Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 542
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Nature ; 607(7918): 339-344, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35768511

RESUMEN

Extreme weather conditions associated with climate change affect many aspects of plant and animal life, including the response to infectious diseases. Production of salicylic acid (SA), a central plant defence hormone1-3, is particularly vulnerable to suppression by short periods of hot weather above the normal plant growth temperature range via an unknown mechanism4-7. Here we show that suppression of SA production in Arabidopsis thaliana at 28 °C is independent of PHYTOCHROME B8,9 (phyB) and EARLY FLOWERING 310 (ELF3), which regulate thermo-responsive plant growth and development. Instead, we found that formation of GUANYLATE BINDING PROTEIN-LIKE 3 (GBPL3) defence-activated biomolecular condensates11 (GDACs) was reduced at the higher growth temperature. The altered GDAC formation in vivo is linked to impaired recruitment of GBPL3 and SA-associated Mediator subunits to the promoters of CBP60g and SARD1, which encode master immune transcription factors. Unlike many other SA signalling components, including the SA receptor and biosynthetic genes, optimized CBP60g expression was sufficient to broadly restore SA production, basal immunity and effector-triggered immunity at the elevated growth temperature without significant growth trade-offs. CBP60g family transcription factors are widely conserved in plants12. These results have implications for safeguarding the plant immune system as well as understanding the concept of the plant-pathogen-environment disease triangle and the emergence of new disease epidemics in a warming climate.


Asunto(s)
Aclimatación , Proteínas de Arabidopsis , Arabidopsis , Ambiente , Calentamiento Global , Inmunidad de la Planta , Temperatura , Arabidopsis/crecimiento & desarrollo , Arabidopsis/inmunología , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Unión a Calmodulina/genética , Regulación de la Expresión Génica de las Plantas , Calentamiento Global/estadística & datos numéricos , Interacciones Huésped-Patógeno , Fitocromo B , Enfermedades de las Plantas/genética , Inmunidad de la Planta/genética , Ácido Salicílico/metabolismo , Factores de Transcripción
2.
Nature ; 594(7863): 424-429, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34040255

RESUMEN

Liquid-liquid phase separation (LLPS) has emerged as a central paradigm for understanding how membraneless organelles compartmentalize diverse cellular activities in eukaryotes1-3. Here we identify a superfamily of plant guanylate-binding protein (GBP)-like GTPases (GBPLs) that assemble LLPS-driven condensates within the nucleus to protect against infection and autoimmunity. In Arabidopsis thaliana, two members of this family-GBPL1 and GBPL3-undergo phase-transition behaviour to control transcriptional responses as part of an allosteric switch that is triggered by exposure to biotic stress. GBPL1, a pseudo-GTPase, sequesters catalytically active GBPL3 under basal conditions but is displaced by GBPL3 LLPS when it enters the nucleus following immune cues to drive the formation of unique membraneless organelles termed GBPL defence-activated condensates (GDACs) that we visualized by in situ cryo-electron tomography. Within these mesoscale GDAC structures, native GBPL3 directly bound defence-gene promoters and recruited specific transcriptional coactivators of the Mediator complex and RNA polymerase II machinery to massively reprogram host gene expression for disease resistance. Together, our study identifies a GBPL circuit that reinforces the biological importance of phase-separated condensates, in this case, as indispensable players in plant defence.


Asunto(s)
Arabidopsis/inmunología , Núcleo Celular/química , Núcleo Celular/metabolismo , Proteínas de Unión al GTP/metabolismo , Proteínas Intrínsecamente Desordenadas/metabolismo , Transición de Fase , Inmunidad de la Planta , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/ultraestructura , Núcleo Celular/genética , Núcleo Celular/ultraestructura , Cromatina/genética , Microscopía por Crioelectrón , Proteínas de Unión al GTP/química , Proteínas de Unión al GTP/ultraestructura , Regulación de la Expresión Génica de las Plantas/genética , Proteínas Intrínsecamente Desordenadas/química , Proteínas Intrínsecamente Desordenadas/ultraestructura , Complejo Mediador , Familia de Multigenes/genética , Orgánulos/química , Orgánulos/inmunología , Orgánulos/metabolismo , Orgánulos/ultraestructura , Células Vegetales/química , Células Vegetales/inmunología , Células Vegetales/metabolismo , Células Vegetales/ultraestructura , Enfermedades de las Plantas/inmunología , Inmunidad de la Planta/genética , Regiones Promotoras Genéticas/genética , ARN Polimerasa II/metabolismo , Transcripción Genética
3.
Proc Natl Acad Sci U S A ; 120(37): e2304685120, 2023 Sep 12.
Artículo en Inglés | MEDLINE | ID: mdl-37669384

RESUMEN

Microrobot swarms have seen increased interest in recent years due to their potentials for in vivo delivery and imaging with cooperative propulsion modes and enhanced imaging signals. Yet most swarms developed so far are limited to dense particle aggregates, far simpler than complicated three-dimensional assemblies of anisotropic particles. Here, we show via assembly path design that complex hollow tubular structures can be assembled from simple isotropic colloidal spheres and those complicated, metastable, microtubes can be formed from simple, energetically favorable colloidal membranes. The assembled microtubes can remain intact and roll under a precessing magnetic field, with propulsion directions and velocities precisely controlled by field components. The hollow spaces inside enable these tubular microrobots to grab, transport, and release cargos on command. We also demonstrate unique compressing and uncompressing capabilities with our tubular microrobots, making them effective microtweezers. Our work shows that complicated microrobots can be transformed from simple assemblies, providing an insight on building micromachines.

4.
Bioinformatics ; 40(4)2024 Mar 29.
Artículo en Inglés | MEDLINE | ID: mdl-38552322

RESUMEN

MOTIVATION: Imaging genetics integrates imaging and genetic techniques to examine how genetic variations influence the function and structure of organs like the brain or heart, providing insights into their impact on behavior and disease phenotypes. The use of organ-wide imaging endophenotypes has increasingly been used to identify potential genes associated with complex disorders. However, analyzing organ-wide imaging data alongside genetic data presents two significant challenges: high dimensionality and complex relationships. To address these challenges, we propose a novel, nonlinear inference framework designed to partially mitigate these issues. RESULTS: We propose a functional partial least squares through distance covariance (FPLS-DC) framework for efficient genome wide analyses of imaging phenotypes. It consists of two components. The first component utilizes the FPLS-derived base functions to reduce image dimensionality while screening genetic markers. The second component maximizes the distance correlation between genetic markers and projected imaging data, which is a linear combination of the FPLS-basis functions, using simulated annealing algorithm. In addition, we proposed an iterative FPLS-DC method based on FPLS-DC framework, which effectively overcomes the influence of inter-gene correlation on inference analysis. We efficiently approximate the null distribution of test statistics using a gamma approximation. Compared to existing methods, FPLS-DC offers computational and statistical efficiency for handling large-scale imaging genetics. In real-world applications, our method successfully detected genetic variants associated with the hippocampus, demonstrating its value as a statistical toolbox for imaging genetic studies. AVAILABILITY AND IMPLEMENTATION: The FPLS-DC method we propose opens up new research avenues and offers valuable insights for analyzing functional and high-dimensional data. In addition, it serves as a useful tool for scientific analysis in practical applications within the field of imaging genetics research. The R package FPLS-DC is available in Github: https://github.com/BIG-S2/FPLSDC.

5.
Plant J ; 114(3): 591-612, 2023 05.
Artículo en Inglés | MEDLINE | ID: mdl-36799433

RESUMEN

Immune receptors play important roles in the perception of pathogens and initiation of immune responses in both plants and animals. Intracellular nucleotide-binding domain leucine-rich repeat (NLR)-type receptors constitute a major class of receptors in vascular plants. In the Arabidopsis thaliana mutant suppressor of npr1-1, constitutive 1 (snc1), a gain-of-function mutation in the NLR gene SNC1 leads to SNC1 overaccumulation and constitutive activation of defense responses. From a CRISPR/Cas9-based reverse genetics screen in the snc1 autoimmune background, we identified that mutations in TRAF CANDIDATE 1b (TC1b), a gene encoding a protein with four tumor necrosis factor receptor-associated factor (TRAF) domains, can suppress snc1 phenotypes. TC1b does not appear to be a general immune regulator as it is not required for defense mediated by other tested immune receptors. TC1b also does not physically associate with SNC1, affect SNC1 accumulation, or affect signaling of the downstream helper NLRs represented by ACTIVATED DISEASE RESISTANCE PROTEIN 1-L2 (ADR1-L2), suggesting that TC1b impacts snc1 autoimmunity in a unique way. TC1b can form oligomers and localizes to punctate structures of unknown function. The puncta localization of TC1b strictly requires its coiled-coil (CC) domain, whereas the functionality of TC1b requires the four TRAF domains in addition to the CC. Overall, we uncovered the TRAF domain protein TC1b as a novel positive contributor to plant immunity.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Inmunidad de la Planta , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Mutación , Fenotipo , Enfermedades de las Plantas
6.
J Am Chem Soc ; 146(19): 12895-12900, 2024 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-38696162

RESUMEN

A nickel complex of chiral bisoxazolines catalyzed the stereoselective reductive arylation of ketones in high enantioselectivity. A range of common acyclic and cyclic ketones reacted without the aid of directing groups. Mechanistic studies using isolated complex of a chiral bis(oxazoline) (L)Ni(Ar)Br revealed that Mn reduction was not needed, while Lewis acidic titanium alkoxides were critical to ketone insertion.

7.
J Hepatol ; 80(6): 834-845, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38331323

RESUMEN

BACKGROUND & AIMS: Accumulating evidence has indicated the presence of mature microRNAs (miR) in the nucleus, but their effects on steatohepatitis remain elusive. We have previously demonstrated that the intranuclear miR-204-3p in macrophages protects against atherosclerosis, which shares multiple risk factors with metabolic dysfunction-associated steatotic liver disease (MASLD). Herein, we aimed to explore the functional significance of miR-204-3p in steatohepatitis. METHODS: miR-204-3p levels and subcellular localization were assessed in the livers and peripheral blood mononuclear cells of patients with MASLD. Wild-type mice fed high-fat or methionine- and choline-deficient diets were injected with an adeno-associated virus system containing miR-204-3p to determine the effect of miR-204-3p on steatohepatitis. Co-culture systems were applied to investigate the crosstalk between macrophages and hepatocytes or hepatic stellate cells (HSCs). Multiple high-throughput epigenomic sequencings were performed to explore miR-204-3p targets. RESULTS: miR-204-3p expression decreased in livers and macrophages in mice and patients with fatty liver. In patients with MASLD, miR-204-3p levels in peripheral blood mononuclear cells were inversely related to the severity of hepatic inflammation and damage. Macrophage-specific miR-204-3p overexpression reduced steatohepatitis in high-fat or methionine- and choline-deficient diet-fed mice. miR-204-3p-overexpressing macrophages inhibited TLR4/JNK signaling and pro-inflammatory cytokine release, thereby limiting fat deposition and inflammation in hepatocytes and fibrogenic activation in HSCs. Epigenomic profiling identified miR-204-3p as a specific regulator of ULK1 expression. ULK1 transcription and VPS34 complex activation by intranuclear miR-204-3p improved autophagic flux, promoting the anti-inflammatory effects of miR-204-3p in macrophages. CONCLUSIONS: miR-204-3p inhibits macrophage inflammation, coordinating macrophage actions on hepatocytes and HSCs to ameliorate steatohepatitis. Macrophage miR-204-3p may be a therapeutic target for MASLD. IMPACT AND IMPLICATIONS: Metabolic dysfunction-associated steatotic liver disease (MASLD) is a chronic inflammatory disease ranging from simple steatosis to steatohepatitis. However, the molecular mechanisms underlying the progression of MASLD remain incompletely understood. Here, we demonstrate that miR-204-3p levels in circulating peripheral blood mononuclear cells are negatively correlated with disease severity in patients with MASLD. Nuclear miR-204-3p activates ULK1 transcription and improves autophagic flux, limiting macrophage activation and hepatic steatosis. Our study provides a novel understanding of the mechanism of macrophage autophagy and inflammation in steatohepatitis and suggests that miR-204-3p may act as a potential therapeutic target for MASLD.


Asunto(s)
MicroARNs , MicroARNs/genética , MicroARNs/metabolismo , Animales , Ratones , Humanos , Masculino , Hígado Graso/metabolismo , Hígado Graso/genética , Hígado Graso/etiología , Macrófagos/metabolismo , Ratones Endogámicos C57BL , Hepatocitos/metabolismo , Hígado/metabolismo , Hígado/patología , Dieta Alta en Grasa/efectos adversos , Receptor Toll-Like 4/metabolismo , Receptor Toll-Like 4/genética , Modelos Animales de Enfermedad , Homólogo de la Proteína 1 Relacionada con la Autofagia
8.
J Gen Virol ; 105(5)2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38814698

RESUMEN

Transmissible gastroenteritis virus (TGEV), an enteropathogenic coronavirus, has caused huge economic losses to the pig industry, with 100% mortality in piglets aged 2 weeks and intestinal injury in pigs of other ages. However, there is still a shortage of safe and effective anti-TGEV drugs in clinics. In this study, phloretin, a naturally occurring dihydrochalcone glycoside, was identified as a potent antagonist of TGEV. Specifically, we found phloretin effectively inhibited TGEV proliferation in PK-15 cells, dose-dependently reducing the expression of TGEV N protein, mRNA, and virus titer. The anti-TGEV activity of phloretin was furthermore refined to target the internalization and replication stages. Moreover, we also found that phloretin could decrease the expression levels of proinflammatory cytokines induced by TGEV infection. In addition, we expanded the potential key targets associated with the anti-TGEV effect of phloretin to AR, CDK2, INS, ESR1, ESR2, EGFR, PGR, PPARG, PRKACA, and MAPK14 with the help of network pharmacology and molecular docking techniques. Furthermore, resistant viruses have been selected by culturing TGEV with increasing concentrations of phloretin. Resistance mutations were reproducibly mapped to the residue (S242) of main protease (Mpro). Molecular docking analysis showed that the mutation (S242F) significantly disrupted phloretin binding to Mpro, suggesting Mpro might be a potent target of phloretin. In summary, our findings indicate that phloretin is a promising drug candidate for combating TGEV, which may be helpful for developing pharmacotherapies for TGEV and other coronavirus infections.


Asunto(s)
Antivirales , Simulación del Acoplamiento Molecular , Floretina , Virus de la Gastroenteritis Transmisible , Replicación Viral , Virus de la Gastroenteritis Transmisible/efectos de los fármacos , Animales , Porcinos , Floretina/farmacología , Replicación Viral/efectos de los fármacos , Línea Celular , Antivirales/farmacología , Gastroenteritis Porcina Transmisible/tratamiento farmacológico , Gastroenteritis Porcina Transmisible/virología , Citocinas/metabolismo , Citocinas/genética , Internalización del Virus/efectos de los fármacos
9.
Eur J Nucl Med Mol Imaging ; 51(8): 2458-2466, 2024 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-38563882

RESUMEN

PURPOSE: Positron emission tomography (PET) with prostate-specific membrane antigen (PSMA) targeting tracers has emerged as a valuable diagnostic tool for prostate cancer (PCa), androgen deprivation therapy (ADT) stands as the cornerstone treatment for advanced PCa, yet forecasting the response to hormonal therapy poses a significant clinical hurdle. METHODS: In a prospective cohort of 86 PCa patients undergoing short-term ADT, this study evaluated the prognostic potential of [18F]DCFPyL PET/CT scans. Comprehensive data encompassing clinical profiles, baseline prostate-specific antigen (PSA) levels, and imaging metrics were assessed. We developed predictive models for assessing decreases in PSA levels (PSA50 and PSA70) based on a combination of PET-related parameters and clinical factors. Kaplan-Meier survival analysis was utilized to ascertain the prognostic value of PET-based metrics. RESULTS: In this study, elevated [18F]DCFPyL uptake within the primary tumor, as indicated by a SUV ≥ 6.78 (p = 0.0024), and a reduction in the tumor volume (TV) of primary PSMA-avid tumor with PSMA-TV < 41.96 cm3 (p = 0.038), as well as an increased burden of metastatic PSMA-avid tumor, with PSMA-TV (PSMA-TV ≥ 71.39 cm3) (p = 0.012) were identified in association with diminished progression-free survival (PFS). PET and clinical parameters demonstrated constrained predictive capacity for PSA50 response as indicated by an area under the curve (AUC) of 0.442. CONCLUSION: Our study revealed that pretreatment [18F]DCFPyL uptake in primary or metastatic tumor sites is prognostically relevant in high-risk PCa patients undergoing ADT. Further research is needed to develop robust predictive models in this multifaceted landscape of PCa management.


Asunto(s)
Lisina , Tomografía Computarizada por Tomografía de Emisión de Positrones , Antígeno Prostático Específico , Neoplasias de la Próstata , Urea , Humanos , Masculino , Neoplasias de la Próstata/diagnóstico por imagen , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/patología , Anciano , Antígeno Prostático Específico/sangre , Lisina/análogos & derivados , Urea/análogos & derivados , Urea/uso terapéutico , Persona de Mediana Edad , Antagonistas de Andrógenos/uso terapéutico , Recurrencia , Resultado del Tratamiento
10.
Langmuir ; 40(20): 10676-10684, 2024 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-38736194

RESUMEN

Janus mesh with two-sided asymmetric wettability shows high potential for selective oil-water and emulsion separation. However, it remains a challenge to construct Janus mesh structures with good stability and extremely asymmetric wettability. Herein, a novel Janus mesh with asymmetric wettability was structured by two different precursors, polydimethylsiloxane/zinc oxide (PDMS/ZnO) and zinc oxide-polyacrylonitrile/N,N-dimethylformamide (ZnO-PAN/DMF), by electrostatic printing, including electrostatic air spraying and electrostatic spinning. The prepared Janus mesh has special micro-nanostructures on two sides, including PDMS@ZnO and ZnO@PAN. On the basis of gravity, when the placement direction is changed, Janus mesh can effectively separate oil-water mixtures of different densities and surfactant-stabilized oil-water emulsions. Meanwhile, the obtained Janus mesh exhibited good separation efficiency (>96.3%) for various oil-water mixtures, and the flux was up to 2621 ± 30 L m-2 h-1. The Janus mesh was cycled 20 times with no weakening in separation efficiency, indicating satisfactory cycling stability. The Janus mesh displayed good stability under harsh conditions (acidic, alkaline, and high temperature). The Janus mesh can realize low energy input and long-lasting oil-water separation, which has widespread application prospects in intelligent oil-water separation. This top-down electrostatic printing strategy provides a way to construct Janus interface materials with practical applications.

11.
Environ Sci Technol ; 58(1): 449-458, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38130002

RESUMEN

Nitrogen is an essential nutrient and a major limiting element for the ocean ecosystem. Since the preindustrial era, substantial amounts of nitrogen from terrestrial sources have entered the ocean via rivers, groundwater, and atmospheric deposition. China serves as a key hub in the global nitrogen cycle, but the pathways, sources, and potential mitigation strategies for land-ocean nitrogen transport are unclear. By combining the CHANS, WRF-Chem, and WNF models, we estimated that 8 million tonnes (Tg) of nitrogen was transferred into the ocean in 2017 in China, with atmospheric deposition contributing 1/3. About half variation of the offshore chlorophyll concentration was explained by atmospheric deposition. The Bohai Sea was the hot spot of nitrogen input, estimated at 214 kg N ha-1, while other areas were around 25-51 kg N ha-1. The largest contributors are agricultural systems (4 Tg, 55%), followed by domestic sewage (2 Tg, 21%). Abatement measures could reduce nitrogen export to the ocean by 43%, and mitigating ammonia and nitrogen oxide emissions accounts for 33% of this reduction, highlighting the importance of addressing air pollution in resolving ocean pollution. The cost-benefit analysis suggests the priority of nitrogen reduction in cropland and transport systems for the ocean environment.


Asunto(s)
Contaminación del Aire , Ecosistema , Nitrógeno/análisis , Ambiente , Contaminación Ambiental/análisis , Contaminación del Aire/análisis , China , Monitoreo del Ambiente
12.
Bioorg Med Chem ; 108: 117776, 2024 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-38852257

RESUMEN

Myocardial ischemia/reperfusion (MI/R) is a common cardiovascular disease that seriously affects the quality of life and prognosis of patients. In recent years, matrine has attracted widespread attention in the treatment of cardiovascular diseases. This study designed, synthesized, and characterized 20 new matrine derivatives and studied their protective effects on ischemia-reperfusion injury through in vivo and in vitro experiments. Based on cellular assays, most newly synthesized derivatives have a certain protective effect on Hypoxia/Reoxygenation (H/R) induced H9C2 cell damage, with compound 22 having the best activity and effectively reducing cell apoptosis and necrosis. In vitro experimental data shows that compound 22 can significantly reduce the infarct size of rat myocardium and improve cardiac function after MI/R injury. In summary, compound 22 is a new potential cardioprotective agent that can promote angiogenesis and enhance antioxidant activity by activating ADCY5, CREB3l4, and VEGFA, thereby protecting myocardial cell apoptosis and necrosis induced by MI/R.


Asunto(s)
Alcaloides , Apoptosis , Diseño de Fármacos , Matrinas , Daño por Reperfusión Miocárdica , Quinolizinas , Ratas Sprague-Dawley , Alcaloides/farmacología , Alcaloides/química , Alcaloides/síntesis química , Animales , Quinolizinas/farmacología , Quinolizinas/síntesis química , Quinolizinas/química , Daño por Reperfusión Miocárdica/tratamiento farmacológico , Daño por Reperfusión Miocárdica/patología , Ratas , Apoptosis/efectos de los fármacos , Masculino , Relación Estructura-Actividad , Estructura Molecular , Cardiotónicos/farmacología , Cardiotónicos/síntesis química , Cardiotónicos/química , Relación Dosis-Respuesta a Droga , Línea Celular , Neovascularización Fisiológica/efectos de los fármacos , Angiogénesis
13.
Bioorg Chem ; 143: 107025, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38103332

RESUMEN

Two novel naturally occurring [4 + 2] Diels-Alder cycloaddition ergosteroids (1 and 2), three undescribed oxidized ergosteroids (3-5), and eleven known analogs (6-16) were isolated from Penicillium herquei. Compounds 1 and 2 represent the first reported cycloadducts of a steroid with 1,4,6-trimethyl-1,6-dihydropyridine-2,5-dione or 4,6-dimethyl-1,6-dihydropyridine-2,5-dione to date. Compound 3 is the C-15 epimer of (22E,24R)-9α,11ß-dihydroxyergosta-4,6,8(14),22-tetraen-3-one (14). The chemical structures of these compounds were elucidated through widespread spectroscopic analyses, mainly including HRESIMS and 1D and 2D NMR data, calculated 13C NMR-DP4+ analysis, and electronic circular dichroism (ECD) data analyses. Biological evaluations of Compounds 1-16 revealed that 3, 9-11, and 15 inhibited the production of NO in LPS-induced RAW264.7 cells with an IC50 value from 7.37 ± 0.69 to 38.9 ± 2.25 µM (the positive control dexamethasone IC50: 9.54 ± 0.71 µM). In addition, Compound 3 exhibited a potent inhibitory effect on the secretion of the proinflammatory cytokines TNF-α and IL-6, the transcription level of the proinflammatory macrophage markers TNF-α, and the expression of the iNOS protein.


Asunto(s)
Dihidropiridinas , Penicillium , Reacción de Cicloadición , Factor de Necrosis Tumoral alfa , Penicillium/química , Espectroscopía de Resonancia Magnética , Estructura Molecular
14.
Bioorg Chem ; 146: 107297, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38503027

RESUMEN

In our previous study, a screening of a variety of lycotonine-type diterpenoid alkaloids were screened for cardiotonic activity revealed that lycoctonine had moderate cardiac effect. In this study, a series of structurally diverse of lycoctonine were synthesized by modifying on B-ring, D-ring, E-ring, F-ring, N-atom or salt formation on lycoctonine skeleton. We evaluated the cardiotonic activity of the derivatives by isolated frog heart, aiming to identify some compounds with significantly enhanced cardiac effects, among which compound 27 with a N-isobutyl group emerged as the most promising cardiotonic candidate. Furthermore, the cardiotonic mechanism of compound 27 was preliminarily investigated. The result suggested that the cardiotonic effect of compound 27 is related to calcium channels. Patch clamp technique confirmed that the compound 27 had inhibitory effects on CaV1.2 and CaV3.2, with inhibition rates of 78.52 % ± 2.26 % and 79.05 % ± 1.59 % at the concentration of 50 µM, respectively. Subsequently, the protective effect of 27 on H9c2 cells injury induced by cobalt chloride was tested. In addition, compound 27 can alleviate CoCl2-induced myocardial injury by alleviating calcium overload. These findings suggest that compound 27 was a new structural derived from lycoctonine, which may serve as a new lead compound for the treatment of heart failure.


Asunto(s)
Aconitina/análogos & derivados , Alcaloides , Cardiotónicos , Cardiotónicos/farmacología , Aconitina/química , Alcaloides/farmacología , Alcaloides/química , Canales de Calcio , Calcio
15.
Int J Med Sci ; 21(9): 1629-1639, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006843

RESUMEN

The complete molecular mechanism underlying doxorubicin-induced cardiomyopathy remains incompletely elucidated. In this investigation, we engineered mice with cardiomyocyte-specific sorting nexin 3 knockout (SNX3Cko ) to probe the potential protective effects of SNX3 ablation on doxorubicin-triggered myocardial injury, focusing on GPX4-dependent ferroptosis. Our findings indicate that SNX3 deletion normalized heart contractile/relaxation function and thwarted the escalation of cardiac injury biomarkers following doxorubicin exposure. Additionally, SNX3 deletion in the heart mitigated the inflammatory response and oxidative stress in the presence of doxorubicin. At the molecular level, the detrimental effects of doxorubicin-induced cell death, endoplasmic reticulum (ER) stress, and mitochondrial dysfunction were alleviated by SNX3 deficiency. Molecular analysis revealed the activation of GPX4-mediated ferroptosis by doxorubicin, whereas loss of SNX3 prevented the initiation of GPX4-dependent ferroptosis. Furthermore, treatment with erastin, a ferroptosis inducer, markedly reduced cell viability, exacerbated ER stress, and induced mitochondrial dysfunction in SNX3-depleted cardiomyocytes upon doxorubicin exposure. In summary, our results demonstrate that SNX3 deficiency shielded the heart from doxorubicin-induced myocardial dysfunction by modulating GPX4-associated ferroptosis.


Asunto(s)
Cardiomiopatías , Doxorrubicina , Ferroptosis , Ratones Noqueados , Miocitos Cardíacos , Fosfolípido Hidroperóxido Glutatión Peroxidasa , Nexinas de Clasificación , Ferroptosis/efectos de los fármacos , Ferroptosis/genética , Animales , Doxorrubicina/efectos adversos , Doxorrubicina/toxicidad , Cardiomiopatías/inducido químicamente , Cardiomiopatías/patología , Cardiomiopatías/genética , Nexinas de Clasificación/genética , Nexinas de Clasificación/metabolismo , Ratones , Fosfolípido Hidroperóxido Glutatión Peroxidasa/metabolismo , Fosfolípido Hidroperóxido Glutatión Peroxidasa/genética , Miocitos Cardíacos/efectos de los fármacos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Humanos , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos
16.
Int J Med Sci ; 21(9): 1718-1729, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-39006833

RESUMEN

Isoproterenol (ISO) administration is a well-established model for inducing myocardial injury, replicating key features of human myocardial infarction (MI). The ensuing inflammatory response plays a pivotal role in the progression of adverse cardiac remodeling, characterized by myocardial dysfunction, fibrosis, and hypertrophy. The Mst1/Hippo signaling pathway, a critical regulator of cellular processes, has emerged as a potential therapeutic target in cardiovascular diseases. This study investigates the role of Mst1 in ISO-induced myocardial injury and explores its underlying mechanisms. Our findings demonstrate that Mst1 ablation in cardiomyocytes attenuates ISO-induced cardiac dysfunction, preserving cardiomyocyte viability and function. Mechanistically, Mst1 deletion inhibits cardiomyocyte apoptosis, oxidative stress, and calcium overload, key contributors to myocardial injury. Furthermore, Mst1 ablation mitigates endoplasmic reticulum (ER) stress and mitochondrial fission, both of which are implicated in ISO-mediated cardiac damage. Additionally, Mst1 plays a crucial role in modulating the inflammatory response following ISO treatment, as its deletion suppresses pro-inflammatory cytokine expression and neutrophil infiltration. To further investigate the molecular mechanisms underlying ISO-induced myocardial injury, we conducted a bioinformatics analysis using the GSE207581 dataset. GO and KEGG pathway enrichment analyses revealed significant enrichment of genes associated with DNA damage response, DNA repair, protein ubiquitination, chromatin organization, autophagy, cell cycle, mTOR signaling, FoxO signaling, ubiquitin-mediated proteolysis, and nucleocytoplasmic transport. These findings underscore the significance of Mst1 in ISO-induced myocardial injury and highlight its potential as a therapeutic target for mitigating adverse cardiac remodeling. Further investigation into the intricate mechanisms of Mst1 signaling may pave the way for novel therapeutic interventions for myocardial infarction and heart failure.


Asunto(s)
Vía de Señalización Hippo , Isoproterenol , Infarto del Miocardio , Miocitos Cardíacos , Proteínas Serina-Treonina Quinasas , Transducción de Señal , Animales , Isoproterenol/efectos adversos , Miocitos Cardíacos/metabolismo , Miocitos Cardíacos/patología , Miocitos Cardíacos/efectos de los fármacos , Transducción de Señal/efectos de los fármacos , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Ratones , Humanos , Infarto del Miocardio/patología , Infarto del Miocardio/inducido químicamente , Infarto del Miocardio/metabolismo , Infarto del Miocardio/genética , Remodelación Ventricular/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Estrés del Retículo Endoplásmico/efectos de los fármacos , Apoptosis/efectos de los fármacos , Apoptosis/genética , Inflamación/inducido químicamente , Inflamación/metabolismo , Inflamación/genética , Inflamación/patología , Modelos Animales de Enfermedad , Proteínas Proto-Oncogénicas , Factor de Crecimiento de Hepatocito
17.
Cell Mol Life Sci ; 80(3): 77, 2023 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-36853333

RESUMEN

Oxysterol-binding protein (OSBP) and its related proteins (ORPs) are a family of lipid transfer proteins (LTPs) that mediate non-vesicular lipid transport. ORP9 and ORP10, members of the OSBP/ORPs family, are located at the endoplasmic reticulum (ER)-trans-Golgi network (TGN) membrane contact sites (MCSs). It remained unclear how they mediate lipid transport. In this work, we discovered that ORP9 and ORP10 form a binary complex through intermolecular coiled-coil (CC) domain-CC domain interaction. The PH domains of ORP9 and ORP10 specially interact with phosphatidylinositol 4-phosphate (PI4P), mediating the TGN targeting. The ORP9-ORP10 complex plays a critical role in regulating PI4P levels at the TGN. Using in vitro reconstitution assays, we observed that while full-length ORP9 efficiently transferred PI4P between two apposed membranes, the lipid transfer kinetics was further accelerated by ORP10. Interestingly, our data showed that the PH domains of ORP9 and ORP10 participate in membrane tethering simultaneously, whereas ORDs of both ORP9 and ORP10 are required for lipid transport. Furthermore, our data showed that the depletion of ORP9 and ORP10 led to increased vesicle transport to the plasma membrane (PM). These findings demonstrate that ORP9 and ORP10 form a binary complex through the CC domains, maintaining PI4P homeostasis at ER-TGN MCSs and regulating vesicle trafficking.


Asunto(s)
Retículo Endoplásmico , Fosfatos de Fosfatidilinositol , Transporte Biológico , Membrana Celular , Red trans-Golgi/metabolismo , Proteínas de la Membrana/metabolismo
18.
Chem Biodivers ; 21(6): e202301923, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38191840

RESUMEN

Two new C19-diterpenoid alkaloids of the lycoctonine-type (liangshanine A and liangshanine B) and nineteen known compounds (3-21) were isolated from the whole plant of Delphinium liangshanense W. T. Wang, and all the compounds were identified by different spectroscopic analyses, such as IR, HR-ESI-MS and NMR. All the compounds were isolated from this plant for the first time and tested for the anti-proliferation effects on MH7 A and SF9 cells to figure their anti-rheumatoid arthritis and anti-insect activity, but none of them showed remarkable activity.


Asunto(s)
Alcaloides , Delphinium , Diterpenos , Delphinium/química , Diterpenos/química , Diterpenos/aislamiento & purificación , Diterpenos/farmacología , Alcaloides/química , Alcaloides/aislamiento & purificación , Alcaloides/farmacología , Animales , Proliferación Celular/efectos de los fármacos , Línea Celular , Spodoptera/efectos de los fármacos , Estructura Molecular , Humanos , Conformación Molecular
19.
Chem Biodivers ; 21(2): e202301761, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38117633

RESUMEN

Natural products and their derivatives are a precious treasure in the pursuit of potent anti-inflammatory drugs. In this work, we measured the toxicity of 78 LA derivatives at 20 µM using MTT, then we evaluated the NO release of compounds without obvious toxicity in LPS-induced RAW.264.7 by Griess reagent, we identified three compounds, namely compounds 6, 19, 70, which exhibited promising anti-inflammatory potential. These compounds exhibited IC50 values of 10.34±2.05 µM, 18.18±4.80 µM and 15.66±0.88 µM. In addition, through ELISA kits, compounds 6, 19, 70 significantly reduce the production of inflammatory factors (TNF-α, IL-6, IL-1ß). Real-time PCR and western blot analysis showed that compounds 6, 19, 70 inhibited the mRNA and protein expression of iNOS and COX-2. Notably, compound 6 exhibited the most potent inhibitory activity. In vitro, it inhibits LPS-induced phosphorylation of NF-κB p65, IκBα, ERK1/2, JNK, and p38 MAPKs in RAW264.7 cells. In vivo, compound 6 potently inhibits the secretion of inflammatory mediators and neutrophil activation in ALI mice. Our findings suggest that compound 6 may be a potential anti-inflammatory drug.


Asunto(s)
Aconitina/análogos & derivados , Lipopolisacáridos , FN-kappa B , Animales , Ratones , FN-kappa B/metabolismo , Lipopolisacáridos/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células RAW 264.7 , Inflamación/inducido químicamente , Inflamación/tratamiento farmacológico , Inflamación/metabolismo
20.
J Asian Nat Prod Res ; : 1-10, 2024 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-38996034

RESUMEN

Three new diterpenoid alkaloids (1, 2, 3) and seventeen known (4-20) compounds were isolated from the whole plant of Delphinium sherriffii Munz (Ranunculaceae). Their structures were elucidated by various spectroscopic analyses, including IR, HR-ESI-MS, 1D and 2D NMR spectra. All compounds were evaluated for the inhibitory activity of Sf9 cells and compound 5 exhibited the strongest cytotoxicity (IC50 = 8.97 µM) against Sf9 cell line.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA