Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 191
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nat Immunol ; 23(7): 1021-1030, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35794369

RESUMEN

Interleukin-33 (IL-33), an epithelial cell-derived cytokine that responds rapidly to environmental insult, has a critical role in initiating airway inflammatory diseases. However, the molecular mechanism underlying IL-33 secretion following allergen exposure is not clear. Here, we found that two cell events were fundamental for IL-33 secretion after exposure to allergens. First, stress granule assembly activated by allergens licensed the nuclear-cytoplasmic transport of IL-33, but not the secretion of IL-33. Second, a neo-form murine amino-terminal p40 fragment gasdermin D (Gsdmd), whose generation was independent of inflammatory caspase-1 and caspase-11, dominated cytosolic secretion of IL-33 by forming pores in the cell membrane. Either the blockade of stress granule assembly or the abolishment of p40 production through amino acid mutation of residues 309-313 (ELRQQ) could efficiently prevent the release of IL-33 in murine epithelial cells. Our findings indicated that targeting stress granule disassembly and Gsdmd fragmentation could reduce IL-33-dependent allergic airway inflammation.


Asunto(s)
Alérgenos , Interleucina-33 , Proteínas de Unión a Fosfato/metabolismo , Proteínas Citotóxicas Formadoras de Poros/metabolismo , Animales , Caspasa 1/metabolismo , Inflamación , Interleucina-1beta/metabolismo , Interleucina-33/genética , Interleucina-33/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Ratones , Péptido Hidrolasas/metabolismo , Gránulos de Estrés
2.
PLoS Pathog ; 19(1): e1011096, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36693067

RESUMEN

Fusobacterium nucleatum (Fn) is a critical colorectal cancer (CRC)-associated bacterium. DNA hunger/stationary phase protective proteins (Dps) are bacterial ferritins that protect DNA from oxidative stress. However, little is known about the regulatory roles of Fn-Dps towards host cellular functions. Here, we identified Fn-Dps from the culture supernatant of Fn by mass spectrometry, and prepared the recombinant of Fn-Dps protein. We show a novel virulence protein of Fn, Fn-Dps, which lyses and disrupts erythrocytes by the competition for iron acquisition. Also, Fn-Dps facilitates intracellular survival of Fn in macrophages by upregulating the expression of the chemokine CCL2/CCL7. In addition, Fn-Dps can elicit a strong humoral immune response, and mucosal immunization with Fn-Dps conferred protection against Fn in the intestinal tract. Moreover, a high level of anti-Fn-Dps antibody was prevalent in populations, and elevated anti-Fn-Dps antibody levels were observed in CRC patients. Furthermore, Fn-Dps promotes the migration of CRC cells via the CCL2/CCL7-induced epithelial-mesenchymal transition (EMT) and promotes CRC metastasis in vivo.


Asunto(s)
Neoplasias Colorrectales , Fusobacterium nucleatum , Humanos , Fusobacterium nucleatum/genética , Factores de Virulencia/genética , Intestinos/patología , Eritrocitos/metabolismo
3.
J Neurosci ; 43(21): 3933-3948, 2023 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-37185237

RESUMEN

The spinal dorsal horn contains vesicular glutamate transporter-2 (VGluT2)-expressing excitatory neurons and vesicular GABA transporter (VGAT)-expressing inhibitory neurons, which normally have different roles in nociceptive transmission. Spinal glutamate NMDAR hyperactivity is a crucial mechanism of chronic neuropathic pain. However, it is unclear how NMDARs regulate primary afferent input to spinal excitatory and inhibitory neurons in neuropathic pain. Also, the functional significance of presynaptic NMDARs in neuropathic pain has not been defined explicitly. Here we showed that paclitaxel treatment or spared nerve injury (SNI) similarly increased the NMDAR-mediated mEPSC frequency and dorsal root-evoked EPSCs in VGluT2 dorsal horn neurons in male and female mice. By contrast, neither paclitaxel nor SNI had any effect on mEPSCs or evoked EPSCs in VGAT neurons. In mice with conditional Grin1 (gene encoding GluN1) KO in primary sensory neurons (Grin1-cKO), paclitaxel treatment failed to induce pain hypersensitivity. Unexpectedly, SNI still caused long-lasting pain hypersensitivity in Grin1-cKO mice. SNI increased the amplitude of puff NMDA currents in VGluT2 neurons and caused similar depolarizing shifts in GABA reversal potentials in WT and Grin1-cKO mice. Concordantly, spinal Grin1 knockdown diminished SNI-induced pain hypersensitivity. Thus, presynaptic NMDARs preferentially amplify primary afferent input to spinal excitatory neurons in neuropathic pain. Although presynaptic NMDARs are required for chemotherapy-induced pain hypersensitivity, postsynaptic NMDARs in spinal excitatory neurons play a dominant role in traumatic nerve injury-induced chronic pain. Our findings reveal the divergent synaptic connectivity and functional significance of spinal presynaptic and postsynaptic NMDARs in regulating cell type-specific nociceptive input in neuropathic pain with different etiologies.SIGNIFICANCE STATEMENT Spinal excitatory neurons relay input from nociceptors, whereas inhibitory neurons repress spinal nociceptive transmission. Chronic nerve pain is associated with aberrant NMDAR activity in the spinal dorsal horn. This study demonstrates, for the first time, that chemotherapy and traumatic nerve injury preferentially enhance the NMDAR activity at primary afferent-excitatory neuron synapses but have no effect on primary afferent input to spinal inhibitory neurons. NMDARs in primary sensory neurons are essential for chemotherapy-induced chronic pain, whereas nerve trauma causes pain hypersensitivity predominantly via postsynaptic NMDARs in spinal excitatory neurons. Thus, presynaptic and postsynaptic NMDARs at primary afferent-excitatory neuron synapses are differentially engaged in chemotherapy- and nerve injury-induced chronic pain and could be targeted respectively for treating these painful conditions.


Asunto(s)
Antineoplásicos , Dolor Crónico , Neuralgia , Ratas , Ratones , Masculino , Femenino , Animales , Receptores de N-Metil-D-Aspartato , Dolor Crónico/etiología , Ratas Sprague-Dawley , Sinapsis/fisiología , Paclitaxel/efectos adversos , Células del Asta Posterior/fisiología , Neuronas , Antineoplásicos/efectos adversos
4.
Small ; 20(14): e2307664, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-37972254

RESUMEN

Phototheranostics continues to flourish in cancer treatment. Due to the competitive relationships between these photophysical processes of fluorescence emission, photothermal conversion, and photodynamic action, it is critical to balance them through subtle photosensitizer designs. Herein, it is provided a useful guideline for constructing A-D-A photosensitizers with superior phototheranostics performance. Various cyanoacetate group-modified end groups containing ester side chains of different length are designed to construct a series of A-D-A photosensitizers (F8CA1 ∼ F8CA4) to study the structure-property relationships. It is surprising to find that the photophysical properties of A-D-A photosensitizers can be precisely regulated by these tiny structural changes. The results reveal that the increase in the steric hindrance of ester side chains has positive impacts on their photothermal conversion capabilities, but adverse impacts on the fluorescence emission and photodynamic activities. Notably, these tiny structural changes lead to their different aggregation behavior. The molecule mechanisms are detailedly explained by theoretical calculations. Finally, F8CA2 nanoparticles with more balanced photophysical properties perform well in fluorescence imaging-guided photothermal and type I&II photodynamic synergistic cancer therapy, even under hypoxic conditions. Therefore, this work provides a novel practicable construction strategy for desired A-D-A photosensitizers.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Fármacos Fotosensibilizantes/química , Nanomedicina Teranóstica/métodos , Fotoquimioterapia/métodos , Fototerapia/métodos , Neoplasias/tratamiento farmacológico , Nanopartículas/química , Ésteres/uso terapéutico
5.
Small ; 20(25): e2309331, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38213019

RESUMEN

The ß-relaxation is one of the major dynamic behaviors in metallic glasses (MGs) and exhibits diverse features. Despite decades of efforts, the understanding of its structural origin and contribution to the overall dynamics of MG systems is still unclear. Here two palladium-based Pd─Cu─P and Pd─Ni─P MGs are reported with distinct different ß-relaxation behaviors and reveal the structural origins for the difference using the advanced X-ray photon correlation spectroscopy and absorption fine structure techniques together with the first-principles calculations. The pronounced ß-relaxation and fast atomic dynamics in the Pd─Cu─P MG mainly come from the strong mobility of Cu atoms and their locally favored structures. In contrast, the motion of Ni atoms is constrained by P atoms in the Pd─Ni─P MG, leading to the weakened ß-relaxation peak and sluggish dynamics. The correlation of atomic dynamics with microscopic structures provides a way to understand the structural origins of different dynamic behaviors as well as the nature of aging in disordered materials.

6.
Plant Cell Rep ; 43(3): 73, 2024 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-38379012

RESUMEN

KEY MESSAGE: PnNAC2 positively regulates saponin biosynthesis by binding the promoters of key biosynthetic genes, including PnSS, PnSE, and PnDS. PnNAC2 accelerates flowering through directly associating with the promoters of FT genes. NAC transcription factors play an important regulatory role in both terpenoid biosynthesis and flowering. Saponins with multiple pharmacological activities are recognized as the major active components of Panax notoginseng. The P. notoginseng flower is crucial for growth and used for medicinal and food purposes. However, the precise function of the P. notoginseng NAC transcription factor in the regulation of saponin biosynthesis and flowering remains largely unknown. Here, we conducted a comprehensive characterization of a specific NAC transcription factor, designated as PnNAC2, from P. notoginseng. PnNAC2 was identified as a nuclear-localized protein with transcription activator activity. The expression profile of PnNAC2 across various tissues mirrored the accumulation pattern of total saponins. Knockdown experiments of PnNAC2 in P. notoginseng calli revealed a significant reduction in saponin content and the expression level of pivotal saponin biosynthetic genes, including PnSS, PnSE, and PnDS. Subsequently, Y1H assays, dual-LUC assays, and electrophoretic mobility shift assays (EMSAs) demonstrated that PnNAC2 exhibits binding affinity to the promoters of PnSS, PnSE and PnDS, thereby activating their transcription. Additionally, an overexpression assay of PnNAC2 in Arabidopsis thaliana witnessed the acceleration of flowering and the induction of the FLOWERING LOCUS T (FT) gene expression. Furthermore, PnNAC2 demonstrated the ability to bind to the promoters of AtFT and PnFT genes, further activating their transcription. In summary, these results revealed that PnNAC2 acts as a multifunctional regulator, intricately involved in the modulation of triterpenoid saponin biosynthesis and flowering processes.


Asunto(s)
Panax notoginseng , Saponinas , Triterpenos , Panax notoginseng/genética , Panax notoginseng/química , Panax notoginseng/metabolismo , Triterpenos/metabolismo , Flores/genética , Flores/metabolismo , Factores de Transcripción/genética , Factores de Transcripción/metabolismo
7.
Int J Mol Sci ; 25(9)2024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38731839

RESUMEN

CLEC4G, a glycan-binding receptor, has previously been demonstrated to inhibit Aß generation, yet its brain localization and functions in Alzheimer's disease (AD) are not clear. We explored the localization, function, and regulatory network of CLEC4G via experiments and analysis of RNA-seq databases. CLEC4G transcripts and proteins were identified in brain tissues, with the highest expression observed in neurons. Notably, AD was associated with reduced levels of CLEC4G transcripts. Bioinformatic analyses revealed interactions between CLEC4G and relevant genes such as BACE1, NPC1, PILRA, TYROBP, MGAT1, and MGAT3, all displaying a negative correlation trend. We further identified the upstream transcriptional regulators NR2F6 and XRCC4 for CLEC4G and confirmed a decrease in CLEC4G expression in APP/PS1 transgenic mice. This study highlights the role of CLEC4G in protecting against AD progression and the significance of CLEC4G for AD research and management.


Asunto(s)
Enfermedad de Alzheimer , Lectinas Tipo C , Ratones Transgénicos , Neuronas , Enfermedad de Alzheimer/metabolismo , Enfermedad de Alzheimer/genética , Enfermedad de Alzheimer/patología , Animales , Neuronas/metabolismo , Ratones , Humanos , Lectinas Tipo C/metabolismo , Lectinas Tipo C/genética , Encéfalo/metabolismo , Encéfalo/patología , Regulación de la Expresión Génica , Modelos Animales de Enfermedad
8.
Molecules ; 29(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38474529

RESUMEN

As a crucial enzyme for cellulose degradation, ß-glucosidase finds extensive applications in food, feed, and bioethanol production; however, its potential is often limited by inadequate thermal stability and glucose tolerance. In this study, a functional gene (lq-bg5) for a GH1 family ß-glucosidase was obtained from the metagenomic DNA of a hot spring sediment sample and heterologously expressed in E. coli and the recombinant enzyme was purified and characterized. The optimal temperature and pH of LQ-BG5 were 55 °C and 4.6, respectively. The relative residual activity of LQ-BG5 exceeded 90% at 55 °C for 9 h and 60 °C for 6 h and remained above 100% after incubation at pH 5.0-10.0 for 12 h. More importantly, LQ-BG5 demonstrated exceptional glucose tolerance with more than 40% activity remaining even at high glucose concentrations of 3000 mM. Thus, LQ-BG5 represents a thermophilic ß-glucosidase exhibiting excellent thermal stability and remarkable glucose tolerance, making it highly promising for lignocellulose development and utilization.


Asunto(s)
Glucosa , Manantiales de Aguas Termales , Glucosa/metabolismo , beta-Glucosidasa/metabolismo , Escherichia coli/metabolismo , Temperatura , Concentración de Iones de Hidrógeno , Estabilidad de Enzimas , Especificidad por Sustrato
9.
Zhongguo Zhong Yao Za Zhi ; 49(1): 88-99, 2024 Jan.
Artículo en Zh | MEDLINE | ID: mdl-38403342

RESUMEN

Anemarrhena asphodeloides is a common medicinal material used in clinical prescriptions and Chinese patent medicine. In this study, the Illumina platform was used to obtain the chloroplast genome sequences of seven kinds of A. asphodeloides from different areas. The specific DNA barcodes were screened by comparative genomics analysis, and the DNA barcodes were used to identify the germplasm resources and analyze the genetic diversity of A. asphodeloides samples from different areas in China. All the seven chloroplast genomes had a ring structure. The total length was 156 801-156 930 bp, and 113 genes were annotated, including 79 protein-coding genes, 30 tRNA genes, and four rRNA genes. The comparative genomics analysis showed that rps16, trnG-GCC, atpF, rpoB, ycf3, rpl16, ndhF, trnS-GCU_trnG-GCC, petN-psbM, and ndhF-rpl32 were potential candidates for specific DNA barcodes of A. asphodeloides. In this study, the second intron of ycf3 and atpF intron sequences with a sequence length of 700-800 bp and easy amplification were selected for polymerase chain reaction(PCR) amplification and sequencing of 594 samples from 26 areas. The sequence analysis showed that six and eight haplotypes of ycf3 and atpF sequences could be identified, respectively, and 17 haplotypes could be identified by combined analysis of the two sequences, which were named Hap1-Hap17. The haplotype diversity(H_d), nucleotide diversity(P_i), and genetic distance of A. asphodeloides in 26 populations were 0.68, 0.93×10~(-3), and 0-0.003 1, respectively, indicating that the genetic diversity within the species of A. asphodeloides is rich. The intermediary adjacent network analysis showed that Hap5 was the oldest haplotype, which was mainly distributed in Yixian county of Baoding, Hebei province, Hequ county of Xinzhou, Shanxi province, and Xiangfen county of Linfen, Shanxi province. This study has important guiding significance for the identification of A. asphodeloides species, the protection and development of germplasm resources, and the identification of production areas, and it provides a research basis for further revealing the genetic evolution law of A. asphodeloides.


Asunto(s)
Anemarrhena , Anemarrhena/química , Código de Barras del ADN Taxonómico , Variación Genética , China , Filogenia
10.
J Neurosci ; 42(3): 513-527, 2022 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-34880118

RESUMEN

Long-term potentiation (LTP) and long-term depression (LTD) in the spinal dorsal horn reflect activity-dependent synaptic plasticity and central sensitization in chronic pain. Tetanic high-frequency stimulation is commonly used to induce LTP in the spinal cord. However, primary afferent nerves often display low-frequency, rhythmic bursting discharges in painful conditions. Here, we determined how theta-burst stimulation (TBS) of primary afferents impacts spinal cord synaptic plasticity and nociception in male and female mice. We found that TBS induced more LTP, whereas tetanic stimulation induced more LTD, in mouse spinal lamina II neurons. TBS triggered LTP, but not LTD, in 50% of excitatory neurons expressing vesicular glutamate transporter-2 (VGluT2). By contrast, TBS induced LTD and LTP in 12-16% of vesicular GABA transporter (VGAT)-expressing inhibitory neurons. Nerve injury significantly increased the prevalence of TBS-induced LTP in VGluT2-expressing, but not VGAT-expressing, lamina II neurons. Blocking NMDARs, inhibiting α2δ-1 with gabapentin, or α2δ-1 knockout abolished TBS-induced LTP in lamina II neurons. Also, disrupting the α2δ-1-NMDAR interaction with α2δ-1Tat peptide prevented TBS-induced LTP in VGluT2-expressing neurons. Furthermore, TBS of the sciatic nerve induced long-lasting allodynia and hyperalgesia in wild-type, but not α2δ-1 knockout, mice. TBS significantly increased the α2δ-1-NMDAR interaction and synaptic trafficking in the spinal cord. In addition, treatment with NMDAR antagonists, gabapentin, or α2δ-1Tat peptide reversed TBS-induced pain hypersensitivity. Therefore, TBS-induced primary afferent input causes a neuropathic pain-like phenotype and LTP predominantly in excitatory dorsal horn neurons via α2δ-1-dependent NMDAR activation. α2δ-1-bound NMDARs may be targeted for reducing chronic pain development at the onset of tissue/nerve injury.SIGNIFICANCE STATEMENT Spinal dorsal horn synaptic plasticity is a hallmark of chronic pain. Although sensory nerves display rhythmic bursting discharges at theta frequencies during painful conditions, the significance of this naturally occurring firing activity in the induction of spinal synaptic plasticity is largely unknown. In this study, we found that theta-burst stimulation (TBS) of sensory nerves induced LTP mainly in excitatory dorsal horn neurons and that the prevalence of TBS-induced LTP was potentiated by nerve injury. This TBS-driven synaptic plasticity required α2δ-1 and its interaction with NMDARs. Furthermore, TBS of sensory nerves induced persistent pain, which was maintained by α2δ-1-bound NMDARs. Thus, TBS-induced LTP at primary afferent-dorsal horn neuron synapses is an appropriate cellular model for studying mechanisms of chronic pain.


Asunto(s)
Potenciación a Largo Plazo/fisiología , Dolor/fisiopatología , Células del Asta Posterior/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Médula Espinal/fisiopatología , Ritmo Teta/fisiología , Animales , Femenino , Masculino , Ratones , Ratones Noqueados , Dolor/metabolismo , Receptores de N-Metil-D-Aspartato/genética , Nervio Ciático/metabolismo , Nervio Ciático/fisiopatología , Médula Espinal/metabolismo , Proteína 2 de Transporte Vesicular de Glutamato/genética , Proteína 2 de Transporte Vesicular de Glutamato/metabolismo
11.
Chembiochem ; 24(19): e202300461, 2023 Oct 04.
Artículo en Inglés | MEDLINE | ID: mdl-37463099

RESUMEN

BODIPY photosensitizers have been integrated with a hypoxia-activated prodrug to achieve synergistic photodynamic therapy (PDT) and chemotherapy. A novel BODIPY derivative BDP-CN was designed and synthesized. It had two cyano groups to make it complex well with a water-soluble pillar[5]arene. Their association constant was calculated to be (6.8±0.9)×106  M-1 . After self-assembly in water, regular spherical nanocarriers can be formed; these were used to encapsulate the hypoxia-activated prodrug tirapazamine (TPZ). BDP-CN displayed excellent photodynamic activity to complete PDT. In this process, O2 can be continuously consumed to activate TPZ to allow it to be converted to a benzotriazinyl (BTZ) radical with high cytotoxicity to complete chemotherapy. As a result, the formed nanoparticles showed excellent synergistic photodynamic therapy and chemotherapy efficacy. The synergistic therapy mechanism is discussed in detail.

12.
Mol Carcinog ; 62(4): 532-545, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36752341

RESUMEN

MiR-1283 has been identified as a tumor suppressor in some malignancies. Whereas, the role of miR-1283 in HER2-positive (HER2+) breast cancer, particularly its role in regulating cell proliferation, one of the most significant features of tumor progression, is unclear. The related microRNA screened by the breast cancer sample GSE131599 dataset were detected in HER2+ breast cancer tissues and cell lines. Then, the obtained miR-1283 was overexpressed in SKBR3 and BT-474 cells followed by relevant functional assays concerning cell proliferation and apoptosis. The xenograft mouse model was induced and the effect of miR-1283 on tumor growth and cell proliferation was examined. The target of miR-1283 and the transcription factor regulating miR-1283 were predicted and identified. Finally, the influence of transcription factor KLF14 on cell proliferation and apoptosis was investigated. An integrated analysis confirmed that miR-1283 expression was significantly decreased in HER2+ breast cancer tissues. Also, by q-RT-PCR detection, miR-1283 expression was markedly reduced in HER2+ breast cancer tissues and cell lines. The miR-1283 overexpression prevented the proliferation and enhanced apoptosis of HER2+ breast cancer cells, as well as inhibited tumor growth. Mechanistically, miR-1283 inhibited TFAP2C expression by targeting the 3'-untranslated regions of TFAP2C messenger RNA, and the KLF14 enhanced miR-1283 level via binding to its promoter. The result subsequently confirmed the KLF14/miR-1283 signaling suppressed cell proliferation in HER2+ breast cancer. Our results suggested that the KLF14/miR-1283/TFAP2C axis inhibited HER2+ breast cancer progression, which might provide novel insight into mechanical exploration for this disease.


Asunto(s)
Neoplasias de la Mama , MicroARNs , Humanos , Animales , Ratones , Femenino , Línea Celular Tumoral , Neoplasias de la Mama/metabolismo , MicroARNs/metabolismo , Proliferación Celular/genética , Factores de Transcripción/genética , Regulación Neoplásica de la Expresión Génica , Factores de Transcripción de Tipo Kruppel/genética , Factores de Transcripción de Tipo Kruppel/metabolismo , Factor de Transcripción AP-2/genética
13.
Inorg Chem ; 62(5): 1786-1790, 2023 Feb 06.
Artículo en Inglés | MEDLINE | ID: mdl-35767467

RESUMEN

Supramolecular coordination complexes formed by coordination-induced assembly not only avoid the loss of activity of precursors but also provide an efficient way for controlled release, which can be further used in various fields of biology such as drug delivery, cell imaging, and tumor treatment. In this work, a PtII metallaclip (4) was prepared from 4-[4-(1,2,2-triphenylvinyl)phenyl]pyridine (1), 5,10,15-triphenyl-20-(pyridin-4-yl)porphyrin (2), 90o Pt, and glycol-chain-modified isophthalic acid (3) in an acetone/water mixture through the "coordination-driven self-assembly" method. 31P and 1H NMR spectroscopy and high-resolution mass spectrometry were used to characterize the obtained metallaclip 4. 4 can self-assemble into fluorescent nanostructures in aqueous solution because of the tetraphenylethylene unit and its amphiphilic nature. Importantly, the fluorescent nanoparticles not only can be employed for cell imaging but also can generate singlet oxygen (1O2) under 660 nm laser irradiation and the release of Pt drug in the tumor issue for cancer therapy. The work may provide a new way for scientists to construct functional biomaterials with multiple applications via molecular self-assembly.


Asunto(s)
Nanopartículas , Neoplasias , Fotoquimioterapia , Humanos , Platino (Metal)/química , Medicina de Precisión , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Neoplasias/patología , Sistemas de Liberación de Medicamentos , Nanopartículas/química , Línea Celular Tumoral
14.
Inorg Chem ; 62(37): 15015-15021, 2023 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-37676920

RESUMEN

Platinum(II)-based metallacycles/cages have obtained tremendous attention due to their fascinating topology and wide range of applications, such as fluorescent materials, cell imaging, and tumor treatment. In this work, a metallatetragon (1) was constructed from 4-(4-(1,2,2-triphenylvinyl)phenyl)pyridine (2) and 90° cis-Pt(II) (Pt) in acetone through the strategy called "coordination driven self-assembly". Interestingly, through co-assembly of 1 and poly(ethylene glycol)-modified tetraphenylethylene (TPE-PEG22), fluorescent nanotheranostics, which could generate singlet oxygen (1O2) under the NIR irradiation and release Pt drugs under a low-pH microenvironment, were prepared successfully. The obtained theranostics could realize living cell imaging and synergistic chemo-photodynamic therapy in vitro and in vivo.


Asunto(s)
Nanopartículas , Neoplasias , Estilbenos , Humanos , Medicina de Precisión , Neoplasias/diagnóstico por imagen , Neoplasias/tratamiento farmacológico , Colorantes , Microambiente Tumoral
15.
Reprod Fertil Dev ; 35(8): 480-491, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37142241

RESUMEN

CONTEXT: Infertility is a common disease among women of childbearing age and seriously endangers the reproductive health of human beings. AIMS: We aimed to study the active effect and mechanism of betulonic acid (BTA) on tubal inflammatory infertility. METHODS: An inflammatory model was established in isolated rat oviduct epithelial cells. Immunofluorescence of cytokeratin 18 was performed in cells. The therapeutic effect of BTA on cells was observed. Subsequently, we added JAK/STAT inhibitor AG490 and MAPK inhibitor U0126 and measured the levels of inflammatory factors via enzyme-linked immunosorbent assay and qRT-PCR. CCK-8 assay was applied to test cell proliferation, whereas flow cytometry was used to measure apoptosis. The levels of TLR4, IκBα, JAK1, JAK2, JAK3, Tyk2, STAT3, p38, ERK and the phosphorylation of p65 were determined by Western blotting. KEY RESULTS: Betulonic acid inhibited the activation of TLR4 and NF-κB signalling pathways, and significantly downregulated IL-1ß, IL-6, and TNF-α, with high doses being the most effective. Furthermore, high-dose BTA promoted the proliferation of oviduct epithelial cells and inhibited apoptosis. In addition, BTA inhibited the activation of JAK/STAT signalling pathway to perform effectively in oviduct epithelial cells inflammation. The addition of AG490 led to the inhibition of the JAK/STAT signalling pathway. BTA also inhibited the activation of MAPK signalling pathway in oviduct epithelial cells inflammation. Under U0126 treatment, the inhibition of proteins in MAPK pathway by BTA was weakened. CONCLUSIONS: Therefore, BTA inhibited the TLR, JAK/STAT and MAPK signalling pathways. IMPLICATIONS: Our study provided a new therapeutic strategy for infertility caused by oviduct inflammation.


Asunto(s)
FN-kappa B , Receptor Toll-Like 4 , Ratas , Animales , Femenino , Humanos , Receptor Toll-Like 4/metabolismo , FN-kappa B/metabolismo , Células Epiteliales/metabolismo , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Oviductos/metabolismo
16.
Zhongguo Zhong Yao Za Zhi ; 48(5): 1229-1237, 2023 Mar.
Artículo en Zh | MEDLINE | ID: mdl-37005807

RESUMEN

Eleutherococcus senticosus is one of the Dao-di herbs in northeast China. In this study, the chloroplast genomes of three E. senticosus samples from different genuine producing areas were sequenced and then used for the screening of specific DNA barcodes. The germplasm resources and genetic diversity of E. senticosus were analyzed basing on the specific DNA barcodes. The chloroplast genomes of E. senticosus from different genuine producing areas showed the total length of 156 779-156 781 bp and a typical tetrad structure. Each of the chloroplast genomes carried 132 genes, including 87 protein-coding genes, 37 tRNAs, and 8 rRNAs. The chloroplast genomes were relatively conserved. Sequence analysis of the three chloroplast genomes indicated that atpI, ndhA, ycf1, atpB-rbcL, ndhF-rpl32, petA-psbJ, psbM-psbD, and rps16-psbK can be used as specific DNA barcodes of E. senticosus. In this study, we selected atpI and atpB-rbcL which were 700-800 bp and easy to be amplified for the identification of 184 E. senticosus samples from 13 genuine producing areas. The results demonstrated that 9 and 10 genotypes were identified based on atpI and atpB-rbcL sequences, respectively. Furthermore, the two barcodes identified 23 genotypes which were named H1-H23. The haplotype with the highest proportion and widest distribution was H10, followed by H2. The haplotype diversity and nucleotide diversity were 0.94 and 1.82×10~(-3), respectively, suggesting the high genetic diversity of E. senticosus. The results of the median-joining network analysis showed that the 23 genotypes could be classified into 4 categories. H2 was the oldest haplotype, and it served as the center of the network characterized by starlike radiation, which suggested that population expansion of E. senticosus occurred in the genuine producing areas. This study lays a foundation for the research on the genetic quality and chloroplast genetic engineering of E. senticosus and further research on the genetic mechanism of its population, providing new ideas for studying the genetic evolution of E. senticosus.


Asunto(s)
Código de Barras del ADN Taxonómico , Eleutherococcus , Eleutherococcus/genética , Secuencia de Bases , Cloroplastos/genética , Variación Genética , Filogenia
17.
J Neurosci ; 41(27): 5963-5978, 2021 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-34252037

RESUMEN

Systemic treatment with resiniferatoxin (RTX) induces small-fiber sensory neuropathy by damaging TRPV1-expressing primary sensory neurons and causes distinct thermal sensory impairment and tactile allodynia, which resemble the unique clinical features of postherpetic neuralgia. However, the synaptic plasticity associated with RTX-induced tactile allodynia remains unknown. In this study, we found that RTX-induced neuropathy is associated with α2δ-1 upregulation in the dorsal root ganglion (DRG) and increased physical interaction between α2δ-1 and GluN1 in the spinal cord synaptosomes. RNAscope in situ hybridization showed that RTX treatment significantly increased α2δ-1 expression in DRG neurons labeled with calcitonin gene-related peptide, isolectin B4, NF200, and tyrosine hydroxylase. Electrophysiological recordings revealed that RTX treatment augmented the frequency of miniature excitatory postsynaptic currents (mEPSCs) and the amplitude of evoked EPSCs in spinal dorsal horn neurons, and these effects were reversed by blocking NMDA receptors with AP-5. Inhibiting α2δ-1 with gabapentin, genetically ablating α2δ-1, or targeting α2δ-1-bound NMDA receptors with α2δ-1Tat peptide largely normalized the baseline frequency of mEPSCs and the amplitude of evoked EPSCs potentiated by RTX treatment. Furthermore, systemic treatment with memantine or gabapentin and intrathecal injection of AP-5 or Tat-fused α2δ-1 C terminus peptide reversed allodynia in RTX-treated rats and mice. In addition, RTX-induced tactile allodynia was attenuated in α2δ-1 knock-out mice and in mice in which GluN1 was conditionally knocked out in DRG neurons. Collectively, our findings indicate that α2δ-1-bound NMDA receptors at presynaptic terminals of sprouting myelinated afferent nerves contribute to RTX-induced potentiation of nociceptive input to the spinal cord and tactile allodynia.SIGNIFICANCE STATEMENT Postherpetic neuralgia (PHN), associated with shingles, is a distinct form of neuropathic pain commonly seen in elderly and immunocompromised patients. The synaptic plasticity underlying touch-induced pain hypersensitivity in PHN remains unclear. Using a nonviral animal model of PHN, we found that glutamatergic input from primary sensory nerves to the spinal cord is increased via tonic activation of glutamate NMDA receptors. Also, we showed that α2δ-1 (encoded by Cacna2d1), originally considered a calcium channel subunit, serves as an auxiliary protein that promotes activation of presynaptic NMDA receptors and pain hypersensitivity. This new information advances our understanding of the molecular mechanism underlying PHN and suggests new strategies for treating this painful condition.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Hiperalgesia/metabolismo , Neuralgia/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Células Receptoras Sensoriales/metabolismo , Animales , Diterpenos/toxicidad , Ganglios Espinales , Ácido Glutámico/metabolismo , Hiperalgesia/inducido químicamente , Masculino , Ratones , Neuralgia/inducido químicamente , Neuralgia Posherpética , Neurotoxinas/toxicidad , Ratas , Ratas Sprague-Dawley , Regulación hacia Arriba
18.
J Neurosci ; 41(30): 6415-6429, 2021 07 28.
Artículo en Inglés | MEDLINE | ID: mdl-34252035

RESUMEN

N-methyl-d-aspartate receptors (NMDARs) are important for synaptic plasticity associated with many physiological functions and neurologic disorders. Protein kinase C (PKC) activation increases the phosphorylation and activity of NMDARs, and α2δ-1 is a critical NMDAR-interacting protein and controls synaptic trafficking of NMDARs. In this study, we determined the relative roles of PKC and α2δ-1 in the control of NMDAR activity. We found that α2δ-1 coexpression significantly increased NMDAR activity in HEK293 cells transfected with GluN1/GluN2A or GluN1/GluN2B. PKC activation with phorbol 12-myristate 13-acetate (PMA) increased receptor activity only in cells coexpressing GluN1/GluN2A and α2δ-1. Remarkably, PKC inhibition with GÓ§6983 abolished α2δ-1-coexpression-induced potentiation of NMDAR activity in cells transfected with GluN1/GluN2A or GluN1/GluN2B. Treatment with PMA increased the α2δ-1-GluN1 interaction and promoted α2δ-1 and GluN1 cell surface trafficking. PMA also significantly increased NMDAR activity of spinal dorsal horn neurons and the amount of α2δ-1-bound GluN1 protein complexes in spinal cord synaptosomes in wild-type mice, but not in α2δ-1 knockout mice. Furthermore, inhibiting α2δ-1 with pregabalin or disrupting the α2δ-1-NMDAR interaction with the α2δ-1 C-terminus peptide abolished the potentiating effect of PMA on NMDAR activity. Additionally, using quantitative phosphoproteomics and mutagenesis analyses, we identified S929 on GluN2A and S1413 (S1415 in humans) on GluN2B as the phosphorylation sites responsible for NMDAR potentiation by PKC and α2δ-1. Together, our findings demonstrate the interdependence of α2δ-1 and PKC phosphorylation in regulating NMDAR trafficking and activity. The phosphorylation-dependent, dynamic α2δ-1-NMDAR interaction constitutes an important molecular mechanism of synaptic plasticity.SIGNIFICANCE STATEMENT A major challenge in studies of protein phosphorylation is to define the functional significance of each phosphorylation event and determine how various signaling pathways are coordinated in response to neuronal activity to shape synaptic plasticity. PKC phosphorylates transporters, ion channels, and G-protein-coupled receptors in signal transduction. In this study, we showed that α2δ-1 is indispensable for PKC-activation-induced surface and synaptic trafficking of NMDARs, whereas the α2δ-1-NMDAR interaction is controlled by PKC-induced phosphorylation. Our findings reveal that α2δ-1 mainly functions as a phospho-binding protein in the control of NMDAR trafficking and activity. This information provides new mechanistic insight into the reciprocal roles of PKC-mediated phosphorylation and α2δ-1 in regulating NMDARs and in the therapeutic actions of gabapentinoids.


Asunto(s)
Canales de Calcio Tipo L/metabolismo , Proteína Quinasa C/metabolismo , Transporte de Proteínas/fisiología , Receptores de N-Metil-D-Aspartato/metabolismo , Animales , Femenino , Células HEK293 , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Plasticidad Neuronal/fisiología , Fosforilación
19.
BMC Plant Biol ; 22(1): 253, 2022 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-35606691

RESUMEN

BACKGROUND: The large genus Ficus comprises approximately 800 species, most of which possess high ornamental and ecological values. However, its evolutionary history remains largely unknown. Plastome (chloroplast genome) analysis had become an essential tool for species identification and for unveiling evolutionary relationships between species, genus and other rank groups. In this work we present the plastomes of ten Ficus species. RESULTS: The complete chloroplast (CP) genomes of eleven Ficus specimens belonging to ten species were determined and analysed. The full length of the Ficus plastome was nearly 160 kbp with a similar overall GC content, ranging from 35.88 to 36.02%. A total of 114 unique genes, distributed in 80 protein-coding genes, 30 tRNAs, and 4 rRNAs, were annotated in each of the Ficus CP genome. In addition, these CP genomes showed variation in their inverted repeat regions (IR). Tandem repeats and mononucleotide simple sequence repeat (SSR) are widely distributed across the Ficus CP genome. Comparative genome analysis showed low sequence variability. In addition, eight variable regions to be used as potential molecular markers were proposed for future Ficus species identification. According to the phylogenetic analysis, these ten Ficus species were clustered together and further divided into three clades based on different subgenera. Simultaneously, it also showed the relatedness between Ficus and Morus. CONCLUSION: The chloroplast genome structure of 10 Ficus species was similar to that of other angiosperms, with a typical four-part structure. Chloroplast genome sizes vary slightly due to expansion and contraction of the IR region. And the variation of noncoding regions of the chloroplast genome is larger than that of coding regions. Phylogenetic analysis showed that these eleven sampled CP genomes were divided into three clades, clustered with species from subgenus Urostigma, Sycomorus, and Ficus, respectively. These results support the Berg classification system, in which the subgenus Ficus was further decomposed into the subgenus Sycomorus. In general, the sequencing and analysis of Ficus plastomes, especially the ones of species with no or limited sequences available yet, contribute to the study of genetic diversity and species evolution of Ficus, while providing useful information for taxonomic and phylogenetic studies of Ficus.


Asunto(s)
Ficus , Genoma del Cloroplasto , Composición de Base , Ficus/genética , Genoma del Cloroplasto/genética , Repeticiones de Microsatélite/genética , Filogenia
20.
BMC Plant Biol ; 22(1): 86, 2022 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-35216551

RESUMEN

BACKGROUND: Helicteres angustifolia has long been used in Chinese traditional medicine. It has multiple pharmacological benefits, including anti-inflammatory, anti-viral and anti-tumor effects. Its main active chemicals include betulinic acid, oleanolic acid, helicteric acid, helicterilic acid, and other triterpenoid saponins. It is worth noting that some acylated triterpenoids, such as helicteric acid and helicterilic acid, are characteristic components of Helicteres and are relatively rare among other plants. However, reliance on natural plants as the only sources of these is not enough to meet the market requirement. Therefore, the engineering of its metabolic pathway is of high research value for enhancing the production of secondary metabolites. Unfortunately, there are few studies on the biosynthetic pathways of triterpenoids in H. angustifolia, hindering its further investigation. RESULTS: Here, the RNAs of different groups treated by metabolic stimulation were sequenced with an Illumina high-throughput sequencing platform, resulting in 121 gigabases of data. A total of 424,824 unigenes were obtained after the trimming and assembly of the raw data, and 22,430 unigenes were determined to be differentially expressed. In addition, three oxidosqualene cyclases (OSCs) and four Cytochrome P450 (CYP450s) were screened, of which one OSC (HaOSC1) and one CYP450 (HaCYPi3) achieved functional verification, suggesting that they could catalyze the production of lupeol and oleanolic acid, respectively. CONCLUSION: In general, the transcriptomic data of H. angustifolia was first reported and analyzed to study functional genes. Three OSCs, four CYP450s and three acyltransferases were screened out as candidate genes to perform further functional verification, which demonstrated that HaOSC1 and HaCYPi3 encode for lupeol synthase and ß-amyrin oxidase, which produce corresponding products of lupeol and oleanolic acid, respectively. Their successful identification revealed pivotal steps in the biosynthesis of acylated triterpenoids precursors, which laid a foundation for further study on acylated triterpenoids. Overall, these results shed light on the regulation of acylated triterpenoids biosynthesis.


Asunto(s)
Malvaceae/genética , Malvaceae/metabolismo , Proteínas de Plantas/metabolismo , Triterpenos/metabolismo , Acetatos/farmacología , Acilación , Ciclopentanos/farmacología , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transferasas Intramoleculares/genética , Transferasas Intramoleculares/metabolismo , Malvaceae/efectos de los fármacos , Oxilipinas/farmacología , Filogenia , Proteínas de Plantas/genética , Plantas Medicinales/genética , Plantas Medicinales/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Ácido Salicílico/farmacología , Triterpenos/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA