Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-33519171

RESUMEN

The blood-brain barrier (BBB) remains a major obstacle for drug delivery to the central nervous system. In particular, the tight and adherens junctions that join the brain capillary endothelial cells limit the diffusion of various molecules from the bloodstream into the brain. Photodynamic priming (PDP) is a non-cytotoxic modality that involves light activation of photosensitizers to photochemically modulate nearby molecules without killing the cells. Here we investigate the effects of sub-lethal photochemistry on junction phenotype (i.e., continuous, punctate, or perpendicular), as well as the BBB permeability in a transwell model of human brain microvascular endothelial cells (HBMECs). We showed that PDP decreases the continuous junction architecture by ~20%, increases the perpendicular junction architecture by ~40%, and has minimal impact on cell morphology in HBMECs. Furthermore, transwell permeability assay revealed that PDP improves the HBMEC permeability to dextran or nanoliposomes by up to 30-fold for 6-9 days. These results suggest that PDP could safely reverse the mature brain endothelial junctions without killing the HBMECs. This study not only emphasizes the critical roles of PDP in the modulation junction phenotype, but also highlights the opportunity to further develop PDP-based combinations that opens the cerebrum endothelium for enhanced drug transporter across the BBB.

2.
J Nanobiotechnology ; 18(1): 1, 2020 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-31898555

RESUMEN

BACKGROUND: Photoimmunotherapy involves targeted delivery of photosensitizers via an antibody conjugate (i.e., photoimmunoconjugate, PIC) followed by light activation for selective tumor killing. The trade-off between PIC selectivity and PIC uptake is a major drawback limiting the efficacy of photoimmunotherapy. Despite ample evidence showing that photoimmunotherapy is most effective when combined with chemotherapy, the design of nanocarriers to co-deliver PICs and chemotherapy drugs remains an unmet need. To overcome these challenges, we developed a novel photoimmunoconjugate-nanoliposome (PIC-Nal) comprising of three clinically used agents: anti-epidermal growth factor receptor (anti-EGFR) monoclonal antibody cetuximab (Cet), benzoporphyrin derivative (BPD) photosensitizer, and irinotecan (IRI) chemotherapy. RESULTS: The BPD photosensitizers were first tethered to Cet at a molar ratio of 6:1 using carbodiimide chemistry to form PICs. Conjugation of PICs onto nanoliposome irinotecan (Nal-IRI) was facilitated by copper-free click chemistry, which resulted in monodispersed PIC-Nal-IRI with an average size of 158.8 ± 15.6 nm. PIC-Nal-IRI is highly selective against EGFR-overexpressing epithelial ovarian cancer cells with 2- to 6-fold less accumulation in low EGFR expressing cells. Successful coupling of PIC onto Nal-IRI enhanced PIC uptake and photoimmunotherapy efficacy by up to 30% in OVCAR-5 cells. Furthermore, PIC-Nal-IRI synergistically reduced cancer viability via a unique three-way mechanism (i.e., EGFR downregulation, mitochondrial depolarization, and DNA damage). CONCLUSION: It is increasingly evident that the most effective therapies for cancer will involve combination treatments that target multiple non-overlapping pathways while minimizing side effects. Nanotechnology combined with photochemistry provides a unique opportunity to simultaneously deliver and activate multiple drugs that target all major regions of a cancer cell-plasma membrane, cytoplasm, and nucleus. PIC-Nal-IRI offers a promising strategy to overcome the selectivity-uptake trade-off, improve photoimmunotherapy efficacy, and enable multi-tier cancer targeting. Controllable drug compartmentalization, easy surface modification, and high clinical relevance collectively make PIC-Nal-IRI extremely valuable and merits further investigations in living animals.


Asunto(s)
Inmunoconjugados/uso terapéutico , Irinotecán/uso terapéutico , Nanopartículas/química , Neoplasias/terapia , Fototerapia , Línea Celular Tumoral , Terapia Combinada , Liberación de Fármacos , Estabilidad de Medicamentos , Humanos , Inmunoconjugados/química , Irinotecán/química , Liposomas
3.
Small ; : e1800236, 2018 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-29962083

RESUMEN

The past three decades have witnessed notable advances in establishing photosensitizer-antibody photo-immunoconjugates for photo-immunotherapy and imaging of tumors. Photo-immunotherapy minimizes damage to surrounding healthy tissue when using a cancer-selective photo-immunoconjugate, but requires a threshold intracellular photosensitizer concentration to be effective. Delivery of immunoconjugates to the target cells is often hindered by I) the low photosensitizer-to-antibody ratio of photo-immunoconjugates and II) the limited amount of target molecule presented on the cell surface. Here, a nanoengineering approach is introduced to overcome these obstacles and improve the effectiveness of photo-immunotherapy and imaging. Click chemistry coupling of benzoporphyrin derivative (BPD)-Cetuximab photo-immunoconjugates onto FKR560 dye-containing poly(lactic-co-glycolic acid) nanoparticles markedly enhances intracellular photo-immunoconjugate accumulation and potentiates light-activated photo-immunotoxicity in ovarian cancer and glioblastoma. It is further demonstrated that co-delivery and light activation of BPD and FKR560 allow longitudinal fluorescence tracking of photoimmunoconjugate and nanoparticle in cells. Using xenograft mouse models of epithelial ovarian cancer, intravenous injection of photo-immunoconjugated nanoparticles doubles intratumoral accumulation of photo-immunoconjugates, resulting in an enhanced photoimmunotherapy-mediated tumor volume reduction, compared to "standard" immunoconjugates. This generalizable "carrier effect" phenomenon is attributed to the successful incorporation of photo-immunoconjugates onto a nanoplatform, which modulates immunoconjugate delivery and improves treatment outcomes.

4.
Nanomedicine ; 10(4): 795-808, 2014 May.
Artículo en Inglés | MEDLINE | ID: mdl-24333585

RESUMEN

We report the synthesis and anticancer photodynamic properties of two new decacationic fullerene (LC14) and red light-harvesting antenna-fullerene conjugated monoadduct (LC15) derivatives. The antenna of LC15 was attached covalently to C60>with distance of only <3.0 Ǻ to facilitate ultrafast intramolecular photoinduced-electron-transfer (for type-I photochemistry) and photon absorption at longer wavelengths. Because LC15 was hydrophobic we compared formulation in Cremophor EL micelles with direct dilution from dimethylacetamide. LC14 produced more (1)O2 than LC15, while LC15 produced much more HO·than LC14 as measured by specific fluorescent probes. When delivered by DMA, LC14 killed more HeLa cells than LC15 when excited by UVA light, while LC15 killed more cells when excited by white light consistent with the antenna effect. However LC15 was more effective than LC14 when delivered by micelles regardless of the excitation light. Micellar delivery produced earlier apoptosis and damage to the endoplasmic reticulum as well as to lysosomes and mitochondria. FROM THE CLINICAL EDITOR: This team of authors report the synthesis and the photodynamic properties of two new derivatives for cancer treatment; one is a decacationic fullerene (LC14) and the other is a red light-harvesting antenna-fullerene conjugated monoadduct (LC15) utilizing a HeLa cell model.


Asunto(s)
Fulerenos/química , Fulerenos/farmacología , Neoplasias/tratamiento farmacológico , Fotoquimioterapia/métodos , Células HeLa , Humanos , Micelas , Neoplasias/metabolismo , Neoplasias/patología
5.
Photochem Photobiol ; 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38824410

RESUMEN

P-glycoprotein (P-gp, ABCB1) is a well-researched ATP-binding cassette (ABC) drug efflux transporter linked to the development of cancer multidrug resistance (MDR). Despite extensive studies, approved therapies to safely inhibit P-gp in clinical settings are lacking, necessitating innovative strategies beyond conventional inhibitors or antibodies to reverse MDR. Photodynamic therapy is a globally approved cancer treatment that uses targeted, harmless red light to activate non-toxic photosensitizers, confining its cytotoxic photochemical effects to disease sites while sparing healthy tissues. This study demonstrates that photodynamic priming (PDP), a sub-cytotoxic photodynamic therapy process, can inhibit P-gp function by modulating cellular respiration and ATP levels in light accessible regions. Using chemoresistant (VBL-MDA-MB-231) and chemosensitive (MDA-MB-231) triple-negative breast cancer cell lines, we showed that PDP decreases mitochondrial membrane potential by 54.4% ± 30.4 and reduces mitochondrial ATP production rates by 94.9% ± 3.46. Flow cytometry studies showed PDP can effectively improve the retention of P-gp substrates (calcein) by up to 228.4% ± 156.3 in chemoresistant VBL-MDA-MB-231 cells, but not in chemosensitive MDA-MB-231 cells. Further analysis revealed that PDP did not alter the cell surface expression level of P-gp in VBL-MDA-MB-231 cells. These findings indicate that PDP can reduce cellular ATP below the levels that is required for the function of P-gp and improve intracellular substrate retention. We propose that PDP in combination with chemotherapy drugs, might improve the efficacy of chemotherapy and overcome cancer MDR.

6.
J Photochem Photobiol B ; 255: 112910, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38663337

RESUMEN

The prognosis for patients with advanced-stage pancreatic ductal adenocarcinoma (PDAC) remains dismal. It is generally accepted that combination cancer therapies offer the most promise, such as Folforinox, despite their associated high toxicity. This study addresses the issue of chemoresistance by introducing a complementary dual priming approach to attenuate the DNA repair mechanism and to improve the efficacy of a type 1 topoisomerase (Top1) inhibitor. The result is a regimen that integrates drug-repurposing and nanotechnology using 3 clinically relevant FDA-approved agents (1) Top1 inhibitor (irinotecan) at subcytotoxic doses (2) benzoporphyrin derivative (BPD) as a photoactive molecule for photodynamic priming (PDP) to improve the delivery of irinotecan within the cancer cell and (3) minocycline priming (MNP) to modulate DNA repair enzyme Tdp1 (tyrosyl-DNA phosphodiesterase) activity. We demonstrate in heterotypic 3D cancer models that incorporate cancer cells and pancreatic cancer-associated fibroblasts that simultaneous targeting of Tdp1 and Top1 were significantly more effective by employing MNP and photoactivatable multi-inhibitor liposomes encapsulating BPD and irinotecan compared to monotherapies or a cocktail of dual or triple-agents. These data are encouraging and warrant further work in appropriate animal models to evolve improved therapeutic regimens.


Asunto(s)
Carcinoma Ductal Pancreático , Irinotecán , Minociclina , Neoplasias Pancreáticas , Fotoquimioterapia , Humanos , Carcinoma Ductal Pancreático/tratamiento farmacológico , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/metabolismo , Neoplasias Pancreáticas/tratamiento farmacológico , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/metabolismo , Línea Celular Tumoral , Minociclina/farmacología , Minociclina/uso terapéutico , Irinotecán/farmacología , Irinotecán/uso terapéutico , Esferoides Celulares/efectos de los fármacos , Esferoides Celulares/patología , Hidrolasas Diéster Fosfóricas/metabolismo , Fármacos Fotosensibilizantes/farmacología , Fármacos Fotosensibilizantes/química , Fármacos Fotosensibilizantes/uso terapéutico , Inhibidores de Topoisomerasa I/farmacología , Inhibidores de Topoisomerasa I/uso terapéutico , Inhibidores de Topoisomerasa I/química , Liposomas/química
7.
Photochem Photobiol ; 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38849970

RESUMEN

Resistance to platinum-based chemotherapies remains a significant challenge in advanced-stage high-grade serous ovarian carcinoma, and patients with malignant ascites face the poorest outcomes. It is, therefore, important to understand the effects of ascites, including the associated fluid shear stress (FSS), on phenotypic changes and therapy response, specifically FSS-induced chemotherapy resistance and the underlying mechanisms in ovarian cancer. This study investigated the effects of FSS on response to cisplatin, a platinum-based chemotherapy, and doxorubicin, an anthracycline, both of which are commonly used to manage advanced-stage ovarian cancer. Consistent with prior research, OVCAR-3 and Caov-3 cells cultivated under FSS demonstrated significant resistance to cisplatin. Examination of the role of mitochondria revealed an increase in mitochondrial DNA copy number and intracellular ATP content in cultures grown under FSS, suggesting that changes in mitochondria number and metabolic activity may contribute to platinum resistance. Interestingly, no resistance to doxorubicin was observed under FSS, the first such observation of a lack of resistance under these conditions. Finally, this study demonstrated the potential of photodynamic priming using benzoporphyrin derivative, a clinically approved photosensitizer that localizes in part to mitochondria and endoplasmic reticula, to enhance the efficacy of cisplatin, but not doxorubicin, thereby overcoming FSS-induced platinum resistance.

8.
Cell Biosci ; 14(1): 20, 2024 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-38321470

RESUMEN

BACKGROUND: Within the last decade, poly(ADP-ribose) polymerase inhibitors (PARPi) have emerged in the clinic as an effective treatment for numerous malignancies. Preclinical data have demonstrated powerful combination effects of PARPi paired with photodynamic therapy (PDT), which involves light-activation of specialized dyes (photosensitizers) to stimulate cancer cell death through reactive oxygen species generation. RESULTS: In this report, the most potent clinical PARP inhibitor, talazoparib, is loaded into the core of a polymeric nanoparticle (NP-Tal), which is interfaced with antibody-photosensitizer conjugates (photoimmunoconjugates, PICs) to form PIC-NP-Tal. In parallel, a new 3D fluorescent coculture model is developed using the parental OVCAR-8-DsRed2 and the chemo-resistant subline, NCI/ADR-RES-EGFP. This model enables quantification of trends in the evolutionary dynamics of acquired chemoresistance in response to various treatment regimes. Results reveal that at a low dosage (0.01 µM), NP-Tal kills the parental cells while sparing the chemo-resistant subline, thereby driving chemoresistance. Next, PIC-NP-Tal and relevant controls are evaluated in the 3D coculture model at multiple irradiation doses to characterize effects on total spheroid ablation and relative changes in parental and subline cell population dynamics. Total spheroid ablation data shows potent combination effects when PIC and NP-Tal are co-administered, but decreased efficacy with the conjugated formulation (PIC-NP-Tal). Analysis of cell population dynamics reveals that PIC, BPD + NP-Tal, PIC + NP-Tal, and PIC-NP-Tal demonstrate selection pressures towards chemoresistance. CONCLUSIONS: This study provides key insights into manufacturing parameters for PARPi-loaded nanoparticles, as well as the potential role of PDT-based combination therapies in the context of acquired drug resistance.

9.
Adv Sci (Weinh) ; 11(17): e2302872, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38445882

RESUMEN

Glioblastoma (GBM) is hard to treat due to cellular invasion into functioning brain tissues, limited drug delivery, and evolved treatment resistance. Recurrence is nearly universal even after surgery, chemotherapy, and radiation. Photodynamic therapy (PDT) involves photosensitizer administration followed by light activation to generate reactive oxygen species at tumor sites, thereby killing cells or inducing biological changes. PDT can ablate unresectable GBM and sensitize tumors to chemotherapy. Verteporfin (VP) is a promising photosensitizer that relies on liposomal carriers for clinical use. While lipids increase VP's solubility, they also reduce intracellular photosensitizer accumulation. Here, a pure-drug nanoformulation of VP, termed "NanoVP", eliminating the need for lipids, excipients, or stabilizers is reported. NanoVP has a tunable size (65-150 nm) and 1500-fold higher photosensitizer loading capacity than liposomal VP. NanoVP shows a 2-fold increase in photosensitizer uptake and superior PDT efficacy in GBM cells compared to liposomal VP. In mouse models, NanoVP-PDT improved tumor control and extended animal survival, outperforming liposomal VP and 5-aminolevulinic acid (5-ALA). Moreover, low-dose NanoVP-PDT can safely open the blood-brain barrier, increasing drug accumulation in rat brains by 5.5-fold compared to 5-ALA. NanoVP is a new photosensitizer formulation that has the potential to facilitate PDT for the treatment of GBM.


Asunto(s)
Neoplasias Encefálicas , Sistemas de Liberación de Medicamentos , Fotoquimioterapia , Fármacos Fotosensibilizantes , Verteporfina , Animales , Fotoquimioterapia/métodos , Verteporfina/farmacología , Verteporfina/uso terapéutico , Ratones , Fármacos Fotosensibilizantes/administración & dosificación , Fármacos Fotosensibilizantes/farmacología , Neoplasias Encefálicas/tratamiento farmacológico , Sistemas de Liberación de Medicamentos/métodos , Glioblastoma/tratamiento farmacológico , Nanopartículas/química , Modelos Animales de Enfermedad , Humanos , Ratas , Liposomas , Línea Celular Tumoral , Encéfalo/metabolismo , Encéfalo/efectos de los fármacos
10.
Photochem Photobiol ; 2023 Jul 26.
Artículo en Inglés | MEDLINE | ID: mdl-37496175

RESUMEN

Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose-response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.

11.
iScience ; 26(8): 107221, 2023 Aug 18.
Artículo en Inglés | MEDLINE | ID: mdl-37520715

RESUMEN

Circulating drugs in the peritoneal cavity is an effective strategy for advanced ovarian cancer treatment. Photoimmunotherapy, an emerging modality with potential for the treatment of ovarian cancer, involves near-infrared light activation of antibody-photosensitizer conjugates (photoimmunoconjugates) to generate cytotoxic reactive oxygen species. Here, a microfluidic cell culture model is used to study how fluid flow-induced shear stress affects photoimmunoconjugate delivery to ovarian cancer cells. Photoimmunoconjugates are composed of the antibody, cetuximab, conjugated to the photosensitizer, and benzoporphyrin derivative. Longitudinal tracking of photoimmunoconjugate treatment under flow conditions reveals enhancements in subcellular photosensitizer accumulation. Compared to static conditions, fluid flow-induced shear stress at 0.5 and 1 dyn/cm2 doubled the cellular delivery of photoimmunoconjugates. Fluid flow-mediated treatment with three different photosensitizer formulations (benzoporphyrin derivative, photoimmunoconjugates, and photoimmunoconjugate-coated liposomes) led to enhanced phototoxicity compared to static conditions. This study confirms the fundamental role of fluid flow-induced shear stress in the anti-cancer effects of photoimmunotherapy.

12.
bioRxiv ; 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37986908

RESUMEN

ATP-binding cassette (ABC) transporters expressed at the blood-brain barrier (BBB) impede delivery of therapeutic agents to the brain, including agents to treat neurodegenerative diseases and primary and metastatic brain cancers. Two transporters, P-glycoprotein (P-gp, ABCB1) and ABCG2, are highly expressed at the BBB and are responsible for the efflux of numerous clinically useful chemotherapeutic agents, including irinotecan, paclitaxel, and doxorubicin. Based on a previous mouse model, we have generated transgenic zebrafish in which expression of NanoLuciferase (NanoLuc) is controlled by the promoter of glial fibrillary acidic protein, leading to expression in zebrafish glia. To identify agents that disrupt the BBB, including inhibitors of ABCB1 and ABCG2, we identified NanoLuc substrates that are also transported by P-gp, ABCG2, and their zebrafish homologs. These substrates will elevate the amount of bioluminescent light produced in the transgenic zebrafish with BBB disruption. We transfected HEK293 cells with NanoLuc and either human ABCB1, ABCG2, or their zebrafish homologs Abcb4 or Abcg2a, respectively, and expressed at the zebrafish BBB. We evaluated the luminescence of ten NanoLuc substrates, then screened the eight brightest to determine which are most efficiently effluxed by the ABC transporters. We identified one substrate efficiently pumped out by ABCB1, two by Abcb4, six by ABCG2, and four by Abcg2a. These data will aid in the development of a transgenic zebrafish model of the BBB to identify novel BBB disruptors and should prove useful in the development of other animal models that use NanoLuc as a reporter.

13.
Sci Adv ; 9(36): eadi3441, 2023 09 08.
Artículo en Inglés | MEDLINE | ID: mdl-37672582

RESUMEN

Fluorescence-guided intervention can bolster standard therapies by detecting and treating microscopic tumors before lethal recurrence. Tremendous progress in photoimmunotherapy and nanotechnology has been made to treat metastasis. However, many are lost in translation due to heterogeneous treatment effects. Here, we integrate three technological advances in targeted photo-activable multi-agent liposome (TPMAL), fluorescence-guided intervention, and laser endoscopy (ML7710) to improve photoimmunotherapy. TPMAL consists of a nanoliposome chemotherapy labeled with fluorophores for tracking and photosensitizer immunoconjugates for photoimmunotherapy. ML7710 is connected to Modulight Cloud to capture and analyze multispectral emission from TPMAL for fluorescence-guided drug delivery (FGDD) and fluorescence-guided light dosimetry (FGLD) in peritoneal carcinomatosis mouse models. FGDD revealed that TPMAL enhances drug delivery to metastases by 14-fold. ML7710 captured interpatient variability in TPMAL uptake and prompted FGLD in >50% of animals. By combining TPMAL, ML7710, and fluorescence-guided intervention, variation in treatment response was substantially reduced and tumor control improved without side effects.


Asunto(s)
Neoplasias Peritoneales , Animales , Ratones , Neoplasias Peritoneales/terapia , Inmunoterapia , Fototerapia , Nanotecnología , Sistemas de Liberación de Medicamentos , Liposomas
14.
Langmuir ; 28(16): 6645-55, 2012 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-22394160

RESUMEN

Genetically engineered elastin-like polypeptides (ELP) can be interfaced with cetyltrimethyl ammonium bromide (CTAB)-stabilized gold nanorods (GNRs) resulting in the formation of stable dispersions (nanoassemblies). Increasing the dispersion temperature beyond the ELP transition temperature results in phase separation and formation of solid-phase ELP-GNR matrices (nanocomposites). Here, we investigated different physicochemical conditions that influence nanocomposite formation from temperature-induced phase separation of ELP-GNR nanoassemblies. The presence of cetyltrimethyl ammonium bromide (CTAB), used to template the formation of gold nanorods, plays a significant role in the phase separation behavior, with high concentrations of the surfactant leading to dramatic enhancements in ELP transition temperature. Nanocomposites could be generated at 37 °C in the presence of low CTAB concentrations (<1.5 mM); higher concentrations of CTAB necessitated higher temperatures (60 °C) due to elevated transition temperatures. The concentration of gold nanorods, however, had minimal influence on the phase separation behavior and nanocomposite formation. Further analysis of the kinetics of nanocomposite formation using a mathematical model indicated that CTAB largely influenced the early event of coacervation of ELP-GNR nanoassemblies leading to nanocomposites, but had minimal effect on nanocomposite maturation, which is a later-stage longer event. Finally, nanocomposites prepared in the presence of low CTAB concentrations demonstrated a superior photothermal response following laser irradiation compared to those generated using higher CTAB concentrations. Our results on understanding the formation of plasmonic/photothermal ELP-GNR nanocomposites have significant implications for tissue engineering, regenerative medicine, and drug delivery.


Asunto(s)
Oro/química , Nanocompuestos/química , Nanotubos/química , Péptidos/química , Compuestos de Cetrimonio/química , Tamaño de la Partícula , Propiedades de Superficie
15.
Photochem Photobiol ; 98(4): 736-747, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35442536

RESUMEN

The benefits of contrast-enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near-infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell-free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.


Asunto(s)
Azul de Metileno , Oxígeno Singlete , Verde de Indocianina , Imagen Óptica , Proflavina
16.
Artículo en Inglés | MEDLINE | ID: mdl-35735205

RESUMEN

Laser interstitial thermal therapy (LITT) guided by magnetic resonance imaging (MRI) is a new treatment option for patients with brain and non-central nervous system (non-CNS) tumors. MRI guidance allows for precise placement of optical fiber in the tumor, while MR thermometry provides real-time monitoring and assessment of thermal doses during the procedure. Despite promising clinical results, LITT complications relating to brain tumor procedures, such as hemorrhage, edema, seizures, and thermal injury to nearby healthy tissues, remain a significant concern. To address these complications, nanoparticles offer unique prospects for precise interstitial hyperthermia applications that increase heat transport within the tumor while reducing thermal impacts on neighboring healthy tissues. Furthermore, nanoparticles permit the co-delivery of therapeutic compounds that not only synergize with LITT, but can also improve overall effectiveness and safety. In addition, efficient heat-generating nanoparticles with unique optical properties can enhance LITT treatments through improved real-time imaging and thermal sensing. This review will focus on (1) types of inorganic and organic nanoparticles for LITT; (2) in vitro, in silico, and ex vivo studies that investigate nanoparticles' effect on light-tissue interactions; and (3) the role of nanoparticle formulations in advancing clinically relevant image-guided technologies for LITT. This article is categorized under: Therapeutic Approaches and Drug Discovery > Nanomedicine for Neurological Disease Implantable Materials and Surgical Technologies > Nanoscale Tools and Techniques in Surgery.


Asunto(s)
Neoplasias Encefálicas , Hipertermia Inducida , Terapia por Láser , Nanopartículas , Humanos , Terapia por Láser/efectos adversos , Terapia por Láser/métodos , Rayos Láser , Imagen por Resonancia Magnética/métodos , Nanopartículas/uso terapéutico
17.
Metabolites ; 12(11)2022 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-36422237

RESUMEN

Breast cancer is the most diagnosed cancer type in women, with it being the second most deadly cancer in terms of total yearly mortality. Due to the prevalence of this disease, better methods are needed for both detection and treatment. Reduced nicotinamide adenine dinucleotide (NADH) and flavin adenine dinucleotide (FAD) are autofluorescent biomarkers that lend insight into cell and tissue metabolism. As such, we developed an endoscopic device to measure these metabolites in tissue to differentiate between malignant tumors and normal tissue. We performed initial validations in liquid phantoms as well as compared to a previously validated redox imaging system. We also imaged ex vivo tissue samples after modulation with carbonyl cyanide 4-(trifluoromethoxy) phenylhydrazone (FCCP) and a combination of rotenone and antimycin A. We then imaged the rim and the core of MDA-MB-231 breast cancer tumors, with our results showing that the core of a cancerous lesion has a significantly higher optical redox ratio ([FAD]/([FAD] + [NADH])) than the rim, which agrees with previously published results. The mouse muscle tissues exhibited a significantly lower FAD, higher NADH, and lower redox ratio compared to the tumor core or rim. We also used the endoscope to measure NADH and FAD after photodynamic therapy treatment, a light-activated treatment methodology. Our results found that the NADH signal increases in the malignancy rim and core, while the core of cancers demonstrated a significant increase in the FAD signal.

18.
Cancers (Basel) ; 14(3)2022 Feb 04.
Artículo en Inglés | MEDLINE | ID: mdl-35159067

RESUMEN

BACKGROUND: The development of chemoresistance to paclitaxel and carboplatin represents a major therapeutic challenge in ovarian cancer, a disease frequently characterized by malignant ascites and extrapelvic metastasis. Microtentacles (McTNs) are tubulin-based projections observed in detached breast cancer cells. In this study, we investigated whether ovarian cancers exhibit McTNs and characterized McTN biology. METHODS: We used an established lipid-tethering mechanism to suspend and image individual cancer cells. We queried a panel of immortalized serous (OSC) and clear cell (OCCC) cell lines as well as freshly procured ascites and human ovarian surface epithelium (HOSE). We assessed by Western blot ß-tubulin isotype, α-tubulin post-translational modifications and actin regulatory proteins in attached/detached states. We studied clustering in suspended conditions. Effects of treatment with microtubule depolymerizing and stabilizing drugs were described. RESULTS: Among cell lines, up to 30% of cells expressed McTNs. Four McTN morphologies (absent, symmetric-short, symmetric-long, tufted) were observed in immortalized cultures as well as ascites. McTN number/length varied with histology according to metastatic potential. Most OCCC overexpressed class III ß-tubulin. OCCC/OSC cell lines exhibited a trend towards more microtubule-stabilizing post-translational modifications of α-tubulin relative to HOSE. Microtubule depolymerizing drugs decreased the number/length of McTNs, confirming that McTNs are composed of tubulin. Cells that failed to form McTNs demonstrated differential expression of α-tubulin- and actin-regulating proteins relative to cells that form McTNs. Cluster formation is more susceptible to microtubule targeting agents in cells that form McTNs, suggesting a role for McTNs in aggregation. CONCLUSIONS: McTNs likely participate in key aspects of ovarian cancer metastasis. McTNs represent a new therapeutic target for this disease that could refine therapies, including intraperitoneal drug delivery.

19.
ACS Pharmacol Transl Sci ; 4(5): 1578-1587, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36118950

RESUMEN

Efforts to overcome cancer multidrug resistance through inhibition of the adenosine triphosphate-binding cassette (ABC) drug transporters ABCB1 and ABCG2 have largely failed in the clinic. The challenges faced during the development of non-toxic modulators suggest a need for a conceptual shift to new strategies for the inhibition of ABC drug transporters. Here, we reveal the fundamental mechanisms by which photodynamic therapy (PDT) can be exploited to manipulate the function and integrity of ABC drug transporters. PDT is a clinically relevant, photochemistry-based tool that involves the light activation of photosensitizers to generate reactive oxygen species. ATPase activity and in silico molecular docking analyses show that the photosensitizer benzoporphyrin derivative (BPD) binds to ABCB1 and ABCG2 with micromolar half-maximal inhibitory concentrations in the absence of light. Light activation of BPD generates singlet oxygen to further reduce the ATPase activity of ABCB1 and ABCG2 by up to 12-fold in an optical dose-dependent manner. Gel electrophoresis and Western blotting revealed that light-activated BPD induces the aggregation of these transporters by covalent cross-linking. We provide a proof of principle that PDT affects the function of ABCB1 and ABCG2 by modulating the ATPase activity and protein integrity of these transporters. Insights gained from this study concerning the photodynamic manipulation of ABC drug transporters could aid in the development and application of new optical tools to overcome the multidrug resistance that often develops after cancer chemotherapy.

20.
Nanophotonics ; 10(12): 3049-3061, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35070633

RESUMEN

Accurate detection of ATP-binding cassette drug transporter ABCB1 expression is imperative for precise identification of drug-resistant tumors. Existing detection methods fail to provide the necessary molecular details regarding the functional state of the transporter. Photo-immunoconjugates are a unique class of antibody-dye conjugates for molecular diagnosis and therapeutic treatment. However, conjugating hydrophobic photosensitizers to hydrophilic antibodies is quite challenging. Here, we devise a photoimmunoconjugate that combines a clinically approved benzoporphyrin derivative (BPD) photosensitizer and the conformational-sensitive UIC2 monoclonal antibody to target functionally active human ABCB1 (i.e., ABCB1 in the inward-open conformation). We show that PEGylation of UIC2 enhances the BPD conjugation efficiency and reduces the amount of non-covalently conjugated BPD molecules by 17%. Size exclusion chromatography effectively separates the different molecular weight species found in the UIC2-BPD sample. The binding of UIC2-BPD to ABCB1 was demonstrated in lipidic nanodiscs and ABCB1-overexpressing triple negative breast cancer (TNBC) cells. UIC2-BPD was found to retain the conformation sensitivity of UIC2, as the addition of ABCB1 modulators increases the antibody reactivity in vitro. Thus, the inherent fluorescence capability of BPD can be used to label ABCB1-overexpressing TNBC cells using UIC2-BPD. Our findings provide insight into conjugation of hydrophobic photosensitizers to conformation-sensitive antibodies to target proteins expressed on the surface of cancer cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA