Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chemistry ; 30(40): e202401011, 2024 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-38757219

RESUMEN

The room temperature metal-free cascade electrophilic addition/cyclization/oxidation reactions of (3-phenoxyprop-1-yn-1-yl)benzenes to divergently synthesize various brominated benzopyran derivatives (3-bromo-2H-chromenes, 3-bromo-2H-chromen-2-ols and 3-bromo coumarins) by tuning the amount of Br2 and H2O have been developed. The method exhibited high selectivity, mild reaction conditions, broad substrate scope, high efficiency, and the applicability for derivatization of the brominated products. The importance of the strategies provides a great advantage for selective synthesis of brominated benzopyran derivatives.

2.
J Org Chem ; 89(6): 3809-3820, 2024 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-38395778

RESUMEN

The La(OTf)3-catalyzed [3+2] cycloaddition reactions for the synthesis of benzo[d]oxazoles/benzofurans via quinones and 1,2-di-tert-butyl-3-(cyanimino)diaziridine (1,3-di-tert-butyl-2-cyanoguanidine)/vinyl azides have been explored. A series of 5-hydroxybenzofuran-4-carboxylic acid derivatives and 5-hydroxybenzo[d]oxazole-4-carboxylic acid derivatives were conveniently obtained with high yields and good stereoselectivities, which could be used for further transformations to valuable compounds.

3.
Inorg Chem ; 63(10): 4707-4715, 2024 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-38410082

RESUMEN

A robust, microporous, and photoactive aluminum-based metal-organic framework (Al-MOF, LCU-600) has been assembled by an in situ-formed [Al3O(CO2)6] trinuclear building unit and a tritopic carbazole ligand. LCU-600 shows a high water stability and permanent porosity for N2 and CO2 adsorption. Notably, the incorporation of photoresponsive carbazole moieties into LCU-600 makes it a highly efficient and recyclable photocatalyst for aerobic photo-oxidation of sulfides into sulfoxides under an air atmosphere at room temperature. Mechanism investigations unveil that photogenerated holes (h+), superoxide radical anion (O2•-), and singlet oxygen (1O2) are critical active spices for the photo-oxidation reaction performed in an air atmosphere.

4.
Inorg Chem ; 63(28): 13022-13030, 2024 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-38946199

RESUMEN

The functionalization of polyoxovanadate clusters is promising but of great challenge due to the versatile coordination geometry and oxidation state of vanadium. Here, two unprecedented silsesquioxane ligand-protected "fully reduced" polyoxovanadate clusters were fabricated via a facial solvothermal methodology. The initial mixture of the two polyoxovanadate clusters with different colors and morphologies (green plate V14 and blue block V6) was successfully separated as pure phases by meticulously controlling the assembly conditions. Therein, the V14 cluster is the highest-nuclearity V-silsesquioxane cluster to date. Moreover, the transformation from a dimeric silsesquioxane ligand-protected V14 cluster to a cyclic hexameric silsesquioxane ligand-protected V6 cluster was also achieved, and the possible mechanism termed "ligand-condensation-involved dissociation reassembly" was proposed to explain this intricate conversion process. In addition, the robust V6 cluster was served as a heterogeneous catalyst for the synthesis of important heterocyclic compounds, quinazolinones, starting from 2-aminobenzamide and aldehydes. The V6 cluster exhibits high activity and selectivity to access pure quinazolinones under mild conditions, where the high selectivity was attributed to the confinement effect of the macrocyclic silsesquioxane ligand constraining the molecular freedom of the reaction species. The stability and recyclability as well as the tolerance of a wide scope of aldehyde substrates endow the V6 cluster with a superior performance and appreciable potential in catalytic applications.

5.
Org Biomol Chem ; 22(18): 3732-3739, 2024 May 08.
Artículo en Inglés | MEDLINE | ID: mdl-38651493

RESUMEN

Microwave irradiation (MW) and ionic liquids (ILs) are two of the most promising relatively greener synthetic approaches to preparing value-added chemicals. Herein, a series of 2-acylbenzothiazole derivatives were synthesized for the first time from commercially available α-bromoacetophenones and disulfane-diyl-dianilines through the cooperation of ionic liquids and microwave irradiation under metal- and extra-additives-free conditions. A plausible mechanism involving the successive IL-induced enolation has been proposed.

6.
Molecules ; 29(11)2024 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-38893442

RESUMEN

Incorporating two organic ligands with different functionalities into a titanium-oxo cluster entity simultaneously can endow the material with their respective properties and provide synergistic performance enhancement, which is of great significance for enriching the structure and properties of titanium-oxo clusters (TOCs). However, the synthesis of such TOCs is highly challenging. In this work, we successfully synthesized a TBC4A-functionalized TOC, [Ti2(TBC4A)2(MeO)2] (Ti2; MeOH = methanol, TBC4A = tert-butylcalix[4]arene). By adjusting the solvent system, we successfully introduced 1,10-phenanthroline (Phen) and prepared TBC4A and Phen co-protected [Ti2(TBC4A)2(Phen)2] (Ti2-Phen). Moreover, when Phen was replaced with bulky 4,7-diphenyl-1,10-phenanthroline (Bphen), [Ti2(TBC4A)2(Bphen)2] (Ti2-Bphen), which is isostructural with Ti2-Phen, was obtained, demonstrating the generality of the synthetic method. Remarkably, Ti2-Phen demonstrates good stability and stronger light absorption, as well as superior photoelectric performance compared to Ti2. Density functional theory (DFT) calculations reveal that there exists ligand-to-core charge transfer (LCCT) in Ti2, while an unusual ligand-to-ligand charge transfer (LLCT) is present in Ti2-Phen, accompanied by partial LCCT. Therefore, the superior light absorption and photoelectric properties of Ti2-Phen are attributed to the existence of the unusual LLCT phenomenon. This study not only deeply explores the influence of Phen on the performance of the material but also provides a reference for the preparation of materials with excellent photoelectric performance.

7.
RSC Adv ; 14(11): 7924-7931, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38449818

RESUMEN

Designing and synthesizing well-defined crystalline catalysts for the photocatalytic oxidative coupling of amines to imines remains a great challenge. In this work, a crystalline dumbbell-shaped titanium oxo cluster, [Ti10O6(Thdc)(Dmg)2(iPrO)22] (Ti10, Thdc = 2,5-thiophenedicarboxylic acid, Dmg = dimethylglyoxime, iPrOH = isopropanol), was constructed through a facile one-pot solvothermal strategy and treated as a catalyst for the photocatalytic oxidative coupling of amines. In this structure, Thdc serves as the horizontal bar, while the {Ti5Dmg} layers on each side act as the weight plates. The molecular structure, light absorption, and photoelectrochemical properties of Ti10 were systematically investigated. Remarkably, the inclusion of the Thdc ligand, with the assistance of the Dmg ligand, broadens the light absorption spectrum of Ti10, extending it into the visible range. Furthermore, the effective enhancement of charge transfer within the Ti10 was achieved with the successful incorporation of the Thdc ligand, as opposed to PTC-211, where terephthalic acid replaces the Thdc ligand, while maintaining consistency in other aspects of Ti10. Building on this foundation, Ti10 was employed as a heterogeneous molecular photocatalyst for the catalytic oxidative coupling reaction of benzylamine (BA), demonstrating very high conversion activity and selectivity. Our study illustrates that the inclusion of ligands derived from Thdc enhances the efficiency of charge transfer in functionalized photocatalysts, significantly influencing the performance of photocatalytic organic conversion.

8.
J Colloid Interface Sci ; 659: 1015-1028, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38241973

RESUMEN

In this study, we prepared a micron zero-valent iron/N-doped graphene-like biochar (mZVI/NGB) composite using a mechanochemical method for tetracycline (TC) degradation through O2 activation. The mZVI and NGB components formed a strong coupling catalytic system, with mZVI acting as an electron pool and NGB as a catalyst for H2O2 generation. Under circumneutral pH (5.0-6.8), the mZVI/NGB composite exhibited exceptional TC removal efficiency, reaching nearly 100 % under optimal conditions. It also showed good tolerance to co-existing anions, such as Cl-, SO42-, and humic acid. Further studies found that the TC degradation mechanism was mainly ascribed to the non-radical pathway (1O2 and electron transfer), and the Fe2+/Fe3+ redox cycle on the composite's surface also played a crucial role in maintaining catalytic activity. This research contributes to the development of advanced materials for sustainable and effective water treatment, addressing pharmaceutical pollutant contamination in water sources.


Asunto(s)
Carbón Orgánico , Grafito , Contaminantes Químicos del Agua , Hierro/química , Peróxido de Hidrógeno , Antibacterianos , Tetraciclina/química , Contaminantes Químicos del Agua/química
9.
Dalton Trans ; 53(30): 12797-12798, 2024 Jul 30.
Artículo en Inglés | MEDLINE | ID: mdl-39016624

RESUMEN

Correction for 'A robust and porous titanium metal-organic framework for gas adsorption, CO2 capture and conversion' by Xuze Pan, et al., Dalton Trans., 2023, 52, 3896-3906, https://doi.org/10.1039/D2DT03158B.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA