Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Appl Microbiol Biotechnol ; 107(1): 219-232, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-36434113

RESUMEN

The spread of chikungunya virus (CHIKV) is reaching pandemic levels, and vaccines and antivirals to control CHIKV infection have yet to be approved. Virus-like particles (VLPs), a self-assembled native multi-subunit protein structure, could potentially be used as an antigen for serological detection and vaccine development. In the current study, we describe the production of novel CHIKV VLPs from mosquitoes using a Baculovirus/Mosquito (BacMos) system in a simple Biosafety Level-2 laboratory. Substantial envelope and capsid protein secretions were detected in culture medium. Co-fractionation of CHIKV E2, E1, and capsid proteins via sucrose gradient ultracentrifugation provided evidence of VLP formation. Transmission electron microscopy and dynamic light scattering analysis revealed the formation of VLPs in the form of spherical particles with a diameter of roughly 40 nm in transduced cells and culture medium. VLP-based IgM capture ELISA in CHIKV patient sera revealed native epitopes on the VLPs. These non-purified VLPs were shown to act as an antigen in CHIKV-specific IgM capture ELISA. The immunization of CHIKV-VLPs alone in mice induced a balance CHIKV-specific IgG2a/IgG1 antibodies and neutralized antibody responses. The study provides support for the hypothesis that mosquito cell-derived CHIKV VLPs could serve as a novel antigen for serological detection and the development of vaccines against CHIKV infection. KEY POINTS: • CHIKV VLPs secreted from BacMos-CHIKV 26S-transduced mosquito cell. • This CHIKV VLPs potentially serve as an alternative capture antigen for MAC-ELISA. • Unadjuvanted CHIK VLPs induce CHIKV-specific IgG and NT responses in mice.


Asunto(s)
Fiebre Chikungunya , Virus Chikungunya , Culicidae , Ratones , Animales , Fiebre Chikungunya/prevención & control , Anticuerpos Antivirales , Inmunoglobulina M , Inmunoglobulina G , Proteínas de la Cápside
2.
Int J Mol Sci ; 22(13)2021 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-34202259

RESUMEN

During this global pandemic, cryo-EM has made a great impact on the structure determination of COVID-19 proteins. However, nearly all high-resolution results are based on data acquired on state-of-the-art microscopes where their availability is restricted to a number of centers across the globe with the studies on infectious viruses being further regulated or forbidden. One potential remedy is to employ multipurpose microscopes. Here, we investigated the capability of 200 kV multipurpose microscopes equipped with a direct electron camera in determining the structures of infectious particles. We used 30 nm particles of the grouper nerve necrosis virus as a test sample and obtained the cryo-EM structure with a resolution as high as ∼2.7 Šfrom a setting that used electron counting. For comparison, we tested a high-end cryo-EM (Talos Arctica) using a similar virus (Macrobrachium rosenbergii nodavirus) to obtain virtually the same resolution. Those results revealed that the resolution is ultimately limited by the depth of field. Our work updates the density maps of these viruses at the sub-3Šlevel to allow for building accurate atomic models from de novo to provide structural insights into the assembly of the capsids. Importantly, this study demonstrated that multipurpose TEMs are capable of the high-resolution cryo-EM structure determination of infectious particles and is thus germane to the research on pandemics.


Asunto(s)
Microscopía por Crioelectrón , Microscopía Electrónica de Transmisión , SARS-CoV-2/fisiología , Virión/química , COVID-19/patología , COVID-19/virología , Humanos , Imagenología Tridimensional , Modelos Moleculares , SARS-CoV-2/química , SARS-CoV-2/aislamiento & purificación
3.
Nucleic Acids Res ; 45(16): 9679-9693, 2017 Sep 19.
Artículo en Inglés | MEDLINE | ID: mdl-28934473

RESUMEN

Splicing is initiated by a productive interaction between the pre-mRNA and the U1 snRNP, in which a short RNA duplex is established between the 5' splice site of a pre-mRNA and the 5' end of the U1 snRNA. A long-standing puzzle has been why the AU dincucleotide at the 5'-end of the U1 snRNA is highly conserved, despite the absence of an apparent role in the formation of the duplex. To explore this conundrum, we varied this AU dinucleotide into all possible permutations and analyzed the resulting molecular consequences. This led to the unexpected findings that the AU dinucleotide dictates the optimal binding of cap-binding complex (CBC) to the 5' end of the nascent U1 snRNA, which ultimately influences the utilization of U1 snRNP in splicing. Our data also provide a structural interpretation as to why the AU dinucleotide is conserved during evolution.


Asunto(s)
Proteínas de Unión a Caperuzas de ARN/metabolismo , ARN Nuclear Pequeño/química , ARN Nuclear Pequeño/metabolismo , Emparejamiento Base , Simulación del Acoplamiento Molecular , Complejo Proteico Nuclear de Unión a la Caperuza/genética , Complejo Proteico Nuclear de Unión a la Caperuza/metabolismo , Proteínas de Unión a Caperuzas de ARN/genética , Precursores del ARN/metabolismo , Empalme del ARN , ARN Nuclear Pequeño/genética , Ribonucleoproteína Nuclear Pequeña U1/genética , Ribonucleoproteína Nuclear Pequeña U1/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Levaduras/genética , Levaduras/crecimiento & desarrollo
4.
EMBO J ; 31(17): 3575-87, 2012 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-22850672

RESUMEN

In mammals, a distinct RNA polymerase II form, RNAPII(G) contains a novel subunit Gdown1 (encoded by POLR2M), which represses gene activation, only to be reversed by the multisubunit Mediator co-activator. Here, we employed single-particle cryo-electron microscopy (cryo-EM) to disclose the architectures of RNAPII(G), RNAPII and RNAPII in complex with the transcription initiation factor TFIIF, all to ~19 Å. Difference analysis mapped Gdown1 mostly to the RNAPII Rpb5 shelf-Rpb1 jaw, supported by antibody labelling experiments. These structural features correlate with the moderate increase in the efficiency of RNA chain elongation by RNAP II(G). In addition, our updated RNAPII-TFIIF map showed that TFIIF tethers multiple regions surrounding the DNA-binding cleft, in agreement with cross-linking and biochemical mapping. Gdown1's binding sites overlap extensively with those of TFIIF, with Gdown1 sterically excluding TFIIF from RNAPII, herein demonstrated by competition assays using size exclusion chromatography. In summary, our work establishes a structural basis for Gdown1 impeding initiation at promoters, by obstruction of TFIIF, accounting for an additional dependent role of Mediator in activated transcription.


Asunto(s)
ARN Polimerasa II/metabolismo , Factores de Transcripción TFII/metabolismo , Animales , Unión Competitiva , Bovinos , Cromatografía en Gel , Microscopía por Crioelectrón , Conformación Proteica , ARN Polimerasa II/química , ARN Polimerasa II/ultraestructura , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/ultraestructura , Factores de Transcripción TFII/química , Factores de Transcripción TFII/ultraestructura , Transcripción Genética
5.
Sci Rep ; 14(1): 14079, 2024 06 18.
Artículo en Inglés | MEDLINE | ID: mdl-38890341

RESUMEN

While cryogenic electron microscopy (cryo-EM) is fruitfully used for harvesting high-resolution structures of sizable macromolecules, its application to small or flexible proteins composed of small domains like immunoglobulin (IgG) remain challenging. Here, we applied single particle cryo-EM to Rituximab, a therapeutic IgG mediating anti-tumor toxicity, to explore its solution conformations. We found Rituximab molecules exhibited aggregates in cryo-EM specimens contrary to its solution behavior, and utilized a non-ionic detergent to successfully disperse them as isolated particles amenable to single particle analysis. As the detergent adversely reduced the protein-to-solvent contrast, we employed phase plate contrast to mitigate the impaired protein visibility. Assisted by phase plate imaging, we obtained a canonical three-arm IgG structure with other structures displaying variable arm densities co-existing in solution, affirming high flexibility of arm-connecting linkers. Furthermore, we showed phase plate imaging enables reliable structure determination of Fab to sub-nanometer resolution from ab initio, yielding a characteristic two-lobe structure that could be unambiguously docked with crystal structure. Our findings revealed conformation diversity of IgG and demonstrated phase plate was viable for cryo-EM analysis of small proteins without symmetry. This work helps extend cryo-EM boundaries, providing a valuable imaging and structural analysis framework for macromolecules with similar challenging features.


Asunto(s)
Microscopía por Crioelectrón , Fragmentos Fab de Inmunoglobulinas , Inmunoglobulina G , Conformación Proteica , Microscopía por Crioelectrón/métodos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Inmunoglobulina G/química , Rituximab/química , Humanos , Modelos Moleculares
6.
J Struct Biol ; 184(1): 52-62, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23732819

RESUMEN

TFIIF-a general transcription factor comprising two conserved subunits can associate with RNA polymerase II (RNAPII) tightly to regulate the synthesis of messenger RNA in eukaryotes. Herein, a hybrid method that combines electron microscopy (EM) and Förster resonance energy transfer (FRET) is described and used to localize the C-terminus of the second TFIIF subunit (Tfg2) in the architecture of RNAPII-TFIIF. In the first stage, a poly-histidine tag appended to the Tfg2 C-terminus was labeled with nickel-NTA nanogold and a seven-step single particle EM protocol was devised to obtain the region accessible by the nanogold in 3D, suggesting the Tfg2 C-terminus is proximal to the clamp of RNAPII. Next, the C-termini of the Rpb2 and the Rpb4 subunits of RNAPII, adjacent to the clamp, were selected for placing FRET satellites to enable the nano-positioning (NP) analysis, by which the localization precision was improved such that the Tfg2 C-terminus was found to dwell on the clamp ridge but could move to the clamp top during transcription. Because the tag receptive to the EM or FRET probes can be readily introduced to any protein subunit, this hybrid approach is generally applicable to complement cryo-EM study of many protein complexes to nanometer precision.


Asunto(s)
Subunidades de Proteína/química , ARN Polimerasa II/química , ARN Polimerasa II/genética , Factores de Transcripción TFII/química , Factores de Transcripción TFII/genética , Microscopía por Crioelectrón/métodos , Transferencia Resonante de Energía de Fluorescencia/métodos , Microscopía Electrónica/métodos , Modelos Moleculares , Subunidades de Proteína/genética , Transcripción Genética/genética
7.
Bioconjug Chem ; 23(3): 421-30, 2012 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-22304752

RESUMEN

Here, we report the facile preparation of tunable magnetic Ni-doped near-infrared (NIR) quantum dots (MNIR-QDs) as an efficient probe for targeting, imaging, and cellular sorting applications. We synthesized the MNIR-QDs via a hot colloidal synthesis approach to yield monodisperse and tunable QDs. These hydrophobic QDs were structurally and compositionally characterized and further functionalized with amino-PEG and carboxyl-PEG to improve their biocompatibility. Since QDs are known to be toxic due to the presence of cadmium, we have evaluated the in vitro and in vivo toxicity of our surface-functionalized MNIR-QDs. Our results revealed that surface-functionalized MNIR-QDs did not exhibit significant toxicity at the concentrations used in the experiments and are therefore suitable for biological applications. For further in vitro applications, we covalently linked folic acid to the surface of amino-PEG-coated MNIR-QDs through NHS chemistry to target the folate receptors largely present in the HeLa cells to demonstrate the specific targeting and magnetic behavior of these MNIR-QDs. Improved specificity has been observed with treatment of HeLa cells with the folic acid-linked amino PEG-coated MNIR QDs (FA-PEG-MNIR-QDs) compared to the one without folic acid. Since the synthesized probe has magnetic property, we have also successfully demonstrated sorting between the cells which have taken up the probe with the use of a magnet. Our findings strongly suggest that these functionalized MNIR-QDs can be a potential probe for targeting, cellular sorting, and bioimaging applications.


Asunto(s)
Separación Celular , Neoplasias/patología , Níquel/química , Puntos Cuánticos , Animales , Materiales Biocompatibles , Supervivencia Celular , Células HeLa , Humanos , Rayos Infrarrojos , Ratones , Ratones Endogámicos BALB C , Microscopía Electrónica de Transmisión , Polietilenglicoles/química
8.
Bioconjug Chem ; 23(11): 2173-82, 2012 Nov 21.
Artículo en Inglés | MEDLINE | ID: mdl-23030814

RESUMEN

In the present study, we demonstrate the synthesis and applications of multifunctional gold nanorod-based probes for specific targeting and noninvasive imaging based on localized heating generated by gold nanorods after NIR irradiation. The structural design of the probe consists of MUA (11-mercaptoundecanoic acid)-capped gold nanorods covalently linked with low-molecular-weight chitosan oligosaccharide (M(w) ~5000) via carbodiimide (EDC) coupling agent. This surface modification is performed for complete replacement of toxic CTAB (hexadecyltrimethyl-ammonium chloride) and acid-responsive delivery of gold nanorods in acidic environment as known to be present at tumor surrounding areas. The resulting chitosan oligosaccharide-modified gold nanorods (CO-GNRs) were further conjugated with tumor targeting monoclonal antibody against EGFR (epidermal growth factor receptor) to provide localized targeting functionality owing to the overexpression of EGFR in human oral adenosquamous carcinoma cell line CAL 27. Initial in vitro and in vivo toxicity assessments indicated that CO-GNRs did not induce any significant toxicity and are thus suitable for biological applications. Furthermore, selective targeting and accumulation of CO-GNRs were observed in vitro via two-photon luminescence imaging studies in CAL 27, which was also observed through in vivo targeting studies performed via NIR (near-infrared) laser irradiation in CAL 27 xenografts of BALB/c nude mice. Hence, the CO-GNRs that we have developed are biocompatible and nontoxic and can be a potential candidate for in vivo targeted delivery, noninvasive imaging based on localized hyperthermia, and photothermal-related therapies.


Asunto(s)
Sistemas de Liberación de Medicamentos , Sondas Moleculares/farmacología , Animales , Anticuerpos Monoclonales/inmunología , Reacciones Antígeno-Anticuerpo , Células CHO , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Quitosano/química , Cricetinae , Relación Dosis-Respuesta a Droga , Receptores ErbB/genética , Receptores ErbB/inmunología , Oro/química , Humanos , Rayos Infrarrojos , Mediciones Luminiscentes , Masculino , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Sondas Moleculares/síntesis química , Sondas Moleculares/química , Nanotubos/química , Oligosacáridos/química , Fotones , Relación Estructura-Actividad , Propiedades de Superficie , Distribución Tisular
9.
Front Bioinform ; 1: 788308, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36303748

RESUMEN

The functions of biological macromolecules are often associated with conformational malleability of the structures. This phenomenon of chemically identical molecules with different structures is coined structural polymorphism. Conventionally, structural polymorphism is observed directly by structural determination at the density map level from X-ray crystal diffraction. Although crystallography approach can report the conformation of a macromolecule with the position of each atom accurately defined in it, the exploration of structural polymorphism and interpreting biological function in terms of crystal structures is largely constrained by the crystal packing. An alternative approach to studying the macromolecule of interest in solution is thus desirable. With the advancement of instrumentation and computational methods for image analysis and reconstruction, cryo-electron microscope (cryo-EM) has been transformed to be able to produce "in solution" structures of macromolecules routinely with resolutions comparable to crystallography but without the need of crystals. Since the sample preparation of single-particle cryo-EM allows for all forms co-existing in solution to be simultaneously frozen, the image data contain rich information as to structural polymorphism. The ensemble of structure information can be subsequently disentangled through three-dimensional (3D) classification analyses. In this review, we highlight important examples of protein structural polymorphism in relation to allostery, subunit cooperativity and function plasticity recently revealed by cryo-EM analyses, and review recent developments in 3D classification algorithms including neural network/deep learning approaches that would enable cryo-EM analyese in this regard. Finally, we brief the frontier of cryo-EM structure determination of RNA molecules where resolving the structural polymorphism is at dawn.

10.
J Inorg Biochem ; 225: 111602, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34547604

RESUMEN

In this focused review, we portray the recently reported 2.5 Å cyro-EM structure of the particulate methane monooxygenase (pMMO) from M. capsulatus (Bath). The structure of the functional holo-pMMO near atomic resolution has uncovered the sites of the copper cofactors including the location of the active site in the enzyme. The three coppers seen in the original X-ray crystal structures of the enzyme are now augmented by additional coppers in the transmembrane domain as well as in the water-exposed C-terminal subdomain of the PmoB subunit. The cryo-EM structure offers the first glimpse of the catalytic machinery capable of methane oxidation with high selectivity and efficiency. The findings are entirely consistent with the biochemical and biophysical findings previously reported in the literature, including the chemistry of hydrocarbon hydroxylation, regeneration of the catalyst for multiple turnovers, and the mechanism of aborting non-productive cycles to ensure kinetic competence.


Asunto(s)
Metano/química , Oxigenasas/química , Biocatálisis , Dominio Catalítico , Cobre/química , Hidroquinonas/química , Methylococcus capsulatus/enzimología , NAD/química , Oxidación-Reducción , Conformación Proteica en Hélice alfa , Dominios Proteicos , Subunidades de Proteína/química , Ubiquinona/análogos & derivados , Ubiquinona/química
11.
Commun Biol ; 3(1): 508, 2020 09 11.
Artículo en Inglés | MEDLINE | ID: mdl-32917929

RESUMEN

2D classification plays a pivotal role in analyzing single particle cryo-electron microscopy images. Here, we introduce a simple and loss-less pre-processor that incorporates a fast dimension-reduction (2SDR) de-noiser to enhance 2D classification. By implementing this 2SDR pre-processor prior to a representative classification algorithm like RELION and ISAC, we compare the performances with and without the pre-processor. Tests on multiple cryo-EM experimental datasets show the pre-processor can make classification faster, improve yield of good particles and increase the number of class-average images to generate better initial models. Testing on the nanodisc-embedded TRPV1 dataset with high heterogeneity using a 3D reconstruction workflow with an initial model from class-average images highlights the pre-processor improves the final resolution to 2.82 Å, close to 0.9 Nyquist. Those findings and analyses suggest the 2SDR pre-processor, of minimal cost, is widely applicable for boosting 2D classification, while its generalization to accommodate neural network de-noisers is envisioned.


Asunto(s)
Microscopía por Crioelectrón/métodos , Procesamiento de Imagen Asistido por Computador/métodos , Imagen Individual de Molécula/métodos , Algoritmos , Humanos , Imagenología Tridimensional/métodos , Redes Neurales de la Computación , Conformación Proteica , Canales Catiónicos TRPV/química , Canales Catiónicos TRPV/ultraestructura
12.
Nanoscale ; 10(6): 2820-2824, 2018 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-29362758

RESUMEN

Using the excellent performances of a SACLA (RIKEN/HARIMA, Japan) X-ray free electron laser (X-FEL), coherent diffraction imaging (CDI) was used to detect individual liposome particles in water, with or without inserted doxorubicin nanorods. This was possible because of the electron density differences between the carrier, the liposome, and the drug. The result is important since liposome nanocarriers at present dominate drug delivery systems. In spite of the low cross-section of the original ingredients, the diffracted intensity of drug-free liposomes was sufficient for spatial reconstruction yielding quantitative structural information. For particles containing doxorubicin, the structural parameters of the nanorods could be extracted from CDI. Furthermore, the measurement of the electron density of the solution enclosed in each liposome provides direct evidence of the incorporation of ammonium sulphate into the nanorods. Overall, ours is an important test for extending the X-FEL analysis of individual nanoparticles to low cross-sectional systems in solution, and also for its potential use to optimize the manufacturing of drug nanocarriers.


Asunto(s)
Portadores de Fármacos/química , Liposomas/química , Nanotubos/química , Estudios Transversales , Doxorrubicina , Electrones , Rayos Láser , Difracción de Rayos X
13.
Audiol Neurootol ; 12(3): 198-208, 2007.
Artículo en Inglés | MEDLINE | ID: mdl-17259707

RESUMEN

Connexins (Cx), a large family of membrane proteins, are key components of gap junction channels. These channels are critical intercellular pathways through which ions or small molecules are passed, regulating a variety of physiological and developmental processes. One of these processes is hearing. In the current study, a genetic survey was made on 380 Taiwanese individuals, 260 with nonsyndromic deafness and 120 with normal hearing. All the 380 Taiwanese were screened for the presence of mutations in 8 genes of the Cx gene family. These genes included Cx26 (GJB2), Cx29 (GJE1), Cx30 (GJB6), Cx30.3 (GJB4), Cx31 (GJB3), Cx32 (GJB1), Cx43 (GJA1) and pseudogene [rho] of Cx43 (rho GJA1). Mutations were identified in 7 out of the 8 screened genes of the Cx family from 62 of the 260 deaf subjects (23.85%). Of the 17 mutations observed in the Cx gene family, 11 were novel mutations. Fourteen polymorphisms that were not associated with hearing loss were identified in the Cx gene family. The first 2 most frequently occurring mutations were found in the Cx26 (28/62; 45.16%) and the rho Cx43 (17/62; 27.42%), respectively. Nine cases of mutations were found in the Cx30.3 (9/62; 14.52%). In the Cx30, 1 novel mutation was identified in 1 case (1/62; 1.61%). Two patients with mutations of each of Cx29 and Cx43 were found (2/62; 3.23%). One novel mutation of Cx31 was identified in 3 patients with nonsyndromic deafness (3/62; 4.84%). The Cx32 was the only gene without detecting any mutation or polymorphism.Our study provides information for understanding the importance of genetic factors in nonsyndromic deafness of the Taiwanese and may be of use in the improvement of genetic diagnosis of hearing loss in Taiwan.


Asunto(s)
Conexinas/genética , Sordera/genética , Mutación del Sistema de Lectura , Mutación Missense , Adulto , Niño , Conexina 26 , Conexina 30 , Conexina 43/genética , Sordera/etnología , Salud de la Familia , Femenino , Uniones Comunicantes , Predisposición Genética a la Enfermedad/epidemiología , Genotipo , Humanos , Masculino , Familia de Multigenes/genética , Proteínas del Tejido Nervioso/genética , Taiwán/epidemiología , Proteína beta1 de Unión Comunicante
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA