Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 140
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
BMC Med ; 22(1): 117, 2024 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-38481216

RESUMEN

BACKGROUND: Paxlovid has been shown to be effective in reducing mortality and hospitalization rates in patients with coronavirus disease 2019 (COVID-19). It is not known whether Paxlovid can reduce the risk of cardiovascular diseases (CVD) in COVID-19-surviving patients with autoimmune rheumatic diseases (AIRDs). METHODS: TriNetX data from the US Collaborative Network were used in this study. A total of 5,671,395 patients with AIRDs were enrolled between January 1, 2010, and December 31, 2021. People diagnosed with COVID-19 were included in the cohort (n = 238,142) from January 1, 2022, to December 31, 2022. The Study population was divided into two groups based on Paxlovid use. Propensity score matching was used to generate groups with matched baseline characteristics. The hazard ratios (HRs) and 95% confidence intervals of cardiovascular outcomes, admission rate, mortality rate, and intensive care unit (ICU) admission rate were calculated between Paxlovid and non-Paxlovid groups. Subgroup analyses on sex, age, race, autoimmune diseases group, and sensitivity analyses for Paxlovid use within the first day or within 2-5 days of COVID-19 diagnosis were performed. RESULTS: Paxlovid use was associated with lower risks of cerebrovascular complications (HR = 0.65 [0.47-0.88]), arrhythmia outcomes (HR = 0.81 [0.68-0.94]), ischemic heart disease, other cardiac disorders (HR = 0.51 [0.35-0.74]) naming heart failure (HR = 0.41 [0.26-0.63]) and deep vein thrombosis (HR = 0.46 [0.24-0.87]) belonging to thrombotic disorders in AIRD patients with COVID-19. Compared with the Non-Paxlovid group, risks of major adverse cardiac events (HR = 0.56 [0.44-0.70]) and any cardiovascular outcome mentioned above (HR = 0.76 [0.66-0.86]) were lower in the Paxlovid group. Moreover, the mortality (HR = 0.21 [0.11-0.40]), admission (HR = 0.68 [0.60-0.76]), and ICU admission rates (HR = 0.52 [0.33-0.80]) were significantly lower in the Paxlovid group than in the non-Paxlovid group. Paxlovid appears to be more effective in male, older, and Black patients with AIRD. The risks of cardiovascular outcomes and severe conditions were reduced significantly with Paxlovid prescribed within the first day of COVID-19 diagnosis. CONCLUSIONS: Paxlovid use is associated with a lower risk of CVDs and severe conditions in COVID-19-surviving patients with AIRD.


Asunto(s)
Enfermedades Autoinmunes , COVID-19 , Enfermedades Cardiovasculares , Lactamas , Leucina , Nitrilos , Prolina , Enfermedades Reumáticas , Ritonavir , Humanos , Masculino , Recién Nacido , COVID-19/complicaciones , COVID-19/epidemiología , Enfermedades Cardiovasculares/epidemiología , Enfermedades Cardiovasculares/complicaciones , Estudios Retrospectivos , Prueba de COVID-19 , Factores de Riesgo , Enfermedades Autoinmunes/complicaciones , Enfermedades Autoinmunes/tratamiento farmacológico , Enfermedades Autoinmunes/epidemiología , Enfermedades Reumáticas/complicaciones , Enfermedades Reumáticas/tratamiento farmacológico , Enfermedades Reumáticas/epidemiología , Combinación de Medicamentos
2.
Environ Sci Technol ; 58(26): 11822-11832, 2024 Jul 02.
Artículo en Inglés | MEDLINE | ID: mdl-38899941

RESUMEN

The potential of Ru(III)-mediated advanced oxidation processes has attracted attention due to the recyclable catalysis, high efficiency at circumneutral pHs, and robust resistance against background anions (e.g., phosphate). However, the reactive species in Ru(III)-peracetic acid (PAA) and Ru(III)-ferrate(VI) (FeO42-) systems have not been rigorously examined and were tentatively attributed to organic radicals (CH3C(O)O•/CH3C(O)OO•) and Fe(IV)/Ru(V), representing single electron transfer (SET) and double electron transfer (DET) mechanisms, respectively. Herein, the reaction mechanisms of both systems were investigated by chemical probes, stoichiometry, and electrochemical analysis, revealing different reaction pathways. The negligible contribution of hydroxyl (HO•) and organic (CH3C(O)O•/CH3C(O)OO•) radicals in the Ru(III)-PAA system clearly indicated a DET reaction via oxygen atom transfer (OAT) that produces Ru(V) as the only reactive species. Further, the Ru(III)-performic acid (PFA) system exhibited a similar OAT oxidation mechanism and efficiency. In contrast, the 1:2 stoichiometry and negligible Fe(IV) formation suggested the SET reaction between Ru(III) and ferrate(VI), generating Ru(IV), Ru(V), and Fe(V) as reactive species for micropollutant abatement. Despite the slower oxidation rate constant (kinetically modeled), Ru(V) could contribute comparably as Fe(V) to oxidation due to its higher steady-state concentration. These reaction mechanisms are distinctly different from the previous studies and provide new mechanistic insights into Ru chemistry and Ru(III)-based AOPs.


Asunto(s)
Oxidación-Reducción , Rutenio , Rutenio/química , Transporte de Electrón , Catálisis , Hierro/química
3.
Environ Sci Technol ; 58(25): 11152-11161, 2024 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-38867504

RESUMEN

Research on the use of peracetic acid (PAA) activated by nonmetal solid catalysts for the removal of dissolved refractory organic compounds has gained attention recently due to its improved efficiency and suitability for advanced water treatment (AWT). Among these catalysts, nanocarbon (NC) stands out as an exceptional example. In the NC-based peroxide AWT studies, the focus on the mechanism involving multimedia coordination on the NC surface (reactive species (RS) path, electron reduction non-RS pathway, and singlet oxygen non-RS path) has been confined to the one-step electron reaction, leaving the mechanisms of multichannel or continuous electron transfer paths unexplored. Moreover, there are very few studies that have identified the nonfree radical pathway initiated by electron transfer within PAA AWT. In this study, the complete decomposition (kobs = 0.1995) and significant defluorination of perfluorooctanoic acid (PFOA, deF% = 72%) through PAA/NC has been confirmed. Through the use of multiple electrochemical monitors and the exploration of current diffusion effects, the process of electron reception and conduction stimulated by PAA activation was examined, leading to the discovery of the dynamic process from the PAA molecule → NC solid surface → target object. The vital role of prehydrated electrons (epre-) before the entry of resolvable electrons into the aqueous phase was also detailed. To the best of our knowledge, this is the first instance of identifying the nonradical mechanism of continuous electron transfer in PAA-based AWT, which deviates from the previously identified mechanisms of singlet oxygen, single-electron, or double-electron single-path transfer. The pathway, along with the strong reducibility of epre- initiated by this pathway, has been proven to be essential in reducing the need for catalysts and chemicals in AWT.


Asunto(s)
Diamante , Electrones , Ácido Peracético , Ácido Peracético/química , Diamante/química , Transporte de Electrón , Fluorocarburos/química , Caprilatos/química , Propiedades de Superficie , Purificación del Agua , Contaminantes Químicos del Agua/química
4.
Environ Sci Technol ; 57(47): 18898-18908, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37489812

RESUMEN

Peracetic acid (PAA) and performic acid (PFA) are two major peroxyacid (POA) oxidants of growing usage. This study reports the first systematic evaluation of PAA, PFA, and chlorine for their disinfection byproduct (DBP) formation potential in wastewater with or without high halide (i.e., bromide or iodide) concentrations. Compared with chlorine, DBP formation by PAA and PFA was minimal in regular wastewater. However, during 24 h disinfection of saline wastewater, PAA surprisingly produced more brominated and iodinated DBPs than chlorine, while PFA effectively kept all tested DBPs at bay. To understand these phenomena, a kinetic model was developed based on the literature and an additional kinetic investigation of POA decay and DBP (e.g., bromate, iodate, and iodophenol) generation in the POA/halide systems. The results show that PFA not only oxidizes halides 4-5 times faster than PAA to the corresponding HOBr or HOI but also efficiently oxidizes HOI/IO- to IO3-, thereby mitigating iodinated DBP formation. Additionally, PFA's rapid self-decay and slow release of H2O2 limit the HOBr level over the long-term oxidation in bromide-containing water. For saline water, this paper reveals the DBP formation potential of PAA and identifies PFA as an alternative to minimize DBPs. The new kinetic model is useful to optimize oxidant selection and elucidate involved DBP chemistry.


Asunto(s)
Desinfectantes , Contaminantes Químicos del Agua , Purificación del Agua , Ácido Peracético , Desinfección/métodos , Peróxido de Hidrógeno , Aguas Residuales , Cloro , Bromuros , Oxidantes , Cloruros , Halogenación , Purificación del Agua/métodos , Contaminantes Químicos del Agua/análisis
5.
Environ Sci Technol ; 57(47): 18929-18939, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37224105

RESUMEN

Metal-based advanced oxidation processes (AOPs) with peracetic acid (PAA) have been extensively studied to degrade micropollutants (MPs) in wastewater. Mn(II) is a commonly used homogeneous metal catalyst for oxidant activation, but it performs poorly with PAA. This study identifies that the biodegradable chelating ligand picolinic acid (PICA) can significantly mediate Mn(II) activation of PAA for accelerated MP degradation. Results show that, while Mn(II) alone has minimal reactivity toward PAA, the presence of PICA accelerates PAA loss by Mn(II). The PAA-Mn(II)-PICA system removes various MPs (methylene blue, bisphenol A, naproxen, sulfamethoxazole, carbamazepine, and trimethoprim) rapidly at neutral pH, achieving >60% removal within 10 min in clean and wastewater matrices. Coexistent H2O2 and acetic acid in PAA play a negligible role in rapid MP degradation. In-depth evaluation with scavengers and probe compounds (tert-butyl alcohol, methanol, methyl phenyl sulfoxide, and methyl phenyl sulfone) suggested that high-valent Mn species (Mn(V)) is a likely main reactive species leading to rapid MP degradation, whereas soluble Mn(III)-PICA and radicals (CH3C(O)O• and CH3C(O)OO•) are minor reactive species. This study broadens the mechanistic understanding of metal-based AOPs using PAA in combination with chelating agents and indicates the PAA-Mn(II)-PICA system as a novel AOP for wastewater treatment.


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Peróxido de Hidrógeno , Aguas Residuales , Oxidación-Reducción
6.
Environ Sci Technol ; 57(47): 19033-19042, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37384585

RESUMEN

The increasing presence of antibiotics in water sources threatens public health and ecosystems. Various treatments have been previously applied to degrade antibiotics, yet their efficiency is commonly hindered by the presence of natural organic matter (NOM) in water. On the contrary, we show here that nine types of NOM and NOM model compounds improved the removal of trimethoprim and sulfamethoxazole by ferrate(VI) (FeVIO42-, Fe(VI)) under mild alkaline conditions. This is probably associated with the presence of phenolic moieties in NOMs, as suggested by first-order kinetics using NOM, phenol, and hydroquinone. Electron paramagnetic resonance reveals that NOM radicals are generated within milliseconds in the Fe(VI)-NOM system via single-electron transfer from NOM to Fe(VI) with the formation of Fe(V). The dominance of the Fe(V) reaction with antibiotics resulted in their enhanced removal despite concurrent reactions between Fe(V) and NOM moieties, the radicals, and water. Kinetic modeling considering Fe(V) explains the enhanced kinetics of antibiotics abatement at low phenol concentrations. Experiments with humic and fulvic acids of lake and river waters show similar results, thus supporting the enhanced abatement of antibiotics in real water situations.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Antibacterianos , Ecosistema , Contaminantes Químicos del Agua/análisis , Oxidación-Reducción , Fenoles , Agua , Fenol , Purificación del Agua/métodos , Cinética
7.
Environ Sci Technol ; 57(47): 18940-18949, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-37207368

RESUMEN

Peracetic acid (PAA) is an emerging alternative disinfectant for saline waters; HOBr or HOCl is known as the sole species contributing to halogenation reactions during PAA oxidation and disinfection. However, new results herein strongly indicated that the brominating agents (e.g., BrCl, Br2, BrOCl, and Br2O) are generated at concentrations typically lower than HOCl and HOBr but played significant roles in micropollutants transformation. The presence of Cl- and Br- at environmentally relevant levels could greatly accelerate the micropollutants (e.g., 17α-ethinylestraiol (EE2)) transformation by PAA. The kinetic model and quantum chemical calculations collectively indicated that the reactivities of bromine species toward EE2 follow the order of BrCl > Br2 > BrOCl > Br2O > HOBr. In saline waters with elevated Cl- and Br- levels, these overlooked brominating agents influence bromination rates of more nucleophilic constituents of natural organic matter and increase the total organic bromine. Overall, this work refines our knowledge regarding the species-specific reactivity of brominating agents and highlights the critical roles of these agents in micropollutant abatement and disinfection byproduct formation during PAA oxidation and disinfection.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Bromo , Ácido Peracético , Aguas Residuales , Bromatos , Desinfección/métodos , Purificación del Agua/métodos
8.
Environ Sci Technol ; 57(47): 18710-18721, 2023 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-36995048

RESUMEN

Peroxyacids (POAs) are a promising alternative to chlorine for reducing the formation of disinfection byproducts. However, their capacity for microbial inactivation and mechanisms of action require further investigation. We evaluated the efficacy of three POAs (performic acid (PFA), peracetic acid (PAA), and perpropionic acid (PPA)) and chlor(am)ine for inactivation of four representative microorganisms (Escherichia coli (Gram-negative bacteria), Staphylococcus epidermidis (Gram-positive bacteria), MS2 bacteriophage (nonenveloped virus), and Φ6 (enveloped virus)) and for reaction rates with biomolecules (amino acids and nucleotides). Bacterial inactivation efficacy (in anaerobic membrane bioreactor (AnMBR) effluent) followed the order of PFA > chlorine > PAA ≈ PPA. Fluorescence microscopic analysis indicated that free chlorine induced surface damage and cell lysis rapidly, whereas POAs led to intracellular oxidative stress through penetrating the intact cell membrane. However, POAs (50 µM) were less effective than chlorine at inactivating viruses, achieving only ∼1-log PFU removal for MS2 and Φ6 after 30 min of reaction in phosphate buffer without genome damage. Results suggest that POAs' unique interaction with bacteria and ineffective viral inactivation could be attributed to their selectivity toward cysteine and methionine through oxygen-transfer reactions and limited reactivity for other biomolecules. These mechanistic insights could inform the application of POAs in water and wastewater treatment.


Asunto(s)
Desinfectantes , Purificación del Agua , Desinfectantes/farmacología , Inactivación de Virus , Cloro/farmacología , Ácido Peracético/farmacología , Desinfección/métodos , Bacterias
9.
Environ Sci Technol ; 57(18): 7150-7161, 2023 05 09.
Artículo en Inglés | MEDLINE | ID: mdl-37074125

RESUMEN

Chlorine-based disinfection for drinking water treatment (DWT) was one of the 20th century's great public health achievements, as it substantially reduced the risk of acute microbial waterborne disease. However, today's chlorinated drinking water is not unambiguously safe; trace levels of regulated and unregulated disinfection byproducts (DBPs), and other known, unknown, and emerging contaminants (KUECs), present chronic risks that make them essential removal targets. Because conventional chemical-based DWT processes do little to remove DBPs or KUECs, alternative approaches are needed to minimize risks by removing DBP precursors and KUECs that are ubiquitous in water supplies. We present the "Minus Approach" as a toolbox of practices and technologies to mitigate KUECs and DBPs without compromising microbiological safety. The Minus Approach reduces problem-causing chemical addition treatment (i.e., the conventional "Plus Approach") by producing biologically stable water containing pathogens at levels having negligible human health risk and substantially lower concentrations of KUECs and DBPs. Aside from ozonation, the Minus Approach avoids primary chemical-based coagulants, disinfectants, and advanced oxidation processes. The Minus Approach focuses on bank filtration, biofiltration, adsorption, and membranes to biologically and physically remove DBP precursors, KUECs, and pathogens; consequently, water purveyors can use ultraviolet light at key locations in conjunction with smaller dosages of secondary chemical disinfectants to minimize microbial regrowth in distribution systems. We describe how the Minus Approach contrasts with the conventional Plus Approach, integrates with artificial intelligence, and can ultimately improve the sustainability performance of water treatment. Finally, we consider barriers to adoption of the Minus Approach.


Asunto(s)
Desinfectantes , Agua Potable , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Inteligencia Artificial , Contaminantes Químicos del Agua/análisis , Desinfectantes/análisis , Desinfección , Halogenación
10.
J Phys Chem A ; 127(10): 2314-2321, 2023 Mar 16.
Artículo en Inglés | MEDLINE | ID: mdl-36862970

RESUMEN

The occurrence of micropollutants in water threatens public health and ecology. Removal of micropollutants such as pharmaceuticals by a green oxidant, ferrate(VI) (FeVIO42-, Fe(VI)) can be accomplished. However, electron-deficient pharmaceuticals, such as carbamazepine (CBZ) showed a low removal rate by Fe(VI). This work investigates the activation of Fe(VI) by adding nine amino acids (AA) of different functionalities to accelerate the removal of CBZ in water under mild alkaline conditions. Among the studied amino acids, proline, a cyclic AA, had the highest removal of CBZ. The accelerated effect of proline was ascribed by demonstrating the involvement of highly reactive intermediate Fe(V) species, generated by one-electron transfer by the reaction of Fe(VI) with proline (i.e., Fe(VI) + proline → Fe(V) + proline•). The degradation kinetics of CBZ by a Fe(VI)-proline system was interpreted by kinetic modeling of the reactions involved that estimated the rate of the reaction of Fe(V) with CBZ as (1.03 ± 0.21) × 106 M-1 s-1, which was several orders of magnitude greater than that of Fe(VI) of 2.25 M-1 s-1. Overall, natural compounds such as amino acids may be applied to increase the removal efficiency of recalcitrant micropollutants by Fe(VI).


Asunto(s)
Aminoácidos , Contaminantes Químicos del Agua , Prolina , Contaminantes Químicos del Agua/química , Oxidación-Reducción , Cinética , Preparaciones Farmacéuticas
11.
Environ Sci Technol ; 56(8): 5150-5160, 2022 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-35380811

RESUMEN

Rare-earth elements (REEs) are essential for modern technologies, and the United States currently lacks a secure domestic supply. Coal combustion residuals, specifically coal fly ash (CFA), can be a potential source. Our previous work demonstrated that REEs could be preferentially extracted from CFA using the ionic liquid (IL) betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]), and the process yielded a mildly acidic REE-rich solution with coextracted Fe and regenerated IL. In this study, we investigated three strategies to limit Fe coextraction: magnetic separation, complexing salts, and ascorbic acid (AA) reduction. Magnetic separation of CFA was ineffective in significantly lowering the Fe content in the IL phase. When NaCl was used instead of NaNO3 during extraction, chloride complexation lowered iron distribution to the IL phase over the aqueous phase (DFe) by five folds, from ∼75 to ∼14, while REE leaching (LREEs) and recovery (RREEs) both increased. Using AA for iron reduction lowered the overall amount of Fe extracted and further decreased DFe to ∼0.16, effectively shifting Fe preference from the IL phase to the aqueous phase. Combining the strategies of NaCl, AA, and supplemental betaine addition, leaching and extraction of REEs from CFA by [Hbet][Tf2N] were achieved in higher efficiency for REE recovery with minimized Fe concentration.


Asunto(s)
Líquidos Iónicos , Metales de Tierras Raras , Carbón Mineral , Ceniza del Carbón , Hierro , Cloruro de Sodio , Agua
12.
Environ Sci Technol ; 56(16): 11683-11693, 2022 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-35880779

RESUMEN

Ferrate(VI) and peracetic acid (PAA) are two oxidants of growing importance in water treatment. Recently, our group found that simultaneous application of ferrate(VI) and PAA led to much faster degradation of micropollutants compared to that by a single oxidant, and this paper systematically evaluated the underlying mechanisms. First, we used benzoic acid and methyl phenyl sulfoxide as probe compounds and concluded that Fe(IV)/Fe(V) was the main reactive species, while organic radicals [CH3C(O)O•/CH3C(O)OO•] had negligible contribution. Second, we removed the coexistent hydrogen peroxide (H2O2) in PAA stock solution with free chlorine and, to our surprise, found the second-order reaction rate constant between ferrate(VI) and PAA to be only about 1.44 ± 0.12 M-1s-1 while that of H2O2 was as high as (2.01 ± 0.12) × 101 M-1s-1 at pH 9.0. Finally, further experiments on ferrate(VI)-bisulfite and ferrate(VI)-2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)acid systems confirmed that PAA was not an activator for ferrate(VI). Rather, PAA could enhance the oxidation capacity of Fe(IV)/Fe(V), making their oxidation outcompete self-decay. This study, for the first time, reveals the ability of PAA to promote electron transfer efficiency between high-valent metals and organic contaminants and confirms the benefits of co-application of ferrate(VI) and PAA for alkaline wastewater treatment.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Electrones , Peróxido de Hidrógeno , Hierro , Oxidantes/química , Oxidación-Reducción , Ácido Peracético , Contaminantes Químicos del Agua/química
13.
Environ Sci Technol ; 56(7): 4437-4446, 2022 04 05.
Artículo en Inglés | MEDLINE | ID: mdl-35319885

RESUMEN

Activation of peracetic acid (PAA) with iron species is an emerging advanced oxidation process (AOP). This study investigates the use of the chelating agent picolinic acid (PICA) to extend the pH range and enhance the performance of the PAA-Fe(III) AOP. Compared to the PAA-Fe(III) system, the PAA-Fe(III)-PICA system degrades various micropollutants (MPs: methylene blue, naproxen, sulfamethoxazole, carbamazepine, trimethoprim, diclofenac, and bisphenol-A) much more rapidly at higher pH, achieving almost complete removal of parent compounds within 10 min. PAA significantly outperforms the coexistent H2O2 and is the key oxidant for rapid compound degradation. Other chelating agents, EDTA, NTA, citric acid, proline, and nicotinic acid, could not enhance MP degradation in the PAA-Fe(III) system, while 2,6-pyridinedicarboxylic acid with a structure similar to PICA moderately enhanced MP degradation. Experiments with scavengers (tert-butyl alcohol and methyl phenyl sulfoxide) and a probe compound (benzoic acid) confirmed that high-valent iron species [Fe(IV) and/or Fe(V)], rather than radicals, are the major reactive species contributing to MP degradation. The oxidation products of methylene blue, naproxen, and sulfamethoxazole by PAA-Fe(III)-PICA were characterized and supported the proposed mechanism. This work demonstrates that PICA is an effective complexing ligand to assist the Fenton reaction of PAA by extending the applicable pH range and accelerating the catalytic ability of Fe(III).


Asunto(s)
Ácido Peracético , Contaminantes Químicos del Agua , Compuestos Férricos , Peróxido de Hidrógeno , Oxidación-Reducción , Ácidos Picolínicos
14.
Environ Sci Technol ; 56(9): 5849-5859, 2022 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-35420788

RESUMEN

Efficient separation of harmful contaminants (e.g., per- and polyfluoroalkyl substances, PFASs) from valuable components (water and nutrients) is essential to the resource recovery from domestic wastewater for agricultural purposes. Such selective recovery requires precise separation at the angstrom scale. Although nanofiltration (NF) has the potential to achieve solute-solute separation, the state-of-the-art polyamide (PA) membranes are typically constrained by limited precision of solute-solute selectivity and their well-documented permeability-selectivity trade-off. Herein, we present a novel capillary-assisted interfacial polymerization (CAIP) approach to generate metal-organic framework (MOF)-PA nanocomposite membranes with reduced surface charges and more uniform pore sizes that favor solute selectivity by enhanced size exclusion. By uniquely regulating the PA-MOF interactions using the capillary force, CAIP results in effective exposure of MOF nanochannels on the membrane surface and a PA matrix with a high cross-linking gradient in the vertical direction, both of which contribute to an exceptional water permeance of ∼18.7 LMH/bar and an unprecedentedly high selectivity between nutrient ions and PFASs. Our CAIP approach breaks new ground for utilizing nanoparticles with nanochannels in fabricating the next-generation, fit-for-purpose NF membranes for improved solute-solute separations.


Asunto(s)
Fluorocarburos , Nanocompuestos , Membranas Artificiales , Nylons , Aguas Residuales , Agua
15.
Environ Sci Technol ; 56(4): 2626-2636, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-35119268

RESUMEN

Activation of peroxydisulfate (PDS, S2O82-) via various catalysts to degrade pollutants in water has been extensively investigated. However, catalyst-free activation of PDS by visible light has been largely ignored. This paper reports effective visible light activation of PDS without any additional catalyst, leading to the degradation of a wide range of organic compounds of high environmental and human health concerns. Importantly, the formation of reactive species is distinctively different in the PDS visible light system with and without pollutants [e.g., atrazine (ATZ)]. In addition to SO4•- generated via S2O82- dissociation under visible light irradiation, O2•- and 1O2 are also produced in both systems. However, in the absence of ATZ, H2O2 and O2•- are key intermediates and precursors for 1O2, whereas in the presence of ATZ, a different pathway was followed to produce O2•- and 1O2. Both radical and nonradical processes contribute to the degradation of ATZ in the PDS visible light system. The active role of 1O2 in the degradation of ATZ besides SO4•- is manifested by the enhanced degradation of contaminants and electron paramagnetic resonance spectroscopy measurements in D2O.


Asunto(s)
Atrazina , Contaminantes Ambientales , Contaminantes Químicos del Agua , Catálisis , Humanos , Peróxido de Hidrógeno , Luz , Oxidación-Reducción , Contaminantes Químicos del Agua/química
16.
Environ Sci Technol ; 56(2): 1300-1309, 2022 01 18.
Artículo en Inglés | MEDLINE | ID: mdl-34965096

RESUMEN

Peracetic acid (PAA) is an emerging oxidant and disinfectant for wastewater (WW) treatment due to limited harmful disinfection byproduct (DBP) formation. Nitrite (NO2-) is a ubiquitous anion in water, but the impact of NO2- on PAA oxidation and disinfection has been largely overlooked. This work found for the first time that NO2- could significantly promote the oxidation of sulfonamide antibiotics (SAs) by PAA. Unexpectedly, the reactive nitrogen species (RNS), for example, peroxynitrite (ONOO-), rather than conventional organic radicals (R-O•) or reactive oxygen species (ROS), played major roles in SAs degradation. A kinetic model based on first-principles was developed to elucidate the reaction mechanism and simulate reaction kinetics of the PAA/NO2- process. Structural activity assessment and quantum chemical calculations showed that RNS tended to react with an aromatic amine group, resulting in more conversion of NO2--N to organic-N. The formation of nitrated and nitrosated byproducts and the enhancement of trichloronitromethane formation potential might be a prevalent problem in the PAA/NO2- process. This study provides new insights into the reaction of PAA with NO2- and sheds light on the potential risks of PAA in WW treatment in the presence of NO2-.


Asunto(s)
Ácido Peracético , Purificación del Agua , Antibacterianos , Desinfección , Nitritos , Especies de Nitrógeno Reactivo , Sulfonamidas , Purificación del Agua/métodos
17.
Environ Sci Technol ; 56(1): 30-47, 2022 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-34918915

RESUMEN

Efforts are being made to tune the reactivity of the tetraoxy anion of iron in the +6 oxidation state (FeVIO42-), commonly called ferrate, to further enhance its applications in various environmental fields. This review critically examines the strategies to generate highly reactive high-valent iron intermediates, FeVO43- (FeV) and FeIVO44- or FeIVO32- (FeIV) species, from FeVIO42-, for the treatment of polluted water with greater efficiency. Approaches to produce FeV and FeIV species from FeVIO42- include additions of acid (e.g., HCl), metal ions (e.g., Fe(III)), and reductants (R). Details on applying various inorganic reductants (R) to generate FeV and FeIV from FeVIO42- via initial single electron-transfer (SET) and oxygen-atom transfer (OAT) to oxidize recalcitrant pollutants are presented. The common constituents of urine (e.g., carbonate, ammonia, and creatinine) and different solids (e.g., silica and hydrochar) were found to accelerate the oxidation of pharmaceuticals by FeVIO42-, with potential mechanisms provided. The challenges of providing direct evidence of the formation of FeV/FeIV species are discussed. Kinetic modeling and density functional theory (DFT) calculations provide opportunities to distinguish between the two intermediates (i.e., FeIV and FeV) in order to enhance oxidation reactions utilizing FeVIO42-. Further mechanistic elucidation of activated ferrate systems is vital to achieve high efficiency in oxidizing emerging pollutants in various aqueous streams.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Férricos , Hierro , Oxidación-Reducción , Agua , Contaminantes Químicos del Agua/análisis
18.
Environ Sci Technol ; 55(13): 9209-9220, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34159779

RESUMEN

Recent global geopolitical tensions have exacerbated the scarcity of rare-earth elements (REEs), which are critical across many industries. REE-rich coal fly ash (CFA), a coal combustion residual, has been proposed as a potential source. Conventional REE-CFA recovery methods are energy- and material-intensive and leach elements indiscriminately. This study has developed a new valorization process based on the ionic liquid (IL) betainium bis(trifluoromethylsulfonyl)imide ([Hbet][Tf2N]) for preferential extraction of REEs from different CFAs. Efficient extraction relies on [Hbet][Tf2N]'s thermomorphic behavior with water: upon heating, water and the IL form a single liquid phase, and REEs are leached from CFA via a proton-exchange mechanism. Upon cooling, the water and IL separate, and leached elements partition between the two phases. REEs were preferentially extracted over bulk elements from CFAs into the IL phase and then recovered in a subsequent mild-acid stripping step, regenerating the IL. Alkaline pretreatment significantly improved REE leaching efficiency from recalcitrant Class-F CFAs, and additional betaine improved REE and bulk element separation. Weathered CFA showed slightly higher REE leaching efficiency than unweathered CFA, and Class-C CFA demonstrated higher leaching efficiency but less selective partitioning than Class-F CFAs. Significantly, this method consistently exhibits a particularly high extraction efficiency for scandium across different CFAs.


Asunto(s)
Líquidos Iónicos , Metales de Tierras Raras , Carbón Mineral , Ceniza del Carbón/análisis , Agua
19.
Environ Sci Technol ; 55(6): 3976-3987, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33635630

RESUMEN

To quantitatively probe iron intermediate species [Fe(V)/Fe(IV)] in Fe(VI) oxidation, this study systematically investigated the reaction kinetics of Fe(VI) oxidation of 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic)acid (ABTS) at different ratios of [ABTS]0/[Fe(VI)]0 (i.e., >1.0, =1.0, and <1.0) in pH 7.0 phosphate (10 mM)-buffered solution. Compared to the literature, a more comprehensive and robust kinetic model for the Fe(VI)-ABTS system including interactions between high-valent iron species [Fe(VI), Fe(V), and Fe(IV)], ABTS, and the ABTS•+ radical was proposed and validated. The oxidation of ABTS by Fe(VI) (k = (5.96 ± 0.9%) × 105 M-1 s-1), Fe(V) (k = (2.04 ± 0.0%) × 105 M-1 s-1), or Fe(IV) (k = (4.64 ± 13.0%) × 105 M-1 s-1) proceeds via one-electron transfer to generate ABTS•+, which is subsequently oxidized by Fe(VI) (k = (8.5 ± 0.0%) × 102 M-1 s-1), Fe(V) (k = (1.0 ± 40.0%) × 105 M-1 s-1), or Fe(IV) (k = (1.9 ± 17.0%) × 103 M-1 s-1), respectively, via two-electron (oxygen atom) transfer to generate colorless ABTSox. At [ABTS]0/[Fe(VI)]0 > 1.0, experimental data and model simulation both indicated that the reaction stoichiometric ratio of Fe(VI)/ABTS•+ increased from 1.0:1.0 to 1.0:1.2 as [ABTS]0 was increased. Furthermore, the Fe(VI)-ABTS-substrate model was developed to successfully determine reactivity of Fe(V) to different substrates (k = (0.7-1.42) × 106 M-1 s-1). Overall, the improved Fe(VI)-ABTS kinetic model provides a useful tool to quantitatively probe Fe(V)/Fe(IV) behaviors in Fe(VI) oxidation and gains new fundamental insights.


Asunto(s)
Benzotiazoles , Ácidos Sulfónicos , Cinética , Oxidación-Reducción
20.
Environ Sci Technol ; 55(1): 623-633, 2021 01 05.
Artículo en Inglés | MEDLINE | ID: mdl-33326216

RESUMEN

This paper investigated the oxidation of recalcitrant micropollutants [i.e., atenolol (ATL), flumequine, aspartame, and diatrizoic acid] by combining ferrate(VI) (FeVIO42-, FeVI) with a series of metal ions [i.e., Fe(III), Ca(II), Al(III), Sc(III), Co(II), and Ni(II)]. An addition of Fe(III) to FeVI enhanced the oxidation of micropollutants compared solely to FeVI. The enhanced oxidation of studied micropollutants increased with increasing [Fe(III)]/[FeVI] to 2.0. The complete conversion of phenyl methyl sulfoxide (PMSO), as a probe agent, to phenyl methyl sulfone (PMSO2) by the FeVI-Fe(III) system suggested that the highly reactive intermediate FeIV/FeV species causes the increased oxidation of all four micropollutants. A kinetic modeling of the oxidation of ATL demonstrated that the major species causing the increase in ATL removal was FeIV, which had an estimated rate constant as (6.3 ± 0.2) × 104 M-1 s-1, much higher than that of FeVI [(5.0 ± 0.4) × 10-1 M-1 s-1]. Mechanisms of the formed oxidation products of ATL by FeIV, which included aromatic and/or benzylic oxidation, are delineated. The presence of natural organic matter significantly inhibited the removal of four pollutants by the FeVI-Fe(III) system. The enhanced effect of the FeVI-Fe(III) system was also seen in the oxidation of the micropollutants in river water and lake water.


Asunto(s)
Contaminantes Químicos del Agua , Purificación del Agua , Compuestos Férricos , Iones , Hierro , Cinética , Oxidación-Reducción
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA