RESUMEN
Gastrodia elata Blume has multiple bioactive functions, such as antioxidant and antidepressant activities, immune modulation, neuroplasticity, and neuroprotection. We previously found that the water extract of G. elata exerts antidepressant-like effects in unpredictable chronic mild stress models and animals exposed to the forced swimming test. We aimed to investigate the mechanisms by which the water extract of G. elata protects against subchronic- and mild-social defeat-stress-induced dysbiosis. After a 10-day subchronic and mild-social-defeat-stress program, oral treatment with the water extract of G. elata (500 mg/kg bw) resulted in reversal of depression-like behavior. In addition, monoamine analyses showed that the water extract of G. elata normalized the 5-hydroxyindoleacetic acid:5-HT ratio in the prefrontal cortex and colon and reduced the defeat-stress-induced kynurenine:tryptophan ratio in the colon. After the 10-day subchronic and mild social-defeat-stress program, the water extract of G. elata altered the intestinal microbiome by increasing Actinobacteria levels, modulating intestinal inflammation, and shifting the relative abundances of multiple bacterial groups in the gut. Our results suggest that the water extract of G. elata exhibits a potent antidepressant-like effect via the regulation of monoaminergic neurotransmission and alteration of gut microbiota composition and function, and that it may be an effective prevention for depression.
Asunto(s)
Depresión , Gastrodia , Microbioma Gastrointestinal , Neurotransmisores , Extractos Vegetales , Animales , Depresión/tratamiento farmacológico , Gastrodia/química , Ratones , Neurotransmisores/metabolismo , Extractos Vegetales/farmacología , Derrota SocialRESUMEN
IMPORTANCE: The link between gut microbiota and diet is crucial in the development of non-alcoholic steatohepatitis (NASH). This study underscores the essential role of a healthy diet in preventing and treating NASH by reversing obesity, lipidemia, and gut microbiota dysbiosis. Moreover, the supplementation of functional food or drug to the diet can provide additional advantages by inhibiting hepatic inflammation through the modulation of the hepatic inflammasome signaling pathway and partially mediating the gut microbiota and lipopolysaccharide signaling pathway. This study highlights the importance of adopting healthy dietary habits in treating NASH and proposes that supplementing with ginger essential oil or obeticholic acid may offer additional benefits. Nonetheless, further clinical studies are necessary to validate these findings.
Asunto(s)
Microbioma Gastrointestinal , Enfermedad del Hígado Graso no Alcohólico , Humanos , Enfermedad del Hígado Graso no Alcohólico/tratamiento farmacológico , Dieta Saludable , Dieta Alta en Grasa/efectos adversos , Hígado/metabolismoRESUMEN
ETHNOPHARMACOLOGICAL RELEVANCE: Major depressive disorder (MDD) is a prevalent condition that affects approximately 350 million people worldwide. Several studies have identified changes in amino acids in the blood of MDD patients, suggesting their potential as biomarkers to better understand their role in depression. Gastrodia elata Blume (GEB) and its active compound gastrodin (GAS) are recognized for their antidepressant properties. However, their effects on amino acid profiles and their potential role in alleviating depression remain poorly understood. Understanding how GEB and GAS influence amino acid metabolism may offer novel insights into their mechanisms in alleviating depression, potentially leading to more targeted therapeutic strategies. AIM OF THE STUDY: This study aimed to investigate the potential role of supplementing GEB and its active compound GAS to reverse altered amino acid profiles in depressed rats. MATERIALS AND METHODS: To achieve this, six-week-old SD rats were induced depressive-like behaviors by the UCMS rat model for 5 weeks. Groups receiving GEB or GAS were administered orally via gavage daily within the UCMS model. Serum samples were collected and analyzed using a targeted metabolomics approach employing LC-MS for amino acid profiling. RESULTS: A total of 38 amino acid metabolites were identified, 17 of which were significantly altered following UCMS. UCMS rats exhibited perturbed arginine biosynthesis, arginine and proline metabolism pathways. Changes in key amino acids in these metabolic pathways were reversed following supplementation with GEB and GAS, which also alleviated depressive symptoms. CONCLUSIONS: In conclusion, UCMS-induced depression in rats causes changes in some amino acid metabolites similar to those found in human depression, validating its relevance as a model for studying depression. Additionally, the research suggests that GEB and GAS may exert antidepressant effects by regulating amino acid metabolism.
RESUMEN
Dietary emulsifiers are linked to various diseases. The recent discovery of the role of gut microbiota-host interactions on health and disease warrants the safety reassessment of dietary emulsifiers through the lens of gut microbiota. Lecithin, sucrose fatty acid esters, carboxymethylcellulose (CMC), and mono- and diglycerides (MDG) emulsifiers are common dietary emulsifiers with high exposure levels in the population. This study demonstrates that sucrose fatty acid esters and carboxymethylcellulose induce hyperglycemia and hyperinsulinemia in a mouse model. Lecithin, sucrose fatty acid esters, and CMC disrupt glucose homeostasis in the in vitro insulin-resistance model. MDG impairs circulating lipid and glucose metabolism. All emulsifiers change the intestinal microbiota diversity and induce gut microbiota dysbiosis. Lecithin, sucrose fatty acid esters, and CMC do not impact mucus-bacterial interactions, whereas MDG tends to cause bacterial encroachment into the inner mucus layer and enhance inflammation potential by raising circulating lipopolysaccharide. Our findings demonstrate the safety concerns associated with using dietary emulsifiers, suggesting that they could lead to metabolic syndromes.
Asunto(s)
Disbiosis , Emulsionantes , Microbioma Gastrointestinal , Enfermedades Metabólicas , Animales , Disbiosis/inducido químicamente , Disbiosis/microbiología , Microbioma Gastrointestinal/efectos de los fármacos , Ratones , Masculino , Enfermedades Metabólicas/inducido químicamente , Enfermedades Metabólicas/microbiología , Enfermedades Metabólicas/metabolismo , Enfermedades Metabólicas/etiología , Ratones Endogámicos C57BL , Carboximetilcelulosa de Sodio , Sacarosa/efectos adversos , Sacarosa/administración & dosificación , Sacarosa/metabolismo , Resistencia a la Insulina , LecitinasRESUMEN
BACKGROUND: Diet and gut microbiota contribute to non-alcoholic steatohepatitis (NASH) progression. High-fat diets (HFDs) change gut microbiota compositions, induce gut dysbiosis, and intestinal barrier leakage, which facilitates portal influx of pathogen-associated molecular patterns including lipopolysaccharides (LPS) to the liver and triggers inflammation in NASH. Current therapeutic drugs for NASH have adverse side effects; however, several foods and herbs that exhibit hepatoprotection could be an alternative method to prevent NASH. METHODS: We investigated ginger essential oil (GEO) against palm oil-containing HFDs in LPS-injected murine NASH model. RESULTS: GEO reduced plasma alanine aminotransferase levels and hepatic pro-inflammatory cytokine levels; and increased antioxidant catalase, glutathione reductase, and glutathione levels to prevent NASH. GEO alleviated hepatic inflammation through mediated NLR family pyrin domain-containing 3 (NLRP3) inflammasome and LPS/Toll-like receptor four (TLR4) signaling pathways. GEO further increased beneficial bacterial abundance and reduced NASH-associated bacterial abundance. CONCLUSION: This study demonstrated that GEO prevents NASH progression which is probably associated with the alterations of gut microbiota and inhibition of the LPS/TLR4/NF-κB pathway. Hence, GEO may offer a promising application as a dietary supplement for the prevention of NASH.
Asunto(s)
Microbioma Gastrointestinal , Inflamasomas , Lipopolisacáridos , Ratones Endogámicos C57BL , Proteína con Dominio Pirina 3 de la Familia NLR , Enfermedad del Hígado Graso no Alcohólico , Aceites Volátiles , Transducción de Señal , Receptor Toll-Like 4 , Zingiber officinale , Animales , Enfermedad del Hígado Graso no Alcohólico/prevención & control , Enfermedad del Hígado Graso no Alcohólico/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Microbioma Gastrointestinal/efectos de los fármacos , Receptor Toll-Like 4/metabolismo , Aceites Volátiles/farmacología , Aceites Volátiles/uso terapéutico , Ratones , Inflamasomas/metabolismo , Inflamasomas/efectos de los fármacos , Masculino , Transducción de Señal/efectos de los fármacos , Dieta Alta en Grasa/efectos adversos , Progresión de la Enfermedad , Hígado/metabolismo , Hígado/efectos de los fármacos , Modelos Animales de EnfermedadRESUMEN
Background: Ginseng Radix (Panax ginseng Meyer, Araliaceae) has been used medicinally to treat the brain and nervous system problems worldwide. Recent studies have revealed physiological effects that could potentially benefit cognitive performance or mood. The present study aimed to investigate the antidepressant effects of Korean red ginseng water extract (KGE) and its active component in an unpredictable chronic mild stress (UCMS)-induced animal model and elucidate the underlying mechanisms. Methods: The antidepressant potential of the UCMS model was evaluated using the sucrose preference test and open field tests. The behavioral findings were further corroborated by the assessment of neurotransmitters and their metabolites from the prefrontal cortex and hippocampus of rats. Three doses of KGE (50, 100, and 200 mg/kg) were orally administered during the experiment. Furthermore, the mechanism underlying the antidepressant-like action of KGE was examined by measuring the levels of brain-derived neurotrophic factor (BDNF)/CREB, nuclear factor erythroid 2-related factor 2 (Nrf2), and Kelch-like ECH-associated protein 1 (Keap1) proteins in the prefrontal cortex of UCMS-exposed rats. Results: KGE treatment normalized UCMS-induced depression-related behaviors. Neurotransmitter studies conducted after completing behavioral experiments demonstrated that KGE caused a reduction in the ratio of serotonin and dopamine, indicating a decrease in serotonin and dopamine turnover. Moreover, the expression of BDNF, Nrf2, Keap1 and AKT were markedly increased by KGE in the prefrontal cortex of depressed rats. Conclusion: Our results provide evidence that KGE and its constituents exert antidepressant effects that mediate the dopaminergic and serotonergic systems and expression of BDNF protein in an animal model.
RESUMEN
Depression is a severe mental disorder, with approximately 300 million people suffering from it. Recent studies have demonstrated that chronic neuroinflammation is significantly associated with intestinal flora and barrier function in depression. As a therapeutic herb, garlic (Allium sativum L.) has detoxification, antibacterial activity, and antiinflammatory functions; however, its antidepressant effect through gut microbiota and barrier function has not been reported yet. The present study investigated the effect of garlic essential oil (GEO) and its active constituent diallyl disulfide (DADS) on depressive behavior by attenuating the NLRP3 inflammasome, alternating intestinal barrier function and gut microbiota in an unpredictable chronic mild stress (US) model in rats. This study found that dopamine and serotonin turnover rates were reduced significantly with a low dose of GEO (25 mg per kg bw). The GEO groups effectively reversed sucrose preference and increased the total distance traveled in the behavioral test. Moreover, 25 mg per kg bw GEO inhibited the UCMS-induced activated inflammatory response, reflected by reduced expression in the frontal cortex of NLRP3, ASC, caspase-1, and its downstream IL-1ß proteins, as well as the concentration of IL-1ß and TNF-α in the serum. Supplementation with GEO increased the expression of occludin and ZO-1 and the concentration of short-chain fatty acids to influence the impact of intestinal permeability in depressive conditions. The results revealed that GEO administration caused significant changes in the α and ß diversity and abundance of certain bacteria. At the genus level, GEO administration significantly increased the relative abundance, particularly beneficial SCFA-producing bacteria, and may improve depression-like behavior. In conclusion, these results indicated the antidepressant effects of GEO involved in the inflammatory pathway, short-chain fatty acids, intestinal integrity, and intestinal composition.
Asunto(s)
Ajo , Microbiota , Aceites Volátiles , Humanos , Ratas , Animales , Inflamasomas/metabolismo , Depresión/metabolismo , Ajo/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/genética , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Encéfalo/metabolismo , Antidepresivos/farmacología , Ácidos Grasos Volátiles , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/complicacionesRESUMEN
ETHNOPHARMACOLOGY RELEVANCE: Gastrodia elata Blume (GE) is a traditional Chinese dietary therapy used to treat neurological disorders. Gastrodia elata Blume water extract (WGE) has been shown to ameliorate inflammation and improve social frustration in mice in a chronic social defeat model. However, studies on the anti-depressive-like effects and cognitive impairment alleviation related to the impact of WGE on the gut microbiome of ApoE-/- mice remain elusive. AIM OF THE STUDY: The present study aimed to investigate the anti-depressive-like effect and cognitive impairment alleviation and mechanisms of WGE in ApoE-/- mice subjected to unpredictable chronic mild stress (UCMS), as well as its impact on the gut microbiome of the mice. MATERIALS AND METHODS: Sixty ApoE-/- mice (6 months old) were randomly grouped into six groups: control, UCMS, WGE groups [5, 10, 20 mL WGE/kg body weight (bw) + UCMS], and a positive group (fluoxetine 20 mg/kg bw + UCMS). After four weeks of the UCMS paradigm, the sucrose preference, novel object recognition, and open field tests were conducted. The neurotransmitters serotonin (5-HT), dopamine (DA) and their metabolites were measured in the prefrontal cortex. Serum was collected to measure corticosterone and amyloid-42 (Aß-42) levels. Feces were collected, and the gut microbiome was analyzed. RESULTS: WGE restored sucrose preference, exploratory behavior, recognition ability, and decreased the levels of serum corticosterone and Aß-42 in ApoE-/- mice to alleviate depressive-like behavior and cognitive impairment. Furthermore, WGE regulated the monoamine neurotransmitter via reduced the 5-HT and DA turnover rates in the prefrontal cortex. Moreover, WGE elevated the levels of potentially beneficial bacteria such as Bifidobacterium, Akkermansia, Alloprevotella, Defluviitaleaceae_UCG-011, and Bifidobacterium pseudolongum as well as balanced fecal short-chain fatty acids (SCFAs). CONCLUSION: WGE demonstrates anti-depressive-like effects, cognitive impairment alleviation, and gut microbiome and metabolite regulation in ApoE-/- mice. Our results support the possibility of developing a functional and complementary medicine to prevent or alleviate depression and cognitive decline using WGE in CVDs patients.
Asunto(s)
Disfunción Cognitiva , Gastrodia , Microbioma Gastrointestinal , Animales , Ratones , Antidepresivos/farmacología , Antidepresivos/uso terapéutico , Disfunción Cognitiva/tratamiento farmacológico , Corticosterona , Depresión/tratamiento farmacológico , Depresión/metabolismo , Dopamina/metabolismo , Extractos Vegetales/farmacología , Extractos Vegetales/uso terapéutico , Serotonina/metabolismo , Estrés Psicológico/tratamiento farmacológico , Estrés Psicológico/metabolismo , Sacarosa/uso terapéutico , Agua , Ratones Noqueados para ApoERESUMEN
Recently, the role of the gut microbiota in diseases, including cardiovascular disease (CVD), has gained considerable research attention. Trimethylamine-N-oxide (TMAO), which is formed during Ê-carnitine metabolism, promotes the formation of atherosclerotic plaques, causing thrombosis. Here, we elucidated the anti-atherosclerotic effect and mechanism of ginger (Zingiber officinale Roscoe) essential oil (GEO) and its bioactive compound citral in Gubra Amylin NASH (GAN) diet with Ê-carnitine-induced atherosclerosis female ApoE-/- mice. Treatment with GEO at both low and high doses and citral inhibited the formation of aortic atherosclerotic lesions, improved plasma lipid profile, reduced blood sugar, improved insulin resistance, decreased plasma TMAO levels, and inhibited plasma inflammatory cytokines, especially interleukin-1ß. Additionally, GEO and citral treatment modulated gut microbiota diversity and composition by increasing the abundance of beneficial microbes and decreasing the abundance of CVD-related microbes. Overall, these results showed that GEO and citral may serve as potential dietary supplements for CVD prevention by improving gut microbiota dysbiosis.
RESUMEN
Background and aim: Garlic essential oil (GEO) isolated from Garlic (Allium sativum L.) exerts biological activities in disease prevention, particularly in metabolic and liver diseases, and is used for a dietary therapy for centuries. However, due to the side effects associated with the excessive consumption of GEO, there is a need to evaluate the safety of the GEO. Experimental procedure: Ames test using five Salmonella typhimurium strains (TA98, TA100, TA102, TA1535, and TA1537) and Chinese hamster ovary (CHO-K1) cells with or without metabolic activation (S9 system), and mammalian erythrocyte micronucleus test were used to assess the genotoxicity and clastogenic effects of GEO. A repeated dose of GEO (15, 25, and 50 mg/kg body weight, p.o.) were administrated to ICR mice for 28 days to ascertain the subacute toxicity of GEO. Results and conclusions: The results of the Ames test with or without S9 system indicated that GEO did not induce mutagenicity nor have clastogenic effects in CHO-K1 cells with or without S9 activation. Furthermore, GEO did not affect the ratio of immature to total erythrocytes or the number of micronuclei in immature erythrocytes of ICR mice after 24 and 48 h. In a 28-day oral toxicity assessment, GEO (15, 25, and 50 mg/kg body weight, p.o.)-fed ICR mice exhibited normal behaviors, mortality, body weight, daily intake, hematology, clinical biochemistry, and organ weight. GEO shows no genotoxicity, and the no-observed-adverse-effect level (NOAEL) for GEO is considered to be greater than 50 mg/kg bw/day orally for 28 days in mice.
RESUMEN
Cardiovascular disease (CVD) is strongly associated with the gut microbiota and its metabolites, including trimethylamine-N-oxide (TMAO), formed from metaorganismal metabolism of Ê-carnitine. Raw garlic juice, with allicin as its primary compound, exhibits considerable effects on the gut microbiota. This study validated the benefits of raw garlic juice against CVD risk via modulation of the gut microbiota and its metabolites. Allicin supplementation significantly decreased serum TMAO in Ê-carnitine-fed C57BL/6 J mice, reduced aortic lesions, and altered the fecal microbiota in carnitine-induced, atherosclerosis-prone, apolipoprotein E-deficient (ApoE-/-) mice. In human subjects exhibiting high-TMAO production, raw garlic juice intake for a week reduced TMAO formation, improved gut microbial diversity, and increased the relative abundances of beneficial bacteria. In in vitro and ex vivo studies, raw garlic juice and allicin inhibited γ-butyrobetaine (γBB) and trimethylamine production by the gut microbiota. Thus, raw garlic juice and allicin can potentially prevent cardiovascular disease by decreasing TMAO production via gut microbiota modulation.
Asunto(s)
Aterosclerosis , Ajo , Microbioma Gastrointestinal , Animales , Aterosclerosis/tratamiento farmacológico , Aterosclerosis/metabolismo , Disulfuros , Humanos , Metilaminas , Ratones , Ratones Endogámicos C57BL , Óxidos , Ácidos SulfínicosRESUMEN
Antibiotics used as growth promoters in livestock and animal husbandry can be detected in animal-derived food. Epidemiological studies have indicated that exposure to these antibiotic residues in food may be associated with childhood obesity. Herein, the effect of exposure to a residual dose of tylosin-an antibiotic growth promoter-on host metabolism and gut microbiota was explored in vivo. Theoretical maximal daily intake (TMDI) doses of tylosin were found to facilitate high-fat-diet-induced obesity, induce insulin resistance, and perturb gut microbiota composition in mice. The obesity-related phenotypes were transferrable to germfree recipient mice, indicating that the effects of a TMDI dose of tylosin on obesity and insulin resistance occurred mainly via alteration of the gut microbiota. Tylosin TMDI exposure restricted to early life, the critical period of gut microbiota development, altered the abundance of specific bacteria related to host metabolic homeostasis later in life. Moreover, early-life exposure to tylosin TMDI doses was sufficient to modify the ratio of primary to secondary bile acids, thereby inducing lasting metabolic consequences via the downstream FGF15 signaling pathway. Altogether, these findings demonstrate that exposure to very low doses of antibiotic residues, whether continuously or in early life, could exert long-lasting effects on host metabolism by altering the gut microbiota and its metabolites. IMPORTANCE This study demonstrates that even with limited exposure in early life, a residual dose of tylosin might cause long-lasting metabolic disturbances by altering the gut microbiota and its metabolites. Our findings reveal that the gut microbiota is susceptible to previously ignored environmental factors.