
6.
Neurobiol Dis ; 152: 105290, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33556540

RESUMEN

In response to various types of environmental and cellular stress, microglia rapidly activate and exhibit either pro- or anti-inflammatory phenotypes to maintain tissue homeostasis. Activation of microglia can result in changes in morphology, phagocytosis capacity, and secretion of cytokines. Furthermore, microglial activation also induces changes to cellular energy demand, which is dependent on the metabolism of various metabolic substrates including glucose, fatty acids, and amino acids. Accumulating evidence demonstrates metabolic reprogramming acts as a key driver of microglial immune response. For instance, microglia in pro-inflammatory states preferentially use glycolysis for energy production, whereas, cells in anti-inflammatory states are mainly powered by oxidative phosphorylation and fatty acid oxidation. In this review, we summarize recent findings regarding microglial metabolic pathways under physiological and pathological circumtances. We will then discuss how metabolic reprogramming can orchestrate microglial response to a variety of central nervous system pathologies. Finally, we highlight how manipulating metabolic pathways can reprogram microglia towards beneficial functions, and illustrate the therapeutic potential for inflammation-related neurological diseases.


Asunto(s)
Adaptación Fisiológica/fisiología , Reprogramación Celular/fisiología , Sistema Nervioso Central/metabolismo , Microglía/metabolismo , Animales , Sistema Nervioso Central/inmunología , Humanos , Metaboloma , Microglía/inmunología , Fenotipo
7.
Anal Chem ; 93(25): 8799-8809, 2021 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-34076420

RESUMEN

Sensitive and simultaneous detection of multiple cancer-related biomarkers in serum is essential for diagnosis, therapy, prognosis, and staging of cancer. Herein, we proposed a magnetically assisted sandwich-type surface-enhanced Raman scattering (SERS)-based biosensor for ultrasensitive and multiplex detection of three hepatocellular carcinoma-related microRNA (miRNA) biomarkers. The biosensor consists of an SERS tag (probe DNA-conjugated DNA-engineered fractal gold nanoparticles, F-AuNPs) and a magnetic capture substrate (capture DNA-conjugated Ag-coated magnetic nanoparticles, AgMNPs). The proposed strategy achieved simultaneous and sensitive detection of three miRNAs (miRNA-122, miRNA-223, and miRNA-21), and the limits of detection of the three miRNAs in human serum are 349 aM for miRNA-122, 374 aM for miRNA-223, and 311 aM for miRNA-21. High selectivity and accuracy of the SERS biosensor were proved by practical analysis in human serum. Moreover, the biosensor exhibited good practicability in multiplex detection of three miRNAs in 92 clinical sera from AFP-negative patients, patients before and after hepatectomy, recurred and relapse-free patients after hepatectomy, and hepatocellular carcinoma patients at distinct Barcelona clinic liver cancer stages. The experiment results demonstrate that our SERS-based assay is a promising candidate in clinical application and exhibited potential for the prediction, diagnosis, monitoring, and staging of cancers.


Asunto(s)
Técnicas Biosensibles , Carcinoma Hepatocelular , Neoplasias Hepáticas , Nanopartículas del Metal , MicroARNs , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , Detección Precoz del Cáncer , Fractales , Oro , Humanos , Límite de Detección , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , MicroARNs/genética , Pronóstico , Espectrometría Raman
8.
Cell Mol Neurobiol ; 41(2): 353-364, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32342246

RESUMEN

Since microglia-associated neuroinflammation plays a pivotal role in the progression of white matter diseases, modulating microglial activation has been suggested as a potential therapeutic strategy. Here, we investigated the anti-inflammatory effects of fingolimod (FTY720) on microglia and analyzed the crosstalk between microglia autophagy and neuroinflammation. Lipopolysaccharide (LPS)-induced primary cultured microglia model was established. Microglial phenotypes were assessed by Western blot, quantitative real-time polymerase chain reaction (RT-PCR) and flow cytometry. Autophagy was evaluated by immunofluorescence, MDC staining and Western blot. Rapamycin was used to investigate the role of autophagic process in regulating microglial phenotypes. The signaling markers were screened by RT-PCR and Western blot. FTY720 shifted microglial phenotype from pro-inflammatory state to anti-inflammatory state and inhibited microglial autophagy under lipopolysaccharide (LPS) treatment. Rapamycin reversed the effect of FTY720 on phenotype transformation of microglia. The results of mechanism studies have shown that FTY720 notably repressed LPS-induced STAT1 activity, which was reactivated by rapamycin. Our research suggested that FTY720 could significantly transform pro-inflammatory microglia into anti-inflammatory microglia by suppressing autophagy via STAT1.


Asunto(s)
Antiinflamatorios/farmacología , Autofagia , Clorhidrato de Fingolimod/farmacología , Microglía/metabolismo , Microglía/patología , Factor de Transcripción STAT1/metabolismo , Animales , Autofagia/efectos de los fármacos , Células Cultivadas , Inflamación/patología , Lipopolisacáridos , Ratones Endogámicos C57BL , Microglía/efectos de los fármacos , Modelos Biológicos , Fenotipo , Transducción de Señal/efectos de los fármacos
9.
Stroke ; 51(7): 2219-2223, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32466735

RESUMEN

BACKGROUND AND PURPOSE: Information on stroke survivors infected with coronavirus disease 2019 (COVID-19) is limited. The aim of this study was to describe specific clinical characteristics and outcomes of patients with COVID-19 with a history of stroke. METHODS: All the confirmed cases of COVID-19 at Tongji Hospital from January 27 to March 5, 2020, were included in our cohort study. Clinical data were analyzed and compared between patients with and without a history of stroke. RESULTS: Of the included 1875 patients with COVID-19, 50 patients had a history of stroke. The COVID-19 patients with medical history of stroke were older with more comorbidities, had higher neutrophil count, and lower lymphocyte and platelet counts than those without history of stroke. The levels of D-dimers, cardiac troponin I, NT pro-brain natriuretic peptide, and interleukin-6 were also markedly higher in patients with history of stroke. Stroke survivors who underwent COVID-19 developed more acute respiratory distress syndrome and received more noninvasive mechanical ventilation. Data from propensity-matched analysis indicated a higher proportion of patients with COVD-19 with a history of stroke were admitted to the intensive care unit requiring mechanical ventilation and were more likely to be held in the unit or die, compared with non-stroke history COVID-19 patients. CONCLUSIONS: Patients with COVID-19 with a history of stroke had more severe clinical symptoms and poorer outcomes compared with those without a history of stroke.


Asunto(s)
Betacoronavirus , Infecciones por Coronavirus , Pandemias , Neumonía Viral , Accidente Cerebrovascular/epidemiología , Anciano , Recuento de Células Sanguíneas , COVID-19 , China/epidemiología , Comorbilidad , Infecciones por Coronavirus/epidemiología , Femenino , Mortalidad Hospitalaria , Hospitales Universitarios/estadística & datos numéricos , Humanos , Masculino , Persona de Mediana Edad , Neumonía Viral/epidemiología , Utilización de Procedimientos y Técnicas , Puntaje de Propensión , Recurrencia , Respiración Artificial/estadística & datos numéricos , Síndrome de Dificultad Respiratoria/etiología , Síndrome de Dificultad Respiratoria/terapia , SARS-CoV-2 , Accidente Cerebrovascular/sangre , Accidente Cerebrovascular/terapia , Resultado del Tratamiento
10.
Clin Infect Dis ; 71(15): 762-768, 2020 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-32161940

RESUMEN

BACKGROUND: In December 2019, coronavirus 2019 (COVID-19) emerged in Wuhan and rapidly spread throughout China. METHODS: Demographic and clinical data of all confirmed cases with COVID-19 on admission at Tongji Hospital from 10 January to 12 February 2020 were collected and analyzed. The data on laboratory examinations, including peripheral lymphocyte subsets, were analyzed and compared between patients with severe and nonsevere infection. RESULTS: Of the 452 patients with COVID-19 recruited, 286 were diagnosed as having severe infection. The median age was 58 years and 235 were male. The most common symptoms were fever, shortness of breath, expectoration, fatigue, dry cough, and myalgia. Severe cases tend to have lower lymphocyte counts, higher leukocyte counts and neutrophil-lymphocyte ratio (NLR), as well as lower percentages of monocytes, eosinophils, and basophils. Most severe cases demonstrated elevated levels of infection-related biomarkers and inflammatory cytokines. The number of T cells significantly decreased, and were more impaired in severe cases. Both helper T (Th) cells and suppressor T cells in patients with COVID-19 were below normal levels, with lower levels of Th cells in the severe group. The percentage of naive Th cells increased and memory Th cells decreased in severe cases. Patients with COVID-19 also have lower levels of regulatory T cells, which are more obviously decreased in severe cases. CONCLUSIONS: The novel coronavirus might mainly act on lymphocytes, especially T lymphocytes. Surveillance of NLR and lymphocyte subsets is helpful in the early screening of critical illness, diagnosis, and treatment of COVID-19.


Asunto(s)
Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Neumonía Viral/inmunología , Adulto , Anciano , Anciano de 80 o más Años , COVID-19 , China , Infecciones por Coronavirus/virología , Tos/inmunología , Tos/virología , Enfermedad Crítica , Citocinas/inmunología , Femenino , Fiebre/inmunología , Fiebre/virología , Hospitalización , Humanos , Recuento de Leucocitos , Linfocitos/inmunología , Linfocitos/virología , Masculino , Persona de Mediana Edad , Monocitos/inmunología , Monocitos/virología , Neutrófilos/inmunología , Neutrófilos/virología , Pandemias , Neumonía Viral/virología , Estudios Retrospectivos , SARS-CoV-2 , Adulto Joven
11.
Plant Mol Biol ; 102(1-2): 123-141, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31776846

RESUMEN

KEY MESSAGE: Conserved motif, gene structure, expression and interaction analysis of C2H2-ZFPs in Brassica rapa, and identified types of genes may play essential roles in flower development, and BrZFP38 was proved to function in flower development by affecting pollen formation. Flower development plays a central role in determining the reproduction of higher plants, and Cys2/His2 zinc-finger proteins (C2H2-ZFPs) widely participate in the transcriptional regulation of flower development. C2H2-ZFPs with various structures are the most widespread DNA-binding transcription factors in plants. In this study, conserved protein motif and gene structures were analyzed to investigate systematically the molecular features of Brassica rapa C2H2-ZFP genes. Expression of B. rapa C2H2-ZFPs in multiple tissues showed that more than half of the family members with different types ZFs were expressed in flowers. The specific expression profiles of these C2H2-ZFPs in different B. rapa floral bud stages were further evaluated to identify their potential roles in flower development. Interaction networks were constructed in B. rapa based on the orthology of flower-related C2H2-ZFP genes in Arabidopsis. The putative cis-regulatory elements in the promoter regions of these C2H2-ZFP genes were thoroughly analyzed to elucidate their transcriptional regulation. Results showed that the orthologs of known-function flower-related C2H2-ZFP genes were conserved and differentiated in B. rapa. A C2H2-ZFP was proved to function in B. rapa flower development. Our study provides a systematic investigation of the molecular characteristics and expression profiles of C2H2-ZFPs in B. rapa and promotes further work in function and transcriptional regulation of flower development.


Asunto(s)
Brassica rapa/genética , Dedos de Zinc CYS2-HIS2/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Secuencias de Aminoácidos/genética , Arabidopsis/genética , Arabidopsis/metabolismo , Brassica rapa/metabolismo , Dedos de Zinc CYS2-HIS2/fisiología , Flores/crecimiento & desarrollo , Perfilación de la Expresión Génica , Glucuronidasa/metabolismo , Filogenia , Desarrollo de la Planta/genética , Desarrollo de la Planta/fisiología , Proteínas de Plantas/clasificación , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Mapas de Interacción de Proteínas
12.
J Neuroinflammation ; 17(1): 333, 2020 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-33158440

RESUMEN

BACKGROUND: Multiple sclerosis (MS) is an immune-mediated demyelinated disease of the central nervous system. Activation of microglia is involved in the pathogenesis of myelin loss. OBJECTIVE: This study is focused on the role of Hv1 in regulating demyelination and microglial activation through reactive oxygen species (ROS) production after lysophosphatidylcholine (LPC)-mediated demyelination. We also explored autophagy in this process. METHODS: A model of demyelination using two-point LPC injection into the corpus callosum was established. LFB staining, immunofluorescence, Western blot, and electron microscopy were used to study the severity of demyelination. Microglial phenotype and autophagy were detected by immunofluorescence and Western blot. Morris water maze was used to test spatial learning and memory ability. RESULTS: We have identified that LPC-mediated myelin damage was reduced by Hv1 deficiency. Furthermore, we found that ROS and autophagy of microglia increased in the demyelination region, which was also inhibited by Hv1 knockout. CONCLUSION: These results suggested that microglial Hv1 deficiency ameliorates demyelination through inhibition of ROS-mediated autophagy and microglial phenotypic transformation.


Asunto(s)
Autofagia/fisiología , Enfermedades Desmielinizantes/metabolismo , Canales Iónicos/deficiencia , Lisofosfatidilcolinas/toxicidad , Microglía/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Animales , Autofagia/efectos de los fármacos , Enfermedades Desmielinizantes/inducido químicamente , Enfermedades Desmielinizantes/patología , Modelos Animales de Enfermedad , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Microglía/efectos de los fármacos , Microglía/patología
13.
Environ Toxicol ; 35(2): 188-193, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31654556

RESUMEN

Mitochondrial dynamics and function are important for cell survival regulation under stress. In this study, we report that cerebral ischemia/reperfusion (I/R) injury significantly reduced mitochondrial function through reduced PTEN-induced kinase 1 (PINK1) expression, ATP (Adenosine triphosphate) levels, and increased oxidative stress compared to sham rats. PINK1 overexpression mice significantly improved mitochondrial function by increased mitochondrial complex I, II, and III activities and ATP levels with concomitant decline in reactive oxygen species levels. PINK1 overexpression mice after I/R injury significantly reduced apoptosis through downregulation of cytochrome c, p53 expressions compared to cerebral I/R injury rats. Furthermore, we showed from parkin siRNA studies that PINK1 regulated phosphorylation parkin is critical to the protection against cerebral I/R injury. Altogether, we show that PINK1 mediated parkin regulation is key to the protection against cerebral I/R injury through regulation of mitochondrial function and apoptosis.


Asunto(s)
Apoptosis/genética , Isquemia Encefálica/metabolismo , Mitocondrias/metabolismo , Proteínas Quinasas/metabolismo , Daño por Reperfusión/metabolismo , Adenosina Trifosfato/metabolismo , Animales , Isquemia Encefálica/genética , Isquemia Encefálica/patología , Supervivencia Celular/genética , Citocromos c/metabolismo , Regulación de la Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Estrés Oxidativo/genética , Proteínas Quinasas/genética , Ratas , Especies Reactivas de Oxígeno/metabolismo , Daño por Reperfusión/genética , Daño por Reperfusión/patología
14.
Int J Mol Sci ; 21(10)2020 May 12.
Artículo en Inglés | MEDLINE | ID: mdl-32408673

RESUMEN

Expansins are a kind of structural proteins of the plant cell wall, and they enlarge cells by loosening the cell walls. Therefore, expansins are involved in many growth and development processes. The complete genomic sequences of Brassica rapa, Brassica oleracea and Brassica nigra provide effective platforms for researchers to study expansin genes, and can be compared with analogues in Arabidopsis thaliana. This study identified and characterized expansin families in B. rapa, B. oleracea, and B. nigra. Through the comparative analysis of phylogeny, gene structure, and physicochemical properties, the expansin families were divided into four subfamilies, and then their expansion patterns and evolution details were explored accordingly. Results showed that after the three species underwent independent evolution following their separation from A. thaliana, the expansin families in the three species had increased similarities but fewer divergences. By searching divergences of promoters and coding sequences, significant positive correlations were revealed among orthologs in A. thaliana and the three basic species. Subsequently, differential expressions indicated extensive functional divergences in the expansin families of the three species, especially in reproductive development. Hence, these results support the molecular evolution of basic Brassica species, potential functions of these genes, and genetic improvement of related crops.


Asunto(s)
Brassica/genética , Evolución Molecular , Perfilación de la Expresión Génica/métodos , Regulación de la Expresión Génica de las Plantas , Familia de Multigenes , Proteínas de Plantas/genética , Brassica/clasificación , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Diploidia , Duplicación de Gen , Genoma de Planta/genética , Filogenia , Especificidad de la Especie , Sintenía
15.
Plant Mol Biol ; 101(6): 537-550, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31745746

RESUMEN

KEY MESSAGE: MIR159/319 have conserved evolution and diversified function after WGT in Brassica campestris, both of them can lead pollen vitality and germination abnormality, Bra-MIR319c also can function in flower development. MiR159 and miR319 are extensively studied highly conserved microRNAs which play roles in vegetative development, reproduction, and hormone regulation. In this study, the effects of whole-genome triplication (WGT) on the evolution of the MIR159/319 family and the functional diversification of the genes were comprehensively investigated in Brassica campestris. We identified 11 MIR159/319 genes in B. campestris, which produced five mature sequences. After analyzing the precursor sequences and phylogenetic tree, we found that Bra-MIR159/319 have evolutionary conservatism. Furthermore, Bra-MIR159/319 show functional diversification after WGT, as indicated by their expression patterns and the cis-element in their promoter. GUS signal showed that Bra-MIR159a and Bra-MIR319c can be expressed in anther but in different development stages. In B. campestris, overexpressed MIR159a and MIR319c contribute to late anther development and promote pollen abortion. Moreover, Bra-MIR319c can partially assume the function of MIR319a in flower development.


Asunto(s)
Brassica/metabolismo , Proteínas de Plantas/metabolismo , Polen/metabolismo , Brassica/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Proteínas de Plantas/genética , Polen/genética
16.
Biochem Biophys Res Commun ; 518(4): 726-731, 2019 10 22.
Artículo en Inglés | MEDLINE | ID: mdl-31472956

RESUMEN

In flowering plants, stamen development is a complex multistage process, which is highly regulated by a series of transcription factors. In this study, BcMF28, which encodes a R2R3-MYB transcription factor, was isolated from Brassica campestris. BcMF28 is localized in the nucleus and cytoplasm, and acts as a transcriptional activator. Quantitative real-time PCR and promoter activity analysis revealed that BcMF28 was predominately expressed in inflorescences. The expression of BcMF28 was specifically detected in tapetum, developing microspores, anther endothecium, and filaments during late stamen development. The overexpression of BcMF28 in Arabidopsis resulted in aberrant stamen development, including filament shortening, anther indehiscence, and pollen abortion. Detailed analysis of anther development in transgenic plants revealed that the degeneration of septum and stomium did not occur, and endothecium lignification was affected. Furthermore, the expression levels of genes involved in the phenylpropanoid metabolism pathway were altered in BcMF28-overexpressing transgenic plants. Our results suggest that BcMF28 plays an important regulatory role during late stamen development.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Flores/genética , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/genética , Arabidopsis/crecimiento & desarrollo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/crecimiento & desarrollo , Flores/metabolismo , Infertilidad Vegetal/genética , Plantas Modificadas Genéticamente , Polen/genética , Polen/crecimiento & desarrollo , Polen/metabolismo , Propanoles/metabolismo , Factores de Transcripción/metabolismo
17.
Biochem Biophys Res Commun ; 518(2): 299-305, 2019 10 15.
Artículo en Inglés | MEDLINE | ID: mdl-31427085

RESUMEN

Cys2/His2 zinc-finger protein (C2H2-ZFP) is widely involved in the reproductive development of plants, but its role in pollen development is still elusive. Here, we identified a pollen-related C2H2-ZFP gene named as MALE FERTILITY-ASSOCIATED ZINC FINGER PROTEIN 1 (MAZ1), which was first isolated from Arabidopsis thaliana. MAZ1 showed a preferential expression pattern in early anther development. Its mutation resulted in aberrant primexine deposition at the tetrad stage, followed by a defective multiple-layer pattern of exine with irregular baculum and no tectum. Furthermore, microspore development was arrested, and no intine layer was formed. These developmental defects led to fertility reduction and pollen abortion. This study reveals the essential role of MAZ1 in pollen wall development.


Asunto(s)
Proteínas de Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Polen/genética , Proteínas de Arabidopsis/metabolismo , Polen/crecimiento & desarrollo
19.
Mikrochim Acta ; 185(11): 507, 2018 10 18.
Artículo en Inglés | MEDLINE | ID: mdl-30338341

RESUMEN

This paper describes the synthesis of fluorescent copper nanoclusters (CuNC) with a fluorescence quantum yield as high as 2.3% after modification with cysteamine. The modified CuNC are shown to be viable probes for the determination of picric acid (PA). Fluorescence drops with increasing concentration of PA which can be detected fluorometrically with a 0.14 µM limit of detection. This is much lower than required by the People's Republic of China Surface Water Environmental Quality Standard (2.2 µM). The probe was successfully applied to the determination of PA in spiked tap water, lake water and river water. Graphical abstract Copper nanoclusters (CuNC) have weak fluorescence but after the modification with cysteamine, the fluorescence of CuNC is strongly enhanced. The fluorescence of such cysteamine-coated copper nanoclusters (CuNC-CA) is reduced upon the addition of picric acid (PA) through an inner filter effect (IFE).

20.
Plant Mol Biol ; 93(3): 313-326, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27909970

RESUMEN

KEY MESSAGE: We identified and cloned the two precursors of miR158 and its target gene in Brassica campestris ssp. chinensis, which both had high relative expression in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility, which was caused by the degradation of pollen contents from the binucleate microspore stage. These results first suggest the role of miR158 in pollen development of Brassica campestris ssp. chinensis. MicroRNAs (miRNAs) play crucial roles in many important growth and development processes both in plants and animals by regulating the expression of their target genes via mRNA cleavage or translational repression. In this study, miR158, a Brassicaceae specific miRNA, was functionally characterized with regard to its role in pollen development of non-heading Chinese cabbage (Brassica campestris ssp. chinensis). Two family members of miR158 in B. campestris, namely bra-miR158a1 and bra-miR158a2, and their target gene bra027656, which encodes a pentatricopeptide repeat (PPR) containing protein, were identified. Then, qRT-PCR analysis and GUS-reporter system revealed that both bra-miR158 and its target gene had relatively high expression levels in the inflorescences. Further study revealed that over-expression of miR158 caused reduced pollen varbility and pollen germination ratio, and the degradation of pollen contents from the binucleate microspore stage was also found in those deformed pollen grains, which led to pollen shrinking and collapse in later pollen development stage. These results first shed light on the importance of miR158 in pollen development of Brassica campestris ssp. chinensis.


Asunto(s)
Brassica/genética , Regulación de la Expresión Génica de las Plantas , MicroARNs/metabolismo , Polen/genética , Secuencia de Bases , Brassica/crecimiento & desarrollo , Brassica/ultraestructura , Genes de Plantas , Germinación/genética , MicroARNs/genética , Especificidad de Órganos/genética , Plantas Modificadas Genéticamente , Polen/crecimiento & desarrollo , Polen/ultraestructura , Supervivencia Tisular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA