Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 84
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Annu Rev Biochem ; 86: 799-823, 2017 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-28426241

RESUMEN

Iron is essential for the survival of most bacteria but presents a significant challenge given its limited bioavailability. Furthermore, the toxicity of iron combined with the need to maintain physiological iron levels within a narrow concentration range requires sophisticated systems to sense, regulate, and transport iron. Most bacteria have evolved mechanisms to chelate and transport ferric iron (Fe3+) via siderophore receptor systems, and pathogenic bacteria have further lowered this barrier by employing mechanisms to utilize the host's hemoproteins. Once internalized, heme is cleaved by both oxidative and nonoxidative mechanisms to release iron. Heme, itself a lipophilic and toxic molecule, presents a significant challenge for transport into the cell. As such, pathogenic bacteria have evolved sophisticated cell surface signaling and transport systems to obtain heme from the host. In this review, we summarize the structure and function of the heme-sensing and transport systems of pathogenic bacteria and the potential of these systems as antimicrobial targets.


Asunto(s)
Proteínas Bacterianas/antagonistas & inhibidores , Membrana Celular/efectos de los fármacos , Hemo/antagonistas & inhibidores , Hierro/metabolismo , Pseudomonas aeruginosa/efectos de los fármacos , Receptores de Superficie Celular/antagonistas & inhibidores , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/síntesis química , Antibacterianos/farmacología , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Transporte Biológico/efectos de los fármacos , Membrana Celular/metabolismo , Pared Celular/efectos de los fármacos , Pared Celular/metabolismo , Expresión Génica , Hemo/metabolismo , Metaloporfirinas/síntesis química , Metaloporfirinas/farmacología , Modelos Moleculares , Conformación Proteica , Pseudomonas aeruginosa/genética , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/metabolismo , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Sideróforos/antagonistas & inhibidores , Sideróforos/biosíntesis , Staphylococcus aureus/genética , Staphylococcus aureus/crecimiento & desarrollo , Staphylococcus aureus/metabolismo
2.
FASEB J ; 38(14): e23842, 2024 Jul 31.
Artículo en Inglés | MEDLINE | ID: mdl-39037554

RESUMEN

G-protein-coupled receptors (GPCRs) belonging to the type 2 taste receptors (TAS2Rs) family are predominantly present in taste cells to allow the perception of bitter-tasting compounds. TAS2Rs have also been shown to be expressed in human airway smooth muscle (ASM), and TAS2R agonists relax ASM cells and bronchodilate airways despite elevating intracellular calcium. This calcium "paradox" (calcium mediates contraction by pro-contractile Gq-coupled GPCRs) and the mechanisms by which TAS2R agonists relax ASM remain poorly understood. To gain insight into pro-relaxant mechanisms effected by TAS2Rs, we employed an unbiased phosphoproteomic approach involving dual-mass spectrometry to determine differences in the phosphorylation of contractile-related proteins in ASM following the stimulation of cells with TAS2R agonists, histamine (an agonist of the Gq-coupled H1 histamine receptor) or isoproterenol (an agonist of the Gs-coupled ß2-adrenoceptor) alone or in combination. Our study identified differential phosphorylation of proteins regulating contraction, including A-kinase anchoring protein (AKAP)2, AKAP12, and RhoA guanine nucleotide exchange factor (ARHGEF)12. Subsequent signaling analyses revealed RhoA and the T853 residue on myosin light chain phosphatase (MYPT)1 as points of mechanistic divergence between TAS2R and Gs-coupled GPCR pathways. Unlike Gs-coupled receptor signaling, which inhibits histamine-induced myosin light chain (MLC)20 phosphorylation via protein kinase A (PKA)-dependent inhibition of intracellular calcium mobilization, HSP20 and ERK1/2 activity, TAS2Rs are shown to inhibit histamine-induced pMLC20 via inhibition of RhoA activity and MYPT1 phosphorylation at the T853 residue. These findings provide insight into the TAS2R signaling in ASM by defining a distinct signaling mechanism modulating inhibition of pMLC20 to relax contracted ASM.


Asunto(s)
Músculo Liso , Receptores Acoplados a Proteínas G , Humanos , Receptores Acoplados a Proteínas G/metabolismo , Receptores Acoplados a Proteínas G/agonistas , Músculo Liso/metabolismo , Músculo Liso/efectos de los fármacos , Fosforilación , Relajación Muscular/efectos de los fármacos , Histamina/metabolismo , Histamina/farmacología , Fosfatasa de Miosina de Cadena Ligera/metabolismo , Isoproterenol/farmacología , Calcio/metabolismo , Proteína de Unión al GTP rhoA/metabolismo , Gusto/fisiología , Miocitos del Músculo Liso/metabolismo , Miocitos del Músculo Liso/efectos de los fármacos , Transducción de Señal , Células Cultivadas
3.
Biol Reprod ; 110(2): 339-354, 2024 Feb 10.
Artículo en Inglés | MEDLINE | ID: mdl-37971364

RESUMEN

Entering pregnancy with a history of adversity, including adverse childhood experiences and racial discrimination stress, is a predictor of negative maternal and fetal health outcomes. Little is known about the biological mechanisms by which preconception adverse experiences are stored and impact future offspring health outcomes. In our maternal preconception stress (MPS) model, female mice underwent chronic stress from postnatal days 28-70 and were mated 2 weeks post-stress. Maternal preconception stress dams blunted the pregnancy-induced shift in the circulating extracellular vesicle proteome and reduced glucose tolerance at mid-gestation, suggesting a shift in pregnancy adaptation. To investigate MPS effects at the maternal:fetal interface, we probed the mid-gestation placental, uterine, and fetal brain tissue transcriptome. Male and female placentas differentially regulated expression of genes involved in growth and metabolic signaling in response to gestation in an MPS dam. We also report novel offspring sex- and MPS-specific responses in the uterine tissue apposing these placentas. In the fetal compartment, MPS female offspring reduced expression of neurodevelopmental genes. Using a ribosome-tagging transgenic approach we detected a dramatic increase in genes involved in chromatin regulation in a PVN-enriched neuronal population in females at PN21. While MPS had an additive effect on high-fat-diet (HFD)-induced weight gain in male offspring, both MPS and HFD were necessary to induce significant weight gain in female offspring. These data highlight the preconception period as a determinant of maternal health in pregnancy and provides novel insights into mechanisms by which maternal stress history impacts offspring developmental programming.


Asunto(s)
Placenta , Aumento de Peso , Humanos , Embarazo , Ratones , Femenino , Masculino , Animales , Placenta/metabolismo , Feto/metabolismo , Transducción de Señal , Dieta Alta en Grasa/efectos adversos
4.
Am J Respir Cell Mol Biol ; 68(1): 23-38, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36067041

RESUMEN

ERK1/2 (extracellular signal-regulated kinases 1 and 2) regulate the activity of various transcription factors that contribute to asthma pathogenesis. Although an attractive drug target, broadly inhibiting ERK1/2 is challenging because of unwanted cellular toxicities. We have identified small molecule inhibitors with a benzenesulfonate scaffold that selectively inhibit ERK1/2-mediated activation of AP-1 (activator protein-1). Herein, we describe the findings of targeting ERK1/2-mediated substrate-specific signaling with the small molecule inhibitor SF-3-030 in a murine model of house dust mite (HDM)-induced asthma. In 8- to 10-week-old BALB/c mice, allergic asthma was established by repeated intranasal HDM (25 µg/mouse) instillation for 3 weeks (5 days/week). A subgroup of mice was prophylactically dosed with 10 mg/kg SF-3-030/DMSO intranasally 30 minutes before the HDM challenge. Following the dosing schedule, mice were evaluated for alterations in airway mechanics, inflammation, and markers of airway remodeling. SF-3-030 treatment significantly attenuated HDM-induced elevation of distinct inflammatory cell types and cytokine concentrations in BAL and IgE concentrations in the lungs. Histopathological analysis of lung tissue sections revealed diminished HDM-induced pleocellular peribronchial inflammation, mucus cell metaplasia, collagen accumulation, thickening of airway smooth muscle mass, and expression of markers of cell proliferation (Ki-67 and cyclin D1) in mice treated with SF-3-030. Furthermore, SF-3-030 treatment attenuated HDM-induced airway hyperresponsiveness in mice. Finally, mechanistic studies using transcriptome and proteome analyses suggest inhibition of HDM-induced genes involved in inflammation, cell proliferation, and tissue remodeling by SF-3-030. These preclinical findings demonstrate that function-selective inhibition of ERK1/2 signaling mitigates multiple features of asthma in a murine model.


Asunto(s)
Asma , Animales , Ratones , Asma/metabolismo , Modelos Animales de Enfermedad , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Inflamación/metabolismo , Pulmón/patología , Ratones Endogámicos BALB C , Pyroglyphidae
5.
FASEB J ; 36(4): e22242, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35253263

RESUMEN

The main active metabolite of Vitamin A, all-trans retinoic acid (RA), is required for proper cellular function and tissue organization. Heart development has a well-defined requirement for RA, but there is limited research on the role of RA in the adult heart. Homeostasis of RA includes regulation of membrane receptors, chaperones, enzymes, and nuclear receptors. Cellular retinol-binding protein, type 1 (CRBP1), encoded by retinol-binding protein, type 1 (Rbp1), regulates RA homeostasis by delivering vitamin A to enzymes for RA synthesis and protecting it from non-specific oxidation. In this work, a multi-omics approach was used to characterize the effect of CRBP1 loss using the Rbp1-/- mouse. Retinoid homeostasis was disrupted in Rbp1-/- mouse heart tissue, as seen by a 33% and 24% decrease in RA levels in the left and right ventricles, respectively, compared to wild-type mice (WT). To further inform on the effect of disrupted RA homeostasis, we conducted high-throughput targeted metabolomics. A total of 222 metabolite and metabolite combinations were analyzed, with 33 having differential abundance between Rbp1-/- and WT hearts. Additionally, we performed global proteome profiling to further characterize the impact of CRBP1 loss in adult mouse hearts. More than 2606 unique proteins were identified, with 340 proteins having differential expression between Rbp1-/- and WT hearts. Pathway analysis performed on metabolomic and proteomic data revealed pathways related to cellular metabolism and cardiac metabolism were the most disrupted in Rbp1-/- mice. Together, these studies characterize the effect of CRBP1 loss and reduced RA in the adult heart.


Asunto(s)
Retinoides , Vitamina A , Animales , Homeostasis , Ratones , Proteómica , Retinoides/metabolismo , Proteínas de Unión al Retinol , Proteínas Celulares de Unión al Retinol/genética , Proteínas Celulares de Unión al Retinol/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo
6.
AIDS Res Ther ; 20(1): 66, 2023 09 10.
Artículo en Inglés | MEDLINE | ID: mdl-37691100

RESUMEN

Human immunodeficiency virus type 1 (HIV-1) is the primary epidemic strain in China. Its genome contains two regulatory genes (tat and rev), three structural genes (gag, pol, and env), and four accessory genes (nef, vpr, vpu, and vif). Long terminal repeats (LTRs) in thegenome regulate integration, duplication, and expression of viral gene. The permissibility of HIV-1 infection hinges on the host cell cycle status. HIV-1 replicates by exploiting various cellular processes via upregulation or downregulation of specific cellular proteins that also control viral pathogenesis. For example, HIV-1 regulates the life cycle of p53, which in turn contributes significantly to HIV-1 pathogenesis. In this article, we review the interaction between HIV-1-associated factors and p53, providing information on their regulatory and molecular mechanisms, hinting possible directions for further research.


Asunto(s)
Infecciones por VIH , VIH-1 , Humanos , VIH-1/genética , Proteína p53 Supresora de Tumor/genética , China , Genes Virales
7.
Am J Respir Cell Mol Biol ; 67(3): 375-388, 2022 09.
Artículo en Inglés | MEDLINE | ID: mdl-35679261

RESUMEN

TLR7 (Toll-like receptor 7), the sensor for single-stranded RNA, contributes to systemic inflammation and mortality in murine polymicrobial sepsis. Recent studies show that extracellular miR-146a-5p serves as a TLR7 ligand and plays an important role in regulating host innate immunity. However, the role of miR-146a-5p and TLR7 signaling in pulmonary inflammation, endothelial activation, and sepsis-associated acute respiratory distress syndrome remains unclear. Here, we show that intratracheal administration of exogenous miR-146a-5p in mice evokes lung inflammation, activates endothelium, and increases endothelial permeability via TLR7-dependent mechanisms. TLR7 deficiency attenuates pulmonary barrier dysfunction and reduces lung inflammatory response in a murine sepsis model. Moreover, the impact of miR-146a-5p-TLR7 signaling on endothelial activation appears to be a secondary effect because TLR7 is undetectable in the human pulmonary artery and microvascular endothelial cells (ECs), which show no response to direct miR-146a-5p treatment in vitro. Both conditioned media of miR-146a-5p-treated macrophages (Mϕ) and septic sera of wild-type mice induce a marked EC barrier disruption in vitro, whereas Mϕ conditioned media or septic sera of TLR7-/- mice do not exhibit such effect. Cytokine array and pathway enrichment analysis of the Mϕ conditioned media and septic sera identify TNFα (tumor necrosis factor α) as the main downstream effector of miR-146a-5p-TLR7 signaling responsible for the EC barrier dysfunction, which is further supported by neutralizing anti-TNFα antibody intervention. Together, these data demonstrate that TLR7 activation elicits pulmonary inflammation and endothelial barrier disruption by sensing extracellular miR-146a-5p and contributes to sepsis-associated acute respiratory distress syndrome.


Asunto(s)
Glicoproteínas de Membrana , MicroARNs , Síndrome de Dificultad Respiratoria , Sepsis , Receptor Toll-Like 7 , Animales , Medios de Cultivo Condicionados , Células Endoteliales/metabolismo , Humanos , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Ratones , MicroARNs/genética , MicroARNs/metabolismo , Síndrome de Dificultad Respiratoria/inmunología , Sepsis/complicaciones , Receptor Toll-Like 7/genética , Receptor Toll-Like 7/metabolismo
8.
Mol Carcinog ; 61(7): 643-654, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35512605

RESUMEN

Cancer stem cells (CSCs) virtually present in all tumors albeit in small numbers are primarily responsible for driving cancer progression, metastasis, drug resistance, and recurrence. Prostate cancer (PCa) is the second most frequent cancer in men worldwide, and castration resistant prostate cancer (CRPC) remains a major challenge despite the tremendous advancements in medicine. Currently, none of the available treatment options are effective in treating CRPC. We earlier reported that VNPP433-3ß, the lead next-generation galeterone analog is effective in treating preclinical in vivo models of CRPC. In this study using RNA-seq, cytological, and biochemical methods, we report that VNPP433-3ß inhibits prostate CSCs by targeting key pathways critical to stemness and epithelial-mesenchymal transition. VNPP433-3ß inhibits CSCs in PCa, presumably by degrading the androgen receptor (AR) thereby decreasing the AR-mediated transcription of several stem cell markers including BMI1 and KLF4. Transcriptome analyses by RNA-seq, Ingenuity Pathway Analysis, and Gene Set Enrichment Analysis demonstrate that VNPP433-3ß inhibits transcription of several genes and functional pathways critical to the prostate CSCs thereby inhibiting CSCs in PCa besides targeting the bulk of the tumor.


Asunto(s)
Neoplasias de la Próstata Resistentes a la Castración , Androstadienos , Bencimidazoles , Línea Celular Tumoral , Transición Epitelial-Mesenquimal , Perfilación de la Expresión Génica , Humanos , Masculino , Células Madre Neoplásicas/patología , Próstata/patología , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Receptores Androgénicos/genética , Receptores Androgénicos/metabolismo
9.
FASEB J ; 35(12): e22016, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34784434

RESUMEN

Vitamin A deficiency has been shown to exacerbate allergic asthma. Previous studies have postulated that retinoic acid (RA), an active metabolite of vitamin A and high-affinity ligand for RA receptor (RAR), is reduced in airway inflammatory condition and contributes to multiple features of asthma including airway hyperresponsiveness and excessive accumulation of airway smooth muscle (ASM) cells. In this study, we directly quantified RA and examined the molecular basis for reduced RA levels and RA-mediated signaling in lungs and ASM cells obtained from asthmatic donors and in lungs from allergen-challenged mice. Levels of RA and retinol were significantly lower in lung tissues from asthmatic donors and house dust mite (HDM)-challenged mice compared to non-asthmatic human lungs and PBS-challenged mice, respectively. Quantification of mRNA and protein expression revealed dysregulation in the first step of RA biosynthesis consistent with reduced RA including decreased protein expression of retinol dehydrogenase (RDH)-10 and increased protein expression of RDH11 and dehydrogenase/reductase (DHRS)-4 in asthmatic lung. Proteomic profiling of non-asthmatic and asthmatic lungs also showed significant changes in the protein expression of AP-1 targets consistent with increased AP-1 activity. Further, basal RA levels and RA biosynthetic capabilities were decreased in asthmatic human ASM cells. Treatment of human ASM cells with all-trans RA (ATRA) or the RARγ-specific agonist (CD1530) resulted in the inhibition of mitogen-induced cell proliferation and AP-1-dependent transcription. These data suggest that RA metabolism is decreased in asthmatic lung and that enhancing RAR signaling using ATRA or RARγ agonists may mitigate airway remodeling associated with asthma.


Asunto(s)
Remodelación de las Vías Aéreas (Respiratorias) , Asma/patología , Hipersensibilidad Respiratoria/patología , Tretinoina/metabolismo , Adulto , Alérgenos/toxicidad , Animales , Asma/etiología , Asma/metabolismo , Estudios de Casos y Controles , Proliferación Celular , Femenino , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Persona de Mediana Edad , Receptores de Ácido Retinoico/agonistas , Hipersensibilidad Respiratoria/etiología , Hipersensibilidad Respiratoria/metabolismo , Receptor de Ácido Retinoico gamma
10.
Nurs Res ; 71(4): 328-335, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35302959

RESUMEN

BACKGROUND: Knee osteoarthritis affects nearly 30% of adults aged 60 years or older and causes significant pain and disability. Walking is considered a "gold standard" treatment option for reducing knee osteoarthritis pain and maintaining joint mobility but does not reduce pain for all adults with knee osteoarthritis pain and may induce pain-particularly when starting a walking routine. The mechanism by which walking is helpful for knee osteoarthritis pain is unclear. Quantitative sensory testing has revealed that knee osteoarthritis pain has both peripheral and central components, which vary by individual. OBJECTIVE: The purpose of this study was to better understand the mechanisms underlying the value of walking for knee pain. METHODS: We conducted a pretest/posttest study using quantitative sensory testing to measure neurophysiological parameters and examined systemic protein signatures. Adults with knee osteoarthritis and healthy controls underwent quantitative sensory testing and blood draw for platelet proteomics before and after a 30-minute walk at 100 steps per minute. RESULTS: A single 30-minute walk moderately increased pressure pain sensitivity at the affected knee among persons with knee osteoarthritis. Healthy adults showed no difference in pain sensitivity. Protein signatures among participants with knee osteoarthritis indicated changes in inflammatory and immune pathways, including the complement system and SAA1 protein that coincided with changes in pain with walking and differed from healthy participants. DISCUSSION: One goal of developing individualized interventions for knee osteoarthritis pain is to elucidate the mechanisms by which self-management interventions affect pain. The addition of therapies that target the complement system or SAA1 expression may improve the pain sensitivity after a moderate walk for adults with knee osteoarthritis.


Asunto(s)
Osteoartritis de la Rodilla , Adulto , Humanos , Articulación de la Rodilla , Osteoartritis de la Rodilla/complicaciones , Dolor/etiología , Rango del Movimiento Articular , Caminata/fisiología
11.
Biochemistry ; 60(10): 780-790, 2021 03 16.
Artículo en Inglés | MEDLINE | ID: mdl-33615774

RESUMEN

Cleavage and polyadenylation specificity factor 30 (CPSF30) is a zinc finger protein that regulates pre-mRNA processing. CPSF30 contains five CCCH domains and one CCHC domain and recognizes two conserved 3' pre-mRNA sequences: an AU hexamer and a U-rich motif. AU hexamer motifs are common in pre-mRNAs and are typically defined as AAUAAA. Variations within the AAUAAA hexamer occur in certain pre-mRNAs and can affect polyadenylation efficiency or be linked to diseases. The effects of disease-related variations on CPSF30/pre-mRNA binding were determined using a construct of CPSF30 that contains just the five CCCH domains (CPSF30-5F). Bioinformatics was utilized to identify the variability within the AU hexamer sequence in pre-mRNAs. The effects of this sequence variability on CPSF30-5F/RNA binding affinities were measured. Bases at positions 1, 2, 4, and 5 within the AU hexamer were found to be important for RNA binding. Bioinformatics revealed that the three bases flanking the AU hexamer at the 5' and 3' ends are twice as likely to be adenine or uracil as guanine and cytosine. The presence of A and U residues in these flanking regions was determined to promote higher-affinity CPSF30-5F/RNA binding than G and C residues. The addition of the zinc knuckle domain to CPSF30-5F (CPSF30-FL) restored binding to AU hexamer variants. This restoration of binding is connected to the presence of a U-rich sequence within the pre-mRNA to which the zinc knuckle binds. A mechanism of differential RNA binding by CPSF30, modulated by accessibility of the two RNA binding sites, is proposed.


Asunto(s)
Factor de Especificidad de Desdoblamiento y Poliadenilación/metabolismo , Poli U/metabolismo , Poliadenilación , Precursores del ARN/metabolismo , ARN Mensajero/metabolismo , Animales , Sitios de Unión , Bovinos , Factor de Especificidad de Desdoblamiento y Poliadenilación/química , Factor de Especificidad de Desdoblamiento y Poliadenilación/genética , Unión Proteica , Precursores del ARN/genética , ARN Mensajero/química , ARN Mensajero/genética , Dedos de Zinc
12.
J Proteome Res ; 20(5): 2882-2894, 2021 05 07.
Artículo en Inglés | MEDLINE | ID: mdl-33848166

RESUMEN

Metaproteomics by mass spectrometry (MS) is a powerful approach to profile a large number of proteins expressed by all organisms in a highly complex biological or ecological sample, which is able to provide a direct and quantitative assessment of the functional makeup of a microbiota. The human gastrointestinal microbiota has been found playing important roles in human physiology and health, and metaproteomics has been shown to shed light on multiple novel associations between microbiota and diseases. MS-powered proteomics generally relies on genome data to define search space. However, metaproteomics, which simultaneously analyzes all proteins from hundreds to thousands of species, faces significant challenges regarding database search and interpretation of results. To overcome these obstacles, we have developed a user-friendly microbiome analysis pipeline (MAPLE, freely downloadable at http://maple.rx.umaryland.edu/), which is able to define an optimal search space by inferring proteomes specific to samples following the principle of parsimony. MAPLE facilitates highly comparable or better peptide identification compared to a sample-specific metagenome-guided search. In addition, we implemented an automated peptide-centric enrichment analysis function in MAPLE to address issues of traditional protein-centric comparison, enabling straightforward and comprehensive comparison of taxonomic and functional makeup between microbiota.


Asunto(s)
Acer , Microbiota , Humanos , Péptidos , Proteoma/genética , Proteómica
13.
J Pharmacol Exp Ther ; 376(1): 84-97, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33109619

RESUMEN

Constitutively active extracellular signal-regulated kinase (ERK) 1/2 signaling promotes cancer cell proliferation and survival. We previously described a class of compounds containing a 1,1-dioxido-2,5-dihydrothiophen-3-yl 4-benzenesulfonate scaffold that targeted ERK2 substrate docking sites and selectively inhibited ERK1/2-dependent functions, including activator protein-1-mediated transcription and growth of cancer cells containing active ERK1/2 due to mutations in Ras G-proteins or BRAF, Proto-oncogene B-RAF (Rapidly Acclerated Fibrosarcoma) kinase. The current study identified chemical features required for biologic activity and global effects on gene and protein levels in A375 melanoma cells containing mutant BRAF (V600E). Saturation transfer difference-NMR and mass spectrometry analyses revealed interactions between a lead compound (SF-3-030) and ERK2, including the formation of a covalent adduct on cysteine 252 that is located near the docking site for ERK/FXF (DEF) motif for substrate recruitment. Cells treated with SF-3-030 showed rapid changes in immediate early gene levels, including DEF motif-containing ERK1/2 substrates in the Fos family. Analysis of transcriptome and proteome changes showed that the SF-3-030 effects overlapped with ATP-competitive or catalytic site inhibitors of MAPK/ERK Kinase 1/2 (MEK1/2) or ERK1/2. Like other ERK1/2 pathway inhibitors, SF-3-030 induced reactive oxygen species (ROS) and genes associated with oxidative stress, including nuclear factor erythroid 2-related factor 2 (NRF2). Whereas the addition of the ROS inhibitor N-acetyl cysteine reversed SF-3-030-induced ROS and inhibition of A375 cell proliferation, the addition of NRF2 inhibitors has little effect on cell proliferation. These studies provide mechanistic information on a novel chemical scaffold that selectively regulates ERK1/2-targeted transcription factors and inhibits the proliferation of A375 melanoma cells through a ROS-dependent mechanism. SIGNIFICANCE STATEMENT: Constitutive activation of the extracellular signal-regulated kinase (ERK1/2) pathway drives the proliferation and survival of many cancer cell types. Given the diversity of cellular functions regulated by ERK1/2, the current studies have examined the mechanism of a novel chemical scaffold that targets ERK2 near a substrate binding site and inhibits select ERK functions. Using transcriptomic and proteomic analyses, we provide a mechanistic basis for how this class of compounds inhibits melanoma cells containing mutated BRAF and active ERK1/2.


Asunto(s)
Antineoplásicos/química , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Melanoma/metabolismo , Proteína Quinasa 1 Activada por Mitógenos/metabolismo , Estrés Oxidativo , Antineoplásicos/farmacología , Dominio Catalítico , Proliferación Celular/efectos de los fármacos , Células HeLa , Humanos , Células Jurkat , Proteína Quinasa 1 Activada por Mitógenos/química , Unión Proteica , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas B-raf/genética
14.
Int J Mol Sci ; 22(12)2021 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-34204305

RESUMEN

The SARS-CoV-2 Spike glycoprotein (S protein) acquired a unique new 4 amino acid -PRRA- insertion sequence at amino acid residues (aa) 681-684 that forms a new furin cleavage site in S protein as well as several new glycosylation sites. We studied various statistical properties of the -PRRA- insertion at the RNA level (CCUCGGCGGGCA). The nucleotide composition and codon usage of this sequence are different from the rest of the SARS-CoV-2 genome. One of such features is two tandem CGG codons, although the CGG codon is the rarest codon in the SARS-CoV-2 genome. This suggests that the insertion sequence could cause ribosome pausing as the result of these rare codons. Due to population variants, the Nextstrain divergence measure of the CCU codon is extremely large. We cannot exclude that this divergence might affect host immune responses/effectiveness of SARS-CoV-2 vaccines, possibilities awaiting further investigation. Our experimental studies show that the expression level of original RNA sequence "wildtype" spike protein is much lower than for codon-optimized spike protein in all studied cell lines. Interestingly, the original spike sequence produces a higher titer of pseudoviral particles and a higher level of infection. Further mutagenesis experiments suggest that this dual-effect insert, comprised of a combination of overlapping translation pausing and furin sites, has allowed SARS-CoV-2 to infect its new host (human) more readily. This underlines the importance of ribosome pausing to allow efficient regulation of protein expression and also of cotranslational subdomain folding.


Asunto(s)
ARN Viral/metabolismo , Ribosomas/metabolismo , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Animales , Secuencia de Bases , Células COS , COVID-19/patología , COVID-19/virología , Chlorocebus aethiops , Uso de Codones , Células HEK293 , Humanos , Mutagénesis , SARS-CoV-2/aislamiento & purificación , Alineación de Secuencia , Glicoproteína de la Espiga del Coronavirus/metabolismo
15.
J Bacteriol ; 202(24)2020 11 19.
Artículo en Inglés | MEDLINE | ID: mdl-33020221

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that is frequently associated with both acute and chronic infections. P. aeruginosa possesses a complex regulatory network that modulates nutrient acquisition and virulence, but our knowledge of these networks is largely based on studies with shaking cultures, which are not likely representative of conditions during infection. Here, we provide proteomic, metabolic, and genetic evidence that regulation by iron, a critical metallonutrient, is altered in static P. aeruginosa cultures. Specifically, we observed a loss of iron-induced expression of proteins for oxidative phosphorylation, tricarboxylic acid (TCA) cycle metabolism under static conditions. Moreover, we identified type VI secretion as a target of iron regulation in P. aeruginosa cells under static but not shaking conditions, and we present evidence that this regulation occurs via PrrF small regulatory RNA (sRNA)-dependent production of 2-alkyl-4(1H)-quinolone metabolites. These results yield new iron regulation paradigms in an important opportunistic pathogen and highlight the need to redefine iron homeostasis in static microbial communities.IMPORTANCE Host-mediated iron starvation is a broadly conserved signal for microbial pathogens to upregulate expression of virulence traits required for successful infection. Historically, global iron regulatory studies in microorganisms have been conducted in shaking cultures to ensure culture homogeneity, yet these conditions are likely not reflective of growth during infection. Pseudomonas aeruginosa is a well-studied opportunistic pathogen and model organism for iron regulatory studies. Iron homeostasis is maintained through the Fur protein and PrrF small regulatory sRNAs, the functions of which are highly conserved in many other bacterial species. In the current study, we examined how static growth affects the known iron and PrrF regulons of P. aeruginosa, leading to the discovery of novel PrrF-regulated virulence processes. This study demonstrates how the utilization of distinct growth models can enhance our understanding of basic physiological processes that may also affect pathogenesis.


Asunto(s)
Proteínas Bacterianas/metabolismo , Pseudomonas aeruginosa/metabolismo , Quinolonas/metabolismo , ARN Bacteriano/metabolismo , Sistemas de Secreción Tipo VI/metabolismo , Proteínas Bacterianas/genética , Ciclo del Ácido Cítrico , Regulación Bacteriana de la Expresión Génica , Hierro/metabolismo , Fosforilación Oxidativa , Pseudomonas aeruginosa/genética , ARN Bacteriano/genética , Sistemas de Secreción Tipo VI/genética
16.
J Biol Chem ; 294(8): 2771-2785, 2019 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-30593511

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that utilizes heme as a primary iron source within the host. Extracellular heme is sensed via a heme assimilation system (has) that encodes an extracytoplasmic function (ECF) σ factor system. Herein, using has deletion mutants, quantitative PCR analyses, and immunoblotting, we show that the activation of the σ factor HasI requires heme release from the hemophore HasAp to the outer-membrane receptor HasR. Using RT-PCR and 5'-RACE, we observed that following transcriptional activation of the co-transcribed hasRAp, it is further processed into specific mRNAs varying in stability. We noted that the processing and variation in stability of the hasAp and hasR mRNAs in response to heme provide a mechanism for differential expression from co-transcribed genes. The multiple layers of post-transcriptional regulation of the ECF signaling cascade, including the previously reported post-transcriptional regulation of HasAp by the heme metabolites biliverdin IXß and IXδ, allow fine-tuning of the cell-surface signaling system in response to extracellular heme levels. We hypothesize that the complex post-transcriptional regulation of the Has system provides P. aeruginosa an advantage in colonizing a variety of physiological niches in the host.


Asunto(s)
Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Regulación Bacteriana de la Expresión Génica , Hemo/metabolismo , Pseudomonas aeruginosa/metabolismo , Procesamiento Postranscripcional del ARN , ARN Mensajero/genética , Proteínas Bacterianas/química , Cristalografía por Rayos X , Hemo/química , Hierro/metabolismo , Conformación Proteica , ARN Mensajero/metabolismo
17.
Toxicol Appl Pharmacol ; 402: 115117, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32634519

RESUMEN

Solute carrier family 13 member 5 (SLC13A5) is an uptake transporter mainly expressed in the liver and transports citrate from blood circulation into hepatocytes. Accumulating evidence suggests that SLC13A5 is involved in hepatic lipogenesis, cell proliferation, epilepsy, and bone development in mammals. However, the molecular mechanisms behind SLC13A5-mediated physiological/pathophysiological changes are largely unknown. In this regard, we conducted a differential proteome analysis in HepG2 and SLC13A5-knockdown (KD) HepG2 cells. A total of 3826 proteins were quantified and 330 proteins showed significant alterations (fold change ≥1.5; p < .05) in the knockdown cells. Gene ontology enrichment analysis reveals that 38 biological processes were significantly changed, with ketone body biosynthetic process showing the most significant upregulation following SLC13A5-KD. Catalytic activity and binding activity were the top two molecular functions associated with differentially expressed proteins, while HMG-CoA lyase activity showed the highest fold enrichment. Further ingenuity pathway analysis predicted 40 canonical pathways and 28 upstream regulators (p < .01), of which most were associated with metabolism, cell proliferation, and stress response. In line with these findings, functional validation demonstrated increased levels of two key ketone bodies, acetoacetate and ß-hydroxybutyrate, in the SLC13A5-KD cells. Additional experiments showed that SLC13A5-KD sensitizes HepG2 cells to cellular stress caused by a number of chemotherapeutic agents. Together, our findings demonstrate that knockdown of SLC13A5 promotes hepatic ketogenesis and enhances cellular stress response in HepG2 cells, suggesting a potential role of this transporter in metabolic disorders and liver cancer.


Asunto(s)
Antineoplásicos/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Cetonas/metabolismo , Simportadores/metabolismo , Supervivencia Celular/efectos de los fármacos , Técnicas de Silenciamiento del Gen , Células Hep G2 , Humanos , Simportadores/genética
18.
FASEB J ; 33(10): 10833-10843, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31266368

RESUMEN

Increased airway smooth muscle (ASM) cell mass and secretory functions are characteristics of airway inflammatory diseases, such as asthma. To date, there are no effective therapies to combat ASM cell proliferation, which contributes to bronchoconstriction and airway obstruction. Growth factors such as platelet-derived growth factor (PDGF) and the activation of the ERK1/2 are major regulators of ASM cell proliferation and airway remodeling in asthma. However, given the ubiquitous expression and multiple functions of ERK1/2, complete inhibition of ERK1/2 using ATP-competitive inhibitors may lead to unwanted off-target effects. Alternatively, we have identified compounds that are designed to target substrate docking sites and act as function-selective inhibitors of ERK1/2 signaling. Here, we show that both function-selective and ATP-competitive ERK1/2 inhibitors are effective at inhibiting PDGF-mediated proliferation, collagen production, and IL-6 secretion in ASM cells. Proteomic analysis revealed that both types of inhibitors had similar effects on reducing proteins related to TGF-ß and IL-6 signaling that are relevant to airway remodeling. However, function-selective ERK1/2 inhibitors caused fewer changes in protein expression compared with ATP-competitive inhibitors. These studies provide a molecular basis for the development of function-selective ERK1/2 inhibitors to mitigate airway remodeling in asthma with defined regulation of ERK1/2 signaling.-Defnet, A. E., Huang, W., Polischak, S., Yadav, S. K., Kane, M. A., Shapiro, P., Deshpande, D. A. Effects of ATP-competitive and function-selective ERK inhibitors on airway smooth muscle cell proliferation.


Asunto(s)
Bronquios/citología , Bronquios/metabolismo , Sistema de Señalización de MAP Quinasas , Miocitos del Músculo Liso/citología , Miocitos del Músculo Liso/metabolismo , Adenosina Trifosfato/metabolismo , Remodelación de las Vías Aéreas (Respiratorias)/efectos de los fármacos , Asma/metabolismo , Asma/patología , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Expresión Génica/efectos de los fármacos , Humanos , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Miocitos del Músculo Liso/efectos de los fármacos , Factor de Crecimiento Derivado de Plaquetas/farmacología , Inhibidores de Proteínas Quinasas/farmacología , Factor de Transcripción AP-1/metabolismo
19.
Nucleic Acids Res ; 46(D1): D575-D580, 2018 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-29106626

RESUMEN

The Pseudomonas aeruginosaMetabolome Database (PAMDB, http://pseudomonas.umaryland.edu) is a searchable, richly annotated metabolite database specific to P. aeruginosa. P. aeruginosa is a soil organism and significant opportunistic pathogen that adapts to its environment through a versatile energy metabolism network. Furthermore, P. aeruginosa is a model organism for the study of biofilm formation, quorum sensing, and bioremediation processes, each of which are dependent on unique pathways and metabolites. The PAMDB is modelled on the Escherichia coli (ECMDB), yeast (YMDB) and human (HMDB) metabolome databases and contains >4370 metabolites and 938 pathways with links to over 1260 genes and proteins. The database information was compiled from electronic databases, journal articles and mass spectrometry (MS) metabolomic data obtained in our laboratories. For each metabolite entered, we provide detailed compound descriptions, names and synonyms, structural and physiochemical information, nuclear magnetic resonance (NMR) and MS spectra, enzymes and pathway information, as well as gene and protein sequences. The database allows extensive searching via chemical names, structure and molecular weight, together with gene, protein and pathway relationships. The PAMBD and its future iterations will provide a valuable resource to biologists, natural product chemists and clinicians in identifying active compounds, potential biomarkers and clinical diagnostics.


Asunto(s)
Bases de Datos Factuales , Metabolómica , Pseudomonas aeruginosa/metabolismo , Curaduría de Datos , Redes y Vías Metabólicas , Metaboloma , Motor de Búsqueda , Interfaz Usuario-Computador
20.
Proc Natl Acad Sci U S A ; 114(13): 3421-3426, 2017 03 28.
Artículo en Inglés | MEDLINE | ID: mdl-28289188

RESUMEN

A heme-dependent conformational rearrangement of the C-terminal domain of heme binding protein (PhuS) is required for interaction with the iron-regulated heme oxygenase (HemO). Herein, we further investigate the underlying mechanism of this conformational rearrangement and its implications for heme transfer via site-directed mutagenesis, resonance Raman (RR), hydrogen-deuterium exchange MS (HDX-MS) methods, and molecular dynamics (MD). HDX-MS revealed that the apo-PhuS C-terminal α6/α7/α8-helices are largely unstructured, whereas the apo-PhuS H212R variant showed an increase in structure within these regions. The increased rate of heme association with apo-PhuS H212R compared with the WT and lack of a detectable five-coordinate high-spin (5cHS) heme intermediate are consistent with a more folded and less dynamic C-terminal domain. HDX-MS and MD of holo-PhuS indicate an overall reduction in molecular flexibility throughout the protein, with significant structural rearrangement and protection of the heme binding pocket. We observed slow cooperative unfolding/folding events within the C-terminal helices of holo-PhuS and the N-terminal α1/α2-helices that are dampened or eliminated in the holo-PhuS H212R variant. Chemical cross-linking and MALDI-TOF MS mapped these same regions to the PhuS:HemO protein-protein interface. We previously proposed that the protein-protein interaction induces conformational rearrangement, promoting a ligand switch from His-209 to His-212 and triggering heme release to HemO. The reduced conformational freedom of holo-PhuS H212R combined with the increase in entropy and decrease in heme transfer on interaction with HemO further support this model. This study provides significant insight into the role of protein dynamics in heme binding and release in bacterial heme transport proteins.


Asunto(s)
Proteínas Bacterianas/química , Proteínas Bacterianas/metabolismo , Proteínas Portadoras/química , Proteínas Portadoras/metabolismo , Hemo Oxigenasa (Desciclizante)/metabolismo , Hemoproteínas/química , Hemoproteínas/metabolismo , Pseudomonas aeruginosa/metabolismo , Regulación Alostérica , Proteínas Bacterianas/genética , Proteínas Portadoras/genética , Hemo Oxigenasa (Desciclizante)/química , Hemo Oxigenasa (Desciclizante)/genética , Proteínas de Unión al Hemo , Hemoproteínas/genética , Ligandos , Unión Proteica , Estructura Secundaria de Proteína , Pseudomonas aeruginosa/química , Pseudomonas aeruginosa/enzimología , Pseudomonas aeruginosa/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA