Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Antimicrob Chemother ; 79(1): 61-65, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-37965874

RESUMEN

OBJECTIVES: To investigate the genetic context and transferability of the oxazolidinone resistance gene optrA in a Streptococcus parasuis isolate. METHODS: The optrA-carrying S. parasuis isolate SFJ45 was characterized by PCR, antimicrobial susceptibility testing, complete genome sequencing and bioinformatic analysis. The transferability of optrA was verified by conjugation, followed by SmaI-PFGE and Southern blotting. RESULTS: The S. parasuis isolate SFJ45 was positive for optrA, mef(A), msr(D), erm(B), tetAB(P)', tet(M), aadE, aphA3, catQ, dfrG and mdt(A), conferring an MDR phenotype. The optrA gene was flanked by ISS1N at both termini in the same orientation, representing a novel 8750 bp pseudo-compound transposon, organized as the ISS1N-hth-clb-4hp-optrA-2hp-ISS1N structure. The ISS1N-optrA-carrying transposon was further inserted within an integrative and conjugative element, ICESpsuSFJ45, at 3' end of the fda gene. Conjugative transfer of the ISS1N-optrA-carrying transposon with ICESpsuSFJ45 was observed from S. parasuis to Streptococcus suis at a frequency of (1.01 ± 3.12) × 10-7. CONCLUSIONS: ISS1N was found to be associated with optrA spreading for the first time. Integration of the ISS1N-optrA transposon within ICESpsuSFJ45 may lead to the co-selection of optrA with other antimicrobial resistance genes, contributing to its horizontal transfer from S. parasuis to clinically more important bacterial pathogens.


Asunto(s)
Antiinfecciosos , Streptococcus suis , Farmacorresistencia Bacteriana/genética , Genes Bacterianos , Antiinfecciosos/farmacología , Antibacterianos/farmacología
2.
Antimicrob Agents Chemother ; 67(7): e0004723, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37289048

RESUMEN

The emergence of TMexCD1-TOprJ1, a novel transferable resistance-nodulation-division (RND)-type efflux pump conferring resistance to tigecycline, is now a serious public health issue in the world. Here, we found that melatonin synergistically enhanced the antibacterial efficacy of tigecycline against tmexCD1-toprJ1-positive Klebsiella pneumoniae by disrupting the proton driving force and efflux function to promote the accumulation of tigecycline into cells, damaging cell membrane integrity and causing the leakage of cell contents. The synergistic effect was further validated by a murine thigh infection model. The results revealed that the melatonin/tigecycline combination is a potential therapy to combat resistant bacteria carrying the tmexCD1-toprJ1 gene.


Asunto(s)
Infecciones por Klebsiella , Melatonina , Animales , Ratones , Tigeciclina/farmacología , Melatonina/farmacología , Melatonina/metabolismo , Minociclina/farmacología , Infecciones por Klebsiella/tratamiento farmacológico , Infecciones por Klebsiella/microbiología , Farmacorresistencia Bacteriana/genética , Proteínas de Transporte de Membrana/genética , Antibacterianos/uso terapéutico , Adyuvantes Inmunológicos , Adyuvantes Farmacéuticos , Pruebas de Sensibilidad Microbiana , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo
3.
Microb Pathog ; 150: 104722, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33421607

RESUMEN

The spread of antimicrobial resistance (AMR) in Escherichia coli is a complex process linked with various mobile genetic elements (MGEs) like plasmids, transposons, and integrons. This study aimed to determine the co-occurrence of ESBL and mcr-1 and their physical linkage with MGEs in E. coli. E. coli strains of chicken origin were obtained from different commercial farms of eastern China from 2010 to 2011. Antimicrobial sensitivity testing, identification of different antibiotic-resistant genes (ARGs), and prevalence and evidence involvement of integrons, ISEcp1, ISCR1, and ISApl1, were determined. A multiplex PCR was used to detect virulence genes and the phylogenetic clustering of isolates. Conjugation experiments, plasmid replicon typing were performed to know the transferability of ARGs and MGEs. A total of 83.33% of isolates were found to be multidrug-resistant (MDR). The incidence rate of blaCTX-M, blaSHV,blaTEM, and mcr-1 was found to be 30%, 10.95%, 8.09%, and 36.66%, respectively. The most prevalent combination was noticed for mcr-1 and blaCTX-M 73%, whereas the most prominent blaCTX-M alleles found, were blaCTX-M-55 46%, followed by blaCTX-M-14 31%, and blaCTX-M-15 13%. The frequency of ISEcp1, ISCR1, ISApl1, and int1 was 27.77%, 53.70%, 51.85%, and 70.37% respectively. Most ß-lactamases, especially blaCTX-M, blaSHV, and blaTEM, were associated with ISEcp1, ISCR1, and Integron 1, whereas the ISAPl1-mcr-1 segment was observed in mcr-1-positive E. coli isolates. Phylogrouping revealed that group A was the most predominant phylotype, whereas the common virulence genes detected in these isolates were EHEC, EAEC, and EPEC. Conjugation assay also indicated that multiple genetic elements were involved; common plasmids identified were FIB 61.11%, followed by IncHI2 48.14%, and FrepB 33.33%. Propagation of such MDR strains carrying multiple resistance elements among the bacterial population is a threat of worry.


Asunto(s)
Infecciones por Escherichia coli , Proteínas de Escherichia coli , Animales , Antibacterianos/farmacología , Pollos , China , Farmacorresistencia Bacteriana Múltiple/genética , Escherichia coli/genética , Infecciones por Escherichia coli/veterinaria , Proteínas de Escherichia coli/genética , Pruebas de Sensibilidad Microbiana , Filogenia , Plásmidos/genética , beta-Lactamasas/genética
4.
J Dairy Sci ; 104(4): 4893-4903, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33551160

RESUMEN

Streptococcus agalactiae is a contagious pathogen that causes bovine mastitis worldwide, resulting in considerable economic losses. In this study, we isolated 42 S. agalactiae strains in 379 milk samples from cows with subclinical mastitis on 15 dairy farms in 12 Chinese provinces. Analysis based on capsular typing and multilocus sequence typing, combined with patterns of virulence gene scanning and antimicrobial resistance, identified the lineages and populations of the isolates. We grouped the 42 isolates into 7 sequence types belonging to 6 clonal complexes, mainly CC103 (31/42 isolates; 73.8%). We identified an ST-23 strain named Sa 129 for the first time on Chinese dairy farms-this strain is usually associated with human isolates. Capsular types Ia and II were predominant in capsular typing. The prevalence of virulence profile 1 (bibA, cfb, cspA, cylE, fbsA, fbsB, hylB, and pavA) was 64.3%, and represented the main trend in China. With respect to antimicrobial resistance, most isolates were susceptible to ß-lactams, rifamycin, glycopeptides, and oxazolidone; resistance to several antimicrobial agents, including lincomycin, clindamycin, and doxycycline, varied in 4 different regions. Our research provides a profile for the molecular epidemiology, multilocus sequence typing, antimicrobial resistance, and virulence gene clustering of S. agalactiae, and may be beneficial for the clinical monitoring, prevention, and control of mastitis in dairy cattle.


Asunto(s)
Enfermedades de los Bovinos , Mastitis Bovina , Mastitis , Animales , Antibacterianos/farmacología , Bovinos , China/epidemiología , Análisis por Conglomerados , Femenino , Mastitis/veterinaria , Mastitis Bovina/epidemiología , Epidemiología Molecular , Tipificación de Secuencias Multilocus , Streptococcus agalactiae/genética , Virulencia/genética , Factores de Virulencia/genética
5.
J Vet Pharmacol Ther ; 43(2): 179-188, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32039497

RESUMEN

Biopharmaceutics Classification System (BCS) has gained broad acceptance in promoting the development of human drugs. To date, the applicability of existing human BCS criteria has not been evaluated in chickens. The objective of this study was to discuss the feasibility of BCS extrapolation between species and establish a preliminary chicken BCS by classifying seven veterinary commonly used drugs including metronidazole, amoxicillin, sulfamethoxazole, sulfadiazine, ciprofloxacin hydrochloride, doxycycline hydrochloride, and trimethoprim. Firstly, we finished the determination of physiological parameters affecting solubility in chickens, including body temperature, gastrointestinal pH, and the fluid volume in the gastrointestinal tract (GI), and the drug is considered highly soluble in chicken BCS when the highest dose strength is soluble in 20.40 ml (fed) or 6.73 ml (fasted) over the pH range of 1-8 at 41°C. Drug solubility classification was based on dose number calculation. Metronidazol and amoxicillin were classed differently under fed and fasted conditions. Secondly, we discussed the effect of ABC transporters (MDCK vs. MDCK-chAbcb1/Abcg2) and pH (5.5 vs. 7.4) on drug permeability and classification. The drug is classified as highly permeable when its permeability is equal to or greater than metoprolol tartrate. Though ABC transporters and pH significantly affected the permeability values of drugs (p < .05), the permeability classification of the drugs has not been changed except for sulfamethoxazole. This work highlights some of the significant challenges that would be encountered in order to develop a chicken BCS, this valuable information could serve as a helpful tool during chicken drugs development and to minimize the potential risks when developing formulations.


Asunto(s)
Antiinfecciosos/clasificación , Antiinfecciosos/farmacocinética , Pollos/metabolismo , Animales , Antiinfecciosos/química , Transporte Biológico , Células CACO-2 , Perros , Tracto Gastrointestinal/efectos de los fármacos , Tracto Gastrointestinal/fisiología , Humanos , Concentración de Iones de Hidrógeno , Células de Riñón Canino Madin Darby , Permeabilidad , Solubilidad
6.
J Antimicrob Chemother ; 74(9): 2524-2530, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31236590

RESUMEN

OBJECTIVES: To characterize the oxazolidinone resistance gene poxtA on broad-host-range Inc18 plasmids from CC17 Enterococcus faecium of pig origin. METHODS: Oxazolidinone-resistant E. faecium isolates were screened for the presence of poxtA. The poxtA-carrying isolates were characterized by antimicrobial susceptibility testing, conjugation, S1-PFGE and hybridization. The poxtA-carrying plasmids were completely sequenced and their instability was verified. RESULTS: Two individual CC17 E. faecium strains were positive for poxtA. S1-PFGE and hybridization revealed the presence of a poxtA-carrying plasmid of ∼62 kb in both WZ27-2 and the transconjugant, while poxtA-carrying plasmids of different sizes were observed in QF25-1 and the transconjugant. The two poxtA-carrying plasmids, pC25-1 and pC27-2, belonged to the broad-host-range plasmids of the Inc18 family and carried dfrG, aadE, Δsat4, aph(3')-III, erm(B), tet(M), tet(L) and fexB. Plasmid pC27-2 was virtually identical to pC25-1, with minor differences. The calculated transfer frequency was ∼0.87 × 10-8 and ∼1.03 × 10-7 per recipient to plasmids pC25-1 and pC27-2, respectively. Instability assays of the region with four adjacent IS1216Es, which forms three IS1216E translocatable units, revealed the formation of a series of mosaic circular intermediates. CONCLUSIONS: We report the emergence of the plasmid-mediated oxazolidinone resistance gene poxtA in E. faecium from different farms in China. Comparison of the poxtA genetic context suggests that IS1216E elements play an important role in the dissemination of poxtA. The co-occurrence of poxtA with other antimicrobial and heavy metal resistance genes on the broad-host-range plasmids of the Inc18 family may lead to the co-selection of poxtA, contributing to its persistence and accelerating its dissemination.


Asunto(s)
Antiinfecciosos/farmacología , Proteínas Bacterianas/genética , Enterococcus faecium/genética , Infecciones por Bacterias Grampositivas/veterinaria , Oxazolidinonas/farmacología , Enfermedades de los Porcinos/microbiología , Animales , China/epidemiología , Conjugación Genética , Enterococcus faecium/efectos de los fármacos , Granjas , Heces/microbiología , Infecciones por Bacterias Grampositivas/epidemiología , Infecciones por Bacterias Grampositivas/microbiología , Especificidad del Huésped , Plásmidos/genética , Porcinos , Enfermedades de los Porcinos/epidemiología
7.
Int J Mol Sci ; 20(8)2019 Apr 22.
Artículo en Inglés | MEDLINE | ID: mdl-31013627

RESUMEN

Overcoming P-glycoprotein (P-gp) efflux is a strategy to improve the absorption and pharmacokinetics of its substrate drugs. Berberine inhibits P-gp and thereby increases the bioavailability of the P-gp substrate digoxin in rodents. However, the effects of berberine on P-gp in chickens are still unclear. Here, we studied the role of berberine in modulating broilers P-gp expression and function through both in situ and in vitro models. In addition, molecular docking was applied to analyze the interactions of berberine with P-gp as well as with chicken xenobiotic receptor (CXR). The results showed that the mRNA expression levels of chicken P-gp and CXR decreased in the ileum following exposure to berberine. The absorption rate constant of rhodamine 123 increased after berberine treatment, as detected using an in situ single-pass intestinal perfusion model. Efflux ratios of P-gp substrates (tilmicosin, ciprofloxacin, clindamycin, ampicillin, and enrofloxacin) decreased and the apparent permeability coefficients increased after co-incubation with berberine in MDCK-chAbcb1 cell models. Bidirectional assay results showed that berberine could be transported by chicken P-gp with a transport ratio of 4.20, and this was attenuated by verapamil (an inhibitor of P-gp), which resulted in a ratio of 1.13. Molecular docking revealed that berberine could form favorable interactions with the binding pockets of both CXR and P-gp, with docking scores of -7.8 and -9.5 kcal/mol, respectively. These results indicate that berberine is a substrate of chicken P-gp and down-regulates P-gp expression in chicken tissues, thereby increasing the absorption of P-gp substrates. Our findings suggest that berberine increases the bioavailability of other drugs and that drug-drug interactions should be considered when it is co-administered with other P-gp substrates with narrow therapeutic windows.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Berberina/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/química , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Berberina/química , Pollos , Perros , Células de Riñón Canino Madin Darby , Modelos Moleculares , Conformación Proteica , ARN Mensajero/genética , Receptores Citoplasmáticos y Nucleares/genética , Receptores Citoplasmáticos y Nucleares/metabolismo , Relación Estructura-Actividad
8.
Arch Toxicol ; 92(6): 2027-2042, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29725709

RESUMEN

Transporters P-glycoprotein (P-gp) and breast cancer resistance protein (BCRP) are known to influence the pharmacokinetics and toxicity of substrate drugs. However, no detailed information is as yet available about functional activity and substrate spectra of chicken P-gp and BCRP. In this study, BCRP single and BCRP/P-gp double-transfected MDCK cell lines (named MDCK-chAbcg2 and MDCK-chAbcg2/Abcb1, respectively) were generated using lentiviral vector system to develop reliable systems for screening the substrates for these two transporters and study the interplay between them. The constructed cell lines significantly expressed functional exogenous proteins and expression persisted for at least 50 generations with no decrease. Enrofloxacin, ciprofloxacin, tilmicosin, sulfadiazine, ampicillin and clindamycin were classified as the substrates of chicken P-gp according to the rules suggested by FDA, as their net efflux ratios were greater than two. Similarly, enrofloxacin, ciprofloxacin, tilmicosin, florfenicol, ampicillin and clindamycin were classified as the substrates of BCRP. Among these drugs, enrofloxacin, ciprofloxacin, tilmicosin, ampicillin, and clindamycin were the cosubstrates of P-gp and BCRP, however, chicken BCRP and P-gp exhibit different affinities to the shared substrates at different concentrations by blocking either one or both transport with specific inhibitors in the coexpression system. It was also found that ceftiofur, amoxicillin and doxycycline were not substrates of either chicken BCRP or the substrates of chicken P-gp. These constructed cell models provide useful systems for high-throughput screening of the potential substrates of chicken BCRP and P-gp as well as the drug-drug interaction mediated via chicken BCRP and P-gp.


Asunto(s)
Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/genética , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Vectores Genéticos/genética , Lentivirus/genética , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP/metabolismo , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Animales , Transporte Biológico , Supervivencia Celular , Pollos , Perros , Resistencia a Medicamentos , Células de Riñón Canino Madin Darby , Preparaciones Farmacéuticas/metabolismo , Especificidad por Sustrato , Transfección
9.
Int J Mol Sci ; 19(10)2018 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-30326566

RESUMEN

Florfenicol (FFC) is a valuable synthetic fluorinated derivative of thiamphenicol widely used to treat infectious diseases in food animals. The aims of the study were to investigate whether FFC is a substrate for the breast cancer resistance protein (BCRP) and whether the transporter influences oral availability of FFC. In vitro transport assays using MDCK-chAbcg2 cells were conducted to assess chicken BCRP-mediated transport of FFC, while in vivo pharmacokinetic experiments with single or combined BCRP inhibitor gefitinib were employed to study the role of BCRP in oral FFC disposition. According to U.S. Food and Drug Administration (FDA) criteria, FFC was found to be a potential BCRP substrate due to the net efflux ratio being over 2.0 (2.37) in MDCK cells stably transfected with chicken BCRP and the efflux completely reversed by a BCRP inhibitor (Gefitinib). The molecular docking results indicated that florfenicol can form favorable interactions with the binding pocket of homology modeled chicken BCRP. Pharmacokinetic studies of FFC in different aged broilers with different expression levels of BCRP showed that higher BCRP expression would cause a lower Area Under Curve (AUC) and a higher clearance of FFC. In addition, more extensive absorption of florfenicol after the co-administration with gefitinib (a BCRP inhibitor) was observed. The overall results demonstrated that florfenicol is a substrate of the chicken breast cancer resistant protein which in turn affects its pharmacokinetic behavior.


Asunto(s)
Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/metabolismo , Antibacterianos/metabolismo , Antibacterianos/farmacocinética , Tianfenicol/análogos & derivados , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/química , Transportador de Casetes de Unión a ATP, Subfamilia G, Miembro 2/genética , Factores de Edad , Animales , Antibacterianos/administración & dosificación , Línea Celular , Pollos , Perros , Expresión Génica , Modelos Moleculares , Conformación Molecular , Unión Proteica , Relación Estructura-Actividad , Especificidad por Sustrato , Tianfenicol/administración & dosificación , Tianfenicol/metabolismo , Tianfenicol/farmacocinética
12.
J Sci Food Agric ; 95(7): 1454-60, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25060787

RESUMEN

BACKGROUND: Acquiring antibiotic resistance genes may change an organism's genetic characteristics and the effect of antibiotics, resulting in a rapid transmission of microbial pathogens. The objectives of this experiment were to identify the features of Streptococcus suis (S. suis) isolated from three pig farms in China which are geographically isolated. RESULTS: Among the isolates, 56.52% were sequence type 7 (ST7), followed by ST1 (26.09%), indicating that ST7 prevails in China, as revealed by multi-locus sequence typing (MLST). Statistical analysis indicated an association between geography, sequence types and antibiotic resistance genotypes. 66.67% of the isolates in Sichuan province presented a (ermB(-) + mefA(-) + tetO(-) + tetM(-)) + ST7 type. The tetM(+) +ST7 type was the most prevalent in Jiangsu province, whereas the strains from Hebei province had a phenotype ermB(+) +tetO(+) +ST1 (63.64%). Pulsed-field gel electrophoresis (PGFE) pattern A2 with 100% similarity reflected the clonal dissemination between Sichuan and Jiangsu provinces. Strains carrying or not carrying antibiotic resistance genes presented different PFGE patterns in Hebei province. CONCLUSION: ST7 is widespread in many regions of China and a clonal dissemination occurred between Sichuan and Jiangsu provinces in diseased pigs. However, ST1 strains with macrolide and tetracycline resistance (ermB(+) +tetO(+) +ST1) isolated from a farm in Hebei province demonstrated that the genetic diversity was contributed by horizontal acquiring of ermB and tetO carrying elements.


Asunto(s)
Antibacterianos , Farmacorresistencia Microbiana/genética , Genes Bacterianos , Variación Genética , Infecciones Estreptocócicas/microbiología , Streptococcus suis/genética , Enfermedades de los Porcinos/microbiología , Crianza de Animales Domésticos , Animales , Antibacterianos/farmacología , Proteínas Bacterianas/genética , China , Tipificación de Secuencias Multilocus , Streptococcus suis/aislamiento & purificación , Porcinos
13.
Life Sci ; 339: 122414, 2024 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-38216121

RESUMEN

Contamination by pathogens, such as bacteria, can irritate a wound and prevent its healing, which may affect the physical fitness of the infected person. As such, the development of more novel nano-biomaterials able to cope with the inflammatory reaction to bacterial infection during the wound healing process to accelerate wound healing is required. Herein, a halofuginone­silver nano thermosensitive hydrogel (HTPM&AgNPs-gel) was prepared via a physical swelling method. HTPM&AgNPs-gel was characterized based on thermogravimetric analysis, differential scanning calorimetry, morphology, injectability, and rheological mechanics that reflected its exemplary nature. Moreover, HTPM&AgNPs-gel was further tested for its ability to facilitate healing of skin fibroblasts and exert antibacterial activity. Finally, HTPM&AgNPs-gel was tested for its capacity to accelerate general wound healing and treat bacterially induced wound damage. HTPM&AgNPs-gel appeared spherical under a transmission electron microscope and showed a grid structure under a scanning electron microscope. Additionally, HTPM&AgNPs-gel demonstrated excellent properties, including injectability, temperature-dependent swelling behavior, low loss at high temperatures, and appropriate rheological properties. Further, HTPM&AgNPs-gel was found to effectively promote healing of skin fibroblasts and inhibit the proliferation of Escherichia coli and Staphylococcus aureus. An evaluation of the wound healing efficacy demonstrated that HTPM&AgNPs-gel had a more pronounced ability to facilitate wound repair and antibacterial effects than HTPM-gel or AgNPs-gel alone, and exhibited ideal biocompatibility. Notably, HTPM&AgNPs-gel also inhibited inflammatory responses in the healing process. HTPM&AgNPs-gel exhibited antibacterial, anti-inflammatory, and scar repair features, which remarkably promoted wound healing. These findings indicated that HTPM&AgNPs-gel holds great clinical potential as a promising and valuable wound healing treatment.


Asunto(s)
Nanopartículas del Metal , Piperidinas , Quinazolinonas , Plata , Humanos , Plata/farmacología , Plata/química , Staphylococcus aureus , Cicatrización de Heridas , Nanopartículas del Metal/química , Antibacterianos/farmacología , Hidrogeles/química , Antiinflamatorios/farmacología
14.
Vet Microbiol ; 293: 110083, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38593623

RESUMEN

Campylobacter spp., such as Campylobacter jejuni and Campylobacter coli, are important zoonotic Gram-negative pathogens that cause acute intestinal diseases in humans. In this study, a retrospective analysis was conducted on previously collected Campylobacter isolates from antimicrobial resistance surveillance. A total of 29 optrA-positive C. coli strains were identified and subjected to second-generation sequencing. Multilocus sequence typing and single nucleotide polymorphism analyses demonstrated that the 29 optrA-positive isolates were genetically homogeneous. Notably, among the 29 isolated strains, the ΔoptrA variants exhibit a nonsense mutation at position 979 where the base C is substituted by T, leading to the formation of a premature termination codon. The alignment of sequences and genetic environmental characteristics suggested that ΔoptrA located on a chromosomally carried multidrug-resistant genomic island. There are other resistant genes on the multidrug resistance genomic island, such as aph(2'')-If, aph(3')-III, aadE, tet(O), tet(L), cat, erm(A), optrA and blaOXA-61. As a result, the 29 ΔoptrA-positive strains displayed susceptibility to both florfenicol and linezolid. The ΔoptrA gene is linked to the erm(A) gene, resulting in the formation of translocatable unit (TU) that are encompassed by two copies of IS1216 mobile elements. Multiple occurrences of similar TUs have been documented in numerous C. coli and provided evidence for the significance of TUs in facilitating the transfer of drug resistance genes in C. coli.


Asunto(s)
Antibacterianos , Infecciones por Campylobacter , Campylobacter coli , Pollos , Farmacorresistencia Bacteriana Múltiple , Islas Genómicas , Campylobacter coli/genética , Campylobacter coli/efectos de los fármacos , Islas Genómicas/genética , Pollos/microbiología , Animales , Farmacorresistencia Bacteriana Múltiple/genética , Antibacterianos/farmacología , Infecciones por Campylobacter/microbiología , Infecciones por Campylobacter/veterinaria , Estudios Retrospectivos , Proteínas Bacterianas/genética , Pruebas de Sensibilidad Microbiana , Tipificación de Secuencias Multilocus , Enfermedades de las Aves de Corral/microbiología , Polimorfismo de Nucleótido Simple
15.
Toxics ; 12(5)2024 Apr 30.
Artículo en Inglés | MEDLINE | ID: mdl-38787107

RESUMEN

The global burden of liver disease is enormous, which highlights the need for effective hepatoprotective agents. It was reported that allicin exhibits protective effects against a range of diseases. In this study, we further evaluated allicin's effect and mechanism in acute hepatic injury. Liver injury in mice was induced by intraperitoneal injection with 1% CCl4 (10 mL/kg/day). When the first dose was given, CCl4 was given immediately after administration of different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day), and then different doses of allicin (40, 20, and 10 mg/kg/day) as well as compound glycyrrhizin (CGI, 80 mg/kg/day) were administrated every 12 h. The animals were dissected 24 h after the first administration. The findings demonstrated a significant inhibition of CCl4-induced acute liver injury following allicin treatment. This inhibition was evidenced by notable reductions in serum levels of transaminases, specifically aspartate transaminase, along with mitigated histological damage to the liver. In this protective process, allicin plays the role of reducing the amounts or the expression levels of proinflammatory cytokines, IL-1ß, IL-6. Furthermore, allicin recovered the activities of the antioxidant enzyme catalase (CAT) and reduced the production of malondialdehyde (MDA) in a dose-dependent manner, and also reduced liver Caspase 3, Caspase 8, and BAX to inhibit liver cell apoptosis. Further analysis showed that the administration of allicin inhibited the increased protein levels of Nuclear factor-erythroid 2-related factor 2 (Nrf2) and NAD(P)H:quinone oxidoreductase 1 (NQO1), which is related to inflammation and oxidative stress. The in vitro study of the LPS-induced RAW264.7 inflammatory cell model confirmed that allicin can inhibit important inflammation-related factors and alleviate inflammation. This research firstly clarified that allicin has a significant protective effect on CCl4-induced liver injury via inhibiting the inflammatory response and hepatocyte apoptosis, alleviating oxidative stress associated with the progress of liver damage, highlighting the potential of allicin as a hepatoprotective agent.

16.
Front Vet Sci ; 10: 1127816, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36968464

RESUMEN

Both ceftiofur (CTO) and high copper are widely utilized in animal production in China, and the occurrence of CTX-M-carrying Escherichia coli in food-producing animals is increasing. There are some specific associations between in-feed high-level copper and antibiotic resistance, but research in Gram-negative bacteria such as E. coli remains scarce. This study aimed to evaluate the effect of high-copper diet on the horizontal transfer of bla CTX-M-1 among E. coli. A total of 32 male SPF rats aged 21 days were randomly assigned to the following four groups: control (6 mg/kg in-feed copper, C-), high copper (240 mg/kg in-feed copper, H-), CTO (6 mg/kg in-feed copper with oral CTO administration, C+), and high copper plus CTO (240 mg/kg in-feed copper with oral CTO administration, H+). All rats were orally inoculated with an E. coli strain harboring a conjugative plasmid carrying bla CTX-M-1, and the C+ and H+ groups were given 10 mg/kg of body weight (BW) CTO hydrochloride at 26, 27, and 28 days, while the C- and H- groups were given salad oil at the same dose. Fecal samples collected at different time points were used for the enumeration of E. coli on Mac plates or for molecular analysis using PCR, pulsed-field gel electrophoresis (PFGE), S1-PFGE, and Southern-blot hybridization. The results showed that the number of the bla CTX-M-1 gene in the H- group was higher and that the loss speed of this gene was slower compared with the C- group. After administration of CTO, the counts of cefotaxime-resistant E. coli were significantly higher in the C+ group than that in the corresponding control group (C+ vs. C-; H+ vs. H-). In the in vitro test, the results showed that the transfer rates of the conjugation induced by the H- (12 mmol/L) group were significantly higher than that of low copper (2 mmol/L) group. The indigenous sensitive isolates, which were homologous to the bla CTX-M-positive isolates of rat feces, were found by PFGE. The further analysis of S1-PFGE and Southern-blot hybridization confirmed that the bla CTX-M-1 gene in new transconjugants was derived from the inoculated strain. Taken together, high-copper diet facilitates the horizontal transfer and maintenance of the resistant genes in the intestine of rats, although the effects of antibiotics on bacterial resistance appearance and maintenance are more obvious.

17.
Vet Microbiol ; 283: 109795, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37269713

RESUMEN

Streptococcus parasuis is a potential opportunistic zoonotic pathogen which is a close relative to Streptococcus suis, which exhibit extensive genetic exchange. The occurrence and dissemination of oxazolidinone resistance poses a severe threat to public health. However, such knowledge about the optrA gene in S. parasuis is limited. Herein, we characterized an optrA-positive multi-resistant S. parasuis isolate AH0906, in which the capsular polysaccharide locus exhibited a hybrid structure of S. suis serotype 11 and S. parasuis serotype 26. The optrA and erm(B) genes were co-located on a novel ICE of the ICESsuYZDH1 family, designated ICESpsuAH0906. IS1216E-optrA-carrying translocatable unit could be formed when excised from ICESpsuAH0906. ICESpsuAH0906 was found to be transferable from isolate AH0906 to Streptococcus suis P1/7RF at a relative high frequency of ∼ 10-5. Nonconservative integrations of ICESpsuAH0906 into the primary site SSU0877 and secondary site SSU1797 with 2-/4-nt imperfect direct repeats in recipient P1/7RF were observed. Upon transfer, the transconjugant displayed elevated MICs of the corresponding antimicrobial agents and performed a weak fitness cost when compared with the recipient strain. To our knowledge, it is the first description of the transfer of optrA in S. prarasuis and the first report of interspecies transfer of ICE with triplet serine integrases (of the ICESsuYZDH1 family). Considering the high transmission frequency of the ICEs and the extensive genetic exchange potential of S. parasuis with other streptococci, attention should be paid to the dissemination of the optrA gene from S. parasuis to clinically more important bacterial pathogens.


Asunto(s)
Antiinfecciosos , Oxazolidinonas , Streptococcus suis , Animales , Genes Bacterianos , Antiinfecciosos/farmacología , Farmacorresistencia Bacteriana/genética , Antibacterianos/farmacología
18.
Microbiol Spectr ; 11(3): e0487522, 2023 06 15.
Artículo en Inglés | MEDLINE | ID: mdl-37070987

RESUMEN

The rapid increase of phenicol-oxazolidinone (PhO) resistance in Streptococcus suis due to transferable resistance gene optrA is a matter of concern. However, genetic mechanisms for the dissemination of the optrA gene remain to be discovered. Here, we selected 33 optrA-positive S. suis isolates for whole-genome sequencing and analysis. The IS1216E element was present in 85% of the optrA-carrying contigs despite genetic variation observed in the flanking region. IS1216E-optrA-carrying segments could be inserted into larger mobile genetic elements (MGEs), including integrative and conjugative elements, plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated circularization occurred to form the IS1216E-optrA-carrying translocatable units, suggesting a crucial role of IS1216E in optrA spreading. Three optrA-carrying MGEs (ICESsuAKJ47_SSU1797, plasmid pSH0918, and prophage ΦSsuFJSM5_rum) were successfully transferred via conjugation at different transfer frequencies. Interestingly, two types of transconjugants were observed due to the multilocus integration of ICESsuAKJ47 into an alternative SSU1943 attachment site along with the primary SSU1797 attachment site (type 1) or into the single SSU1797 attachment site (type 2). In addition, conjugative transfer of an optrA-carrying plasmid and prophage in streptococci was validated for the first time. Considering the abundance of MGEs in S. suis and the mobility of IS1216E-optrA-carrying translocatable units, attention should be paid to the potential risks to public health from the emergence and spread of PhO-resistant S. suis. IMPORTANCE Antimicrobial resistance to phenicols and oxazolidinones by the dissemination of the optrA gene leads to treatment failure in both veterinary and human medicine. However, information about the profile of these MGEs (mobilome) that carry optrA and their transferability in streptococci was limited, especially for the zoonotic pathogen S. suis. This study showed that the optrA-carrying mobilome in S. suis includes integrative and conjugative elements (ICEs), plasmids, prophages, and antibiotic resistance-associated genomic islands. IS1216E-mediated formation of optrA-carrying translocatable units played important roles in optrA spreading between types of MGEs, and conjugative transfer of various optrA-carrying MGEs (ICEs, plasmids, and prophages) further facilitated the transfer of optrA across strains, highlighting a nonignorable risk to public health of optrA dissemination to other streptococci and even to bacteria of other genera.


Asunto(s)
Oxazolidinonas , Streptococcus suis , Humanos , Streptococcus suis/genética , Salud Pública , Genes Bacterianos , Farmacorresistencia Bacteriana/genética , Secuencias Repetitivas Esparcidas
19.
ISME J ; 17(9): 1467-1481, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37369704

RESUMEN

Prophages play important roles in the transduction of various functional traits, including virulence factors, but remain debatable in harboring and transmitting antimicrobial resistance genes (ARGs). Herein we characterize a prevalent family of prophages in Streptococcus, designated SMphages, which harbor twenty-five ARGs that collectively confer resistance to ten antimicrobial classes, including vanG-type vancomycin resistance locus and oxazolidinone resistance gene optrA. SMphages integrate into four chromosome attachment sites by utilizing three types of integration modules and undergo excision in response to phage induction. Moreover, we characterize four subtypes of Alp-related surface proteins within SMphages, the lethal effects of which are extensively validated in cell and animal models. SMphages transfer via high-frequency conjugation that is facilitated by integrative and conjugative elements from either donors or recipients. Our findings explain the widespread of SMphages and the rapid dissemination of ARGs observed in members of the Streptococcus genus.


Asunto(s)
Antiinfecciosos , Profagos , Animales , Profagos/genética , Virulencia/genética , Streptococcus/genética , Farmacorresistencia Microbiana , Antibacterianos/farmacología , Transferencia de Gen Horizontal , Plásmidos , Conjugación Genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA