Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 179
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Small ; : e2311862, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38501876

RESUMEN

In recent years, the research of FeSe2 and its composites in environmental remediation has been gradually carried out. And the FeSe2 materials show great catalytic performance in photocatalysis, electrocatalysis, and Fenton-like reactions for pollutants removal. Therefore, the studies and applications of FeSe2 materials are reviewed in this work, including the common synthesis methods, the role of Fe and Se species as well as the catalyst structure, and the potential for practical environmental applications. Hereinto, it is worth noting in particular that the lower-valent Se (Se2- ), unsaturated Se (Se- ), and Se vacancies (VSe ) can play different roles in promoting pollutants removal. In addition, the FeSe2 material also demonstrates high stability, reusability, and adaptability over a wider pH range as well as universality to different pollutants. In view of the overall great properties and performance of FeSe2 materials compared with other typical Fe-based materials, it deserves and needs further research. And finally, this paper presents some challenges and perspectives in future development, looking forward to providing helpful guidance for the subsequent research of FeSe2 and its composites for environmental application.

2.
Small ; : e2401970, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38770987

RESUMEN

Transition metal compounds (TMCs) have long been potential candidate catalysts in persulfate-based advanced oxidation process (PS-AOPs) due to their Fenton-like catalyze ability for radical generation. However, the mechanism involved in TMCs-catalyzed nonradical PS-AOPs remains obscure. Herein, the growth of FeO on the Fe3O4/carbon precursor is regulated by restricted pyrolysis of MIL-88A template to activate peroxymonosulfate (PMS) for tetracycline (TC) removal. The higher FeO incorporation conferred a 2.6 times higher degradation performance than that catalyzed by Fe3O4 and also a higher interference resistance to anions or natural organic matter. Unexpectedly, the quenching experiment, probe method, and electron paramagnetic resonance quantitatively revealed that the FeO reassigned high nonradical species (1O2 and FeIV═O) generation to replace original radical system created by Fe3O4. Density functional theory calculation interpreted that PMS molecular on strongly-adsorbed (200) and (220) facets of FeO enjoyed unique polarized electronic reception for surface confinement effect, thus the retained peroxide bond energetically supported the production of 1O2 and FeIV═O. This work promotes the mechanism understanding of TMCs-induced surface-catalyzed persulfate activation and enables them better perform catalytic properties in wastewater treatment.

3.
Environ Geochem Health ; 46(5): 153, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38587707

RESUMEN

The environmental fate and risks of ciprofloxacin (CIP) in the subsurface have raised intensive concerns. Herein, the transport behaviors of CIP in both saturated quartz sand and sand/multi-walled carbon nanotubes (MWCNTs) mixtures under different solution ionic strength of the solution and coexisting cation types were investigated. Batch adsorption experiments highlighted growing adsorptive capacity for CIP with the increasing content of MWCNTs in the MWCNTs-quartz sand mixtures (from 0.5% to 1.5%, w/w). Breakthrough curves (BTCs) of CIP in the MWCNTs-quartz sand mixtures were well fitted by the two-site chemical nonequilibrium model (R2 > 0.833). The estimated retardation factors for CIP increased from 9.68 to 282 with growing content of MWCNTs in the sand column, suggesting the presence of MWCNTs significantly inhibited the transport of CIP in saturated porous media. Moreover, the values of retardation factors are negatively correlated with the ionic strength and higher ionic strength could facilitate the transport of CIP in the saturated porous media. Compared with monovalent cations (Na+), the presence of divalent cations (Ca2+) significantly facilitated the transport of CIP in the columns due to the complexation between CIP and Ca2+ as well as deposition of MWCNTs aggregates on the sand surface. Results regarding CIP retention in columns indicated that MWCNTs could enhance the accumulation of CIP in the layers close to the influent of sand columns, while they could hinder upward transport of CIP to the effluent. This study improves our understanding for transport behaviors and environmental risk assessments of CIP in the saturated porous media with MWCNTs.


Asunto(s)
Nanotubos de Carbono , Porosidad , Cuarzo , Arena , Cationes , Ciprofloxacina , Concentración Osmolar
4.
Small ; 19(34): e2301817, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37093465

RESUMEN

Single-atom catalysts (SACs) for photocatalytic hydrogen peroxide (H2 O2 ) generation are researched but it is still challenging to obtain high H2 O2 yields. Herein, graphite carbon nitride (FeSA /CN) confined single Fe atoms with N/O coordination is prepared, and FeSA /CN shows high H2 O2 production via oxalic acid and O2 activation. Under visible light illumination, the concentration of H2 O2 generated by FeSA /CN can achieve 40.19 mM g-1 h-1 , which is 10.44 times higher than that of g-C3 N4 . The enhanced H2 O2 generation can be attributed to the formation of metal-organic complexes and rapid electron transfer. Moreover, the O2 activation of photocatalysts is revealed by 3,3',5,5'-tetramethylbenzidine oxidation. The results display that the O2 activation capacity of FeSA /CN is higher than that of g-C3 N4 , which facilitates the formation of H2 O2 . Finally, density functional theory calculation demonstrates that O2 is chemically adsorbed on Fe atomic sites. The adsorption energy of O2 is enhanced from -0.555 to -1.497 eV, and the bond length of OO is extended from 1.235 to 1.292 Å. These results exhibit that the confinement of single Fe atoms can promote O2 adsorption and activation. Finally, the photocatalytic mechanism is elaborated, which provides a deep understanding for SACs-catalyzed H2 O2 generation.

5.
Angew Chem Int Ed Engl ; 62(20): e202300256, 2023 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-36880746

RESUMEN

Catalyst-free visible light assisted Fenton-like catalysis offers opportunities to achieve the sustainable water decontamination, but the synergistic decontamination mechanisms are still unclear, especially the effect of proton transfer process (PTP). The conversion of peroxymonosulfate (PMS) in photosensitive dye-enriched system was detailed. The photo-electron transfer between excited dye and PMS triggered the efficient activation of PMS and enhanced the production of reactive species. Photochemistry behavior analysis and DFT calculations revealed that PTP was the crucial factor to determine the decontamination performance, leading to the transformation of dye molecules. The excitation process inducing activation of whole system was composed of low energy excitations, and the electrons and holes were almost contributed by LUMO and HOMO. This work provided new ideas for the design of catalyst-free sustainable system for efficient decontamination.

6.
J Environ Sci (China) ; 112: 376-387, 2022 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-34955220

RESUMEN

Nanoparticles (NPs) are widely used for their special physical properties and released into the natural environment. When two types of NPs exist in the same environment, the presence of one type of NP may affect the properties of the other type of NP. This study investigated the toxic effects of multi-walled carbon nanotubes (MWCNTs) and copper oxide nanoparticles (CuO NPs) on Tetradesmus obliquus. Both NPs had toxic effects on algae, and the toxic effects of MWCNTs were significantly stronger than CuO NPs which the 96-hr median effective concentration to algae were 33.8 and 169.2 mg/L, respectively. Oxidative stress and cell membrane damage were the main reasons for the toxicity of NPs to algae, and they were concentration-dependent, and the existence of CuO NPs in some groups reduced cell membrane damage caused by MWCNTs which may because that CuO NPs formed heteroaggregation with MWCNTs, reducing the contact of nanoparticles with cell membranes, then reducing physical damage. Scanning electron microscopy (SEM) and transmission electron microscope (TEM) results indicated cell damage, the heteroaggregation of MWCNTs-CuO NPs and obvious nanoparticles internalization. In some groups, the presence of CuO NPs significantly reduced reactive oxygen species (ROS) level induced by MWCNTs. However, for the highest concentration group, the ROS level was much higher than that of the two NPs alone treatment groups, which might be related to the high concentration of MWCNTs promoting the internalization of CuO NPs. MWCNTs and CuO NPs affected and interacted with each other, causing more complex toxic effects on aquatic organisms.


Asunto(s)
Chlorophyta/efectos de los fármacos , Cobre , Nanopartículas del Metal , Nanotubos de Carbono , Cobre/toxicidad , Agua Dulce , Nanopartículas del Metal/toxicidad , Nanotubos de Carbono/toxicidad , Óxidos , Especies Reactivas de Oxígeno , Contaminantes Químicos del Agua/toxicidad
7.
Small ; 17(4): e2002998, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33354855

RESUMEN

In the past ten years, carbon dots-decorated, carbon-based, metal-free catalysts (CDs-C-MFCs) have become the fastest-growing branch in the metal-free materials for energy storage field. However, the further development of CDs-C-MFCs needs to clear up the electronic transmission mechanism rather than primarily relying on trial-and-error approaches. This review presents systematically and comprehensively for the first time the latest advances of CDs-C-MFCs in supercapacitors and metal-air batteries. The structure-performance relationship of these materials is carefully discussed. It is indicated that carbon dots (CDs) can act as the electron-rich regions in CDs-C-MFCs owing to their unique properties, such as quantum confinement effects, abundant defects, countless functional groups, etc. More importantly, specific doping can effectively modify the charge/spin distribution and then facilitate electron transfer. In addition, present challenges and future prospects of the CDs-C-MFCs are also given.

8.
Small ; 17(29): e2007113, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34047018

RESUMEN

Single atom catalysts (SACs) have shown their noticeable potential and gradually become a new favorite in catalytic field due to the particular selectivity, high catalytic performance, and strong durability. The most important factor in the synthesis of SACs is the selection of appropriate support and formation of metal-support interaction. Among a large number of nanomaterials, MXenes can be utilized as benign supports for fixing SACs because of their expansive specific surface area, regulable bandgap, superior electronic conductivity, and strong mechanical stability. The structure and property of MXenes can be manipulated by changing transition metal elements and surface termination. Here, the uniqueness and superiority of MXenes as superexcellent supports for confining SACs are analyzed from structure and property. The synthetic strategy of MXene-supported SACs is also summarized, especially emphasizing the immobilization of isolated atom against aggregation by utilizing the formidable metal-support covalent coordination interaction. In addition, the applications of MXene-supported SACs in electrocatalytic field are highlighted, including hydrogen evolution reaction, oxygen evolution reaction, overall water splitting, oxygen reduction reaction, and nitrogen reduction reaction. Finally, the challenges and prospects are pointed out for the further understanding and practical application of MXene-supported SACs in electrocatalysis.


Asunto(s)
Nanoestructuras , Elementos de Transición , Catálisis , Hidrógeno , Metales
9.
Environ Res ; 202: 111661, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34331924

RESUMEN

Metal organic frameworks (MOFs) have great potential for photocatalysis, but only possess moderate activity due to their slow charge transfer and low solar energy conversion. Herein, heterostructures photocatalysts constructed by boron nitride quantum dots (BNQDs) and MIL-100(Fe) (MNB) were successfully fabricated for overcoming these shortcomings. It was indicated that the composites possessed large surface area, mesoporous structure, and enhanced visible light absorption. The MNB photocatalysts exhibited excellent photocatalytic activity for tetracycline hydrochloride (TC-HCl) degradation under visible light irradiation. Compared with MIL-100(Fe), the photodegradation rate of TC-HCl by MNB-1 was 0.02383 min-1, which was 5.3 times higher than that of pure MIL-100(Fe). The close contact of MIL-100(Fe) with BNQDs and the synergistic effect between them were the main reasons for the improved photodegradation performance. This study reveals that a rational combination of MIL-100(Fe) and BNQDs can improve photocatalytic activity to enhance molecular oxygen activation. Therefore, it is reasonable to believe that quantum dots/MOFs photocatalysts have great potential in environmental remediation.


Asunto(s)
Antibacterianos , Puntos Cuánticos , Compuestos de Boro , Catálisis
10.
Ecotoxicol Environ Saf ; 208: 111510, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-33120259

RESUMEN

Environment functional materials have been widely used, but whether their effects on the contaminated environment could facilitate phytoremediation is not yet well understood. In this study, starch stabilized nanoscale zerovalent iron (SN), multiwall carbon nanotubes (MW) and tea waste derived biochar (TB) were used to facilitate the phytoremediation of cadmium (Cd) contaminated sediments by Boehmeria nivea (L.) Gaudich. Results showed that 100 mg/kg SN, 500 mg/kg MW and 500 mg/kg TB facilitated phytoremediation, as evidenced by increasing Cd accumulation and/or promoting plant growth. These concentrations of materials increased the reducible fraction of Cd by 9-10% and decreased the oxidizable proportion of Cd by 48-52%, indicating the improvement of Cd bioavailability through converting the oxidizable Cd into reducible form. The activities of urease, phosphatase and catalase, which related to nutrient utilization and oxidative stress alleviation, increased by 20-24%, 25-26%, and 8-9% in the sediments treated with 500 mg/kg MW and 500 mg/kg TB, respectively. In addition, the 16S rRNA gene sequence results showed that these concentrations of materials changed the bacterial diversity. The abundance of Acidobacteria, Actinobacteria, Nitrospirae and Firmicutes were increased by some of the applied materials, which could promote plant growth, change Cd bioavailability and reduce Cd toxicity. These findings indicated that the applied environment functional materials could facilitate the phytoremediation of Cd contaminated environment by changing Cd fractions, sediments properties and bacterial community structure.


Asunto(s)
Biodegradación Ambiental , Cadmio/química , Microbiota , Contaminantes del Suelo/química , Bacterias , Disponibilidad Biológica , Cadmio/análisis , Carbón Orgánico , Hierro/química , Nanotubos de Carbono , ARN Ribosómico 16S , Suelo/química , Contaminantes del Suelo/análisis
11.
Chem Soc Rev ; 49(12): 4135-4165, 2020 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-32421139

RESUMEN

In the light of increasing energy demand and environmental pollution, it is urgently required to find a clean and renewable energy source. In these years, photocatalysis that uses solar energy for either fuel production, such as hydrogen evolution and hydrocarbon production, or environmental pollutant degradation, has shown great potential to achieve this goal. Among the various photocatalysts, covalent organic frameworks (COFs) are very attractive due to their excellent structural regularity, robust framework, inherent porosity and good activity. Thus, many studies have been carried out to investigate the photocatalytic performance of COFs and COF-based photocatalysts. In this critical review, the recent progress and advances of COF photocatalysts are thoroughly presented. Furthermore, diverse linkers between COF building blocks such as boron-containing connections and nitrogen-containing connections are summarised and compared. The morphologies of COFs and several commonly used strategies pertaining to photocatalytic activity are also discussed. Following this, the applications of COF-based photocatalysts are detailed including photocatalytic hydrogen evolution, CO2 conversion and degradation of environmental contaminants. Finally, a summary and perspective on the opportunities and challenges for the future development of COF and COF-based photocatalysts are given.

12.
Small ; 16(29): e2001634, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32567191

RESUMEN

Semiconductor photocatalysis is a promising technology to tackle refractory antibiotics contamination in water. Herein, a facile in situ growth strategy is developed to implant single-atom cobalt in polymeric carbon nitride (pCN) via the bidentate ligand for efficient photocatalytic degradation of oxytetracycline (OTC). The atomic characterizations indicate that single-atom cobalt is successfully anchored on pCN by covalently forming the CoO bond and CoN bond, which will strengthen the interaction between single-atom cobalt and pCN. This single-atom cobalt can efficiently expand optical absorption, increase electron density, facilitate charge separation and transfer, and promote OTC degradation. As the optimal sample, Co(1.28%)pCN presents an outstanding apparent rate constant for OTC degradation (0.038 min-1 ) under visible light irradiation, which is about 3.7 times than that of the pristine pCN. The electron spin resonance (ESR) tests and reactive species trapping experiments demonstrate that the 1 O2 , h+ , •O2- , and •OH are responsible for OTC degradation. This work develops a new way to construct single-atom-modified pCN and provides a green and highly efficient strategy for refractory antibiotics removal.


Asunto(s)
Antibacterianos , Cobalto , Catálisis , Ligandos , Nitrilos
13.
Crit Rev Biotechnol ; 40(1): 99-118, 2020 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-31690134

RESUMEN

The importance of highly efficient wastewater treatment is evident from aggravated water crises. With the development of green technology, wastewater treatment is required in an eco-friendly manner. Biotechnology is a promising solution to address this problem, including treatment and monitoring processes. The main directions and differences in biotreatment process are related to the surrounding environmental conditions, biological processes, and the type of microorganisms. It is significant to find suitable biotreatment methods to meet the specific requirements for practical situations. In this review, we first provide a comprehensive overview of optimized biotreatment processes for treating wastewater during different conditions. Both the advantages and disadvantages of these biotechnologies are discussed at length, along with their application scope. Then, we elaborated on recent developments of advanced biosensors (i.e. optical, electrochemical, and other biosensors) for monitoring processes. Finally, we discuss the limitations and perspectives of biological methods and biosensors applied in wastewater treatment. Overall, this review aims to project a rapid developmental path showing a broad vision of recent biotechnologies, applications, challenges, and opportunities for scholars in biotechnological fields for "green" wastewater treatment.


Asunto(s)
Biotecnología , Eliminación de Residuos Líquidos/métodos , Técnicas Biosensibles , Monitoreo del Ambiente
14.
Chem Soc Rev ; 48(20): 5266-5302, 2019 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-31468053

RESUMEN

As a newly emerging kind of porous material, covalent organic frameworks (COFs) have drawn much attention because of their fascinating structural features (e.g., divinable structure, adjustable porosity and total organic backbone). Since the seminal work of Yaghi and co-workers reported in 2005, the COF materials have shown superior potential in diverse applications, such as gas storage, adsorption, optoelectronics, catalysis, etc. Recently, COF materials have shown a new trend in sensing fields. This critical review briefly describes the synthesis routes for COF powders and thin films. What's more, the most fascinating and significant applications of COFs in sensing fields including explosive sensing, humidity sensing, pH detection, biosensing, gas sensing, metal ion sensing, and other substance sensing are summarized and highlighted. Finally, the major challenges and future trends of COFs with respect to their preparation and sensing applications are discussed.

15.
Chem Soc Rev ; 48(2): 488-516, 2019 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-30565610

RESUMEN

As a newly emerging class of porous materials, covalent organic frameworks (COFs) have attracted much attention due to their intriguing structural merits (e.g., total organic backbone, tunable porosity and predictable structure). However, the insoluble and unprocessable features of bulk COF powder limit their applications. To overcome these limitations, considerable efforts have been devoted to exploring the fabrication of COF thin films with controllable architectures, which open the door for their novel applications. In this critical review, we aim to provide the recent advances in the fabrication of COF thin films not only supported on substrates but also as free-standing nanosheets via both bottom-up and top-down strategies. The bottom-up strategy involves solvothermal synthesis, interfacial polymerization, room temperature vapor-assisted conversion, and synthesis under continuous flow conditions; whereas, the top-down strategy involves solvent-assisted exfoliation, self-exfoliation, mechanical delamination, and chemical exfoliation. In addition, the applications of COF thin films including energy storage, semiconductor devices, membrane-separation, sensors, and drug delivery are summarized. Finally, to accelerate further research, a personal perspective covering their synthetic strategies, mechanisms and applications is presented.

16.
J Environ Manage ; 261: 109879, 2020 May 01.
Artículo en Inglés | MEDLINE | ID: mdl-32148248

RESUMEN

Heavy metal pollution, because of its high toxicity, non-biodegradability and biological enrichment, has been identified as a global aquatic ecosystems threat in recent decades. Due to the high efficiency, low cost, satisfactory recyclability, easy storage and separation, biosorbents have exhibited a promising prospect for heavy metals treatment in aqueous phase. This article comprehensively summarized different types of biosorbents derived from available low-cost raw materials such as agricultural and forestry wastes. The raw materials obtained are treated with conventional pretreatment or novel methods, which can greatly enhance the adsorption performance of the biosorbents. The suitable immobilization methods can not only further enhance the adsorption performance of the biosorbents, but also facilitate the process of separating the biosorbents from the wastewater. In addition, once biosorbents are put into large-scale use, the final disposal problems cannot be avoided. Therefore, it is necessary to review the currently accepted final disposal methods of biosorbents. Moreover, through the analysis of the adsorption and desorption mechanisms of biosorbents, it is not only beneficial to find the better methods to improve the adsorption performance of the biosorbents, but also better to explain the influencing factors of adsorption effect for biosorbents. Especially, different from many researches focused on biosorbents, this work highlighted the combination of biosorbents with catalytic technologies, which provided new ideas for the follow-up research direction of biosorbents. Finally, the purpose of this paper is to inject new impetus into the future development of biosorbents.


Asunto(s)
Metales Pesados , Contaminantes Químicos del Agua , Purificación del Agua , Adsorción , Ecosistema , Aguas Residuales
17.
Small ; 15(17): e1900133, 2019 04.
Artículo en Inglés | MEDLINE | ID: mdl-30908899

RESUMEN

Diabetes is a dominating health issue with 425 million people suffering from the disease worldwide and 4 million deaths each year. To avoid further complications, the diabetic patient blood glucose level should be strictly monitored despite there being no cure for diabetes. Colorimetric biosensing has attracted significant attention because of its low cost, simplicity, and practicality. Recently, some nanomaterials have been found that possess unexpected peroxidase-like activity, and great advances have been made in fabricating colorimetric glucose biosensors based on the peroxidase-like activity of these nanomaterials using glucose oxidase. Compared with natural horseradish peroxidase, the nanomaterials exhibit flexibility in structure design and composition, and have easy separation and storage, high stability, simple preparation, and tunable catalytic activity. To highlight the significant progress in the field of nanomaterial-based peroxidase-like activity, this work discusses the various smart nanomaterials that mimic horseradish peroxidase and its mechanism and development history, and the applications in colorimetric glucose biosensors. Different approaches for tunable peroxidase-like activity of nanomaterials are summarized, such as size, morphology, and shape; surface modification and coating; and metal doping and alloy. Finally, the conclusion and challenges facing peroxidase-like activity of nanomaterials and future directions are discussed.


Asunto(s)
Técnicas Biosensibles/métodos , Colorimetría/métodos , Diabetes Mellitus/sangre , Glucosa/análisis , Nanoestructuras/química , Peroxidasas/química , Animales , Catálisis , Glucosa Oxidasa/química , Peroxidasa de Rábano Silvestre/análisis , Humanos , Límite de Detección , Magnetismo , Nanopartículas del Metal/química , Metales/química , Nanotubos de Carbono/química , Oxidación-Reducción , Óxidos/química , Propiedades de Superficie
18.
Small ; 15(8): e1804565, 2019 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-30680952

RESUMEN

Semiconductor photocatalysis, a sustainable and renewable technology, is deemed to be a new path to resolve environmental pollution and energy shortage. The development of effective photocatalysts, especially the metal-free photocatalysts, is a critical determinant of this technique. The recently emerged 2D material of black phosphorus with distinctive properties of tunable direct bandgap, ultrahigh charge mobility, fortified optical absorption, large specific surface area, and anisotropic structure has captured enormous attention since the first exfoliation of bulk black phosphorus into mono- or few layered phosphorene in 2014. In this article, the state-of-the-art preparation methods are first summarized for bulk black phosphorus, phosphorene, and black phosphorus quantum dot and then the fundamental structure and electronic and optical properties are analyzed to evaluate its feasibility as a metal-free photocatalyst. Various modifications on black phosphorus are also summarized to enhance its photocatalytic performance. Furthermore, the multifarious applications such as solar to energy conversion, organic removal, disinfection, nitrogen fixation, and photodynamic therapy are discussed and some of the future challenges and opportunities for black phosphorus research are proposed. This review reveals that the rising star of black phosphorus will be a multifunctional material in the postgraphene era.

19.
Crit Rev Biotechnol ; 38(1): 17-30, 2018 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-28423946

RESUMEN

The occurrence of hydrophobic organic compounds (HOCs) in the soil has become a highly significant environmental issue. This problem has been exacerbated by the strong sorption of HOCs to the soils, which makes them unavailable for most remediation processes. More and more works show that surfactant-enhanced biological technologies offer a great potential to clear up HOCs-contaminated soils. This article is a critical review of HOCs removal from soils using Tween 80 (one of the mostly used nonionic surfactants) aided biological remediation technologies. The review begins with a discussion of the fundamentals of Tween 80-enhanced desorption of HOCs from contaminated soils, with special emphasis on the biotoxicity of Tween 80. Successful results obtained by Tween 80-enhanced microbial degradation and phytoremediation are documented and discussed in section 3 and section 4, respectively. Results show Tween 80-enhanced biotechnologies are promising for treating HOCs-contaminated soils. However, considering the fact that most of these scientific studies have only been conducted at the laboratory-scale, many improvements are required before these technologies can be scaled up to the full-scale level. Moreover, further research on mechanisms related to the interaction of Tween 80 with degrading microorganisms and the plants is in high demand.


Asunto(s)
Biodegradación Ambiental , Compuestos Orgánicos , Polisorbatos , Contaminantes del Suelo , Tensoactivos , Interacciones Hidrofóbicas e Hidrofílicas , Compuestos Orgánicos/química , Compuestos Orgánicos/aislamiento & purificación , Compuestos Orgánicos/metabolismo , Contaminantes del Suelo/química , Contaminantes del Suelo/aislamiento & purificación , Contaminantes del Suelo/metabolismo
20.
Crit Rev Biotechnol ; 38(3): 455-468, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-28903604

RESUMEN

Soil contamination caused by heavy metals and organic pollutants has drawn world-wide concern. Biotechnology has been applied for many years to the decontamination of soils polluted with organic and inorganic contaminants, and novel nanomaterials (NMs) has attracted much concern due to their high capacity for the removal/stabilization/degradation of pollutants. Recently, developing advanced biotechnology with NMs for the remediation of contaminated soils has become a hot research topic. Some researchers found that bioremediation efficiency of contaminated soils was enhanced by the addition of NMs, while others demonstrated that the toxicity of NMs to the organism negatively influenced the repair capacity of polluted soils. This paper reviews the application of biotechnology and NMs in soil remediation, and further provides a critical view of the effects of NMs on the phytoremediation and micro-remediation of contaminated soils. This review also discusses the future research needs for the combined application of biotechnology and NMs in soil remediation.


Asunto(s)
Biotecnología/métodos , Nanoestructuras/química , Contaminantes del Suelo/análisis , Biodegradación Ambiental , Plantas/metabolismo , Contaminantes del Suelo/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA