Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Cancer Immunol Immunother ; 62(2): 393-403, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-22926105

RESUMEN

Peptide vaccine based on tumor-associated antigen (TAA), which usually belongs to self-antigen with poor immunogenicity, has been considered as an attractive option for treatment of malignant tumors. The ideal TAA epitopes should have stable affinity to major histocompatibility complex (MHC) molecules and elicit strong anti-tumor immune response. Although point-mutation technology of TAA peptide may increase the binding capability to MHC molecules, some previous studies have revealed that part of the variant peptides results in lymphocyte not to effectively cross-recognize and kill the target tumor expressed wild-type TAA. Here, we designed a novel HLA-A2-restricted mutated TAA Survivin epitope nonapeptide Sur79L2 (KLSSGCAFL) that showed higher binding ability compared to wild-type peptide Sur79 (KHSSGCAFL) in T2-binding assays. To investigate whether Sur79L2 can induce Survivin-specific anti-hepatocellular carcinoma (HCC) response, we stimulated tumor-associated lymphocytes from a HCC patient with Sur79L2 in vitro. IFN-γ release and cytotoxicity assays showed Sur79L2 could effectively cross-recognize and lysis T2 cell plus peptide Sur79 and HCC cell lines (expression of wild-type Survivin antigen) in an HLA-A2-restricted manner. In contrast, peptide Sur95 (ELTLGEFLKL) that has been reported as a very promising anti-tumor epitope in a variety of tumors except HCC were not able to generate detectable cytotoxic immune responses against HCC in this study. Our results suggest that point-mutated peptide Sur79L2 is a new HLA-A2-restricted CTL epitope and may be useful for the immunotherapy for patients with HCC.


Asunto(s)
Antígenos de Neoplasias/efectos de los fármacos , Carcinoma Hepatocelular/tratamiento farmacológico , Epítopos/inmunología , Antígeno HLA-A2/inmunología , Proteínas Inhibidoras de la Apoptosis/genética , Neoplasias Hepáticas/tratamiento farmacológico , Oligopéptidos/farmacología , Linfocitos T Citotóxicos/efectos de los fármacos , Antígenos de Neoplasias/inmunología , Carcinoma Hepatocelular/inmunología , Línea Celular Tumoral , Células Cultivadas , Epítopos/genética , Humanos , Proteínas Inhibidoras de la Apoptosis/análisis , Proteínas Inhibidoras de la Apoptosis/inmunología , Interferón gamma/metabolismo , Neoplasias Hepáticas/inmunología , Masculino , Persona de Mediana Edad , Mutación , Oligopéptidos/inmunología , Survivin , Linfocitos T Citotóxicos/inmunología
2.
MAbs ; 15(1): 2180794, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36872527

RESUMEN

Clinical studies have shown that combination therapy of antibodies targeting cytotoxic T-lymphocyte antigen-4 (CTLA-4) and programmed cell death-1 (PD-1) significantly improves clinical benefit over PD-1 antibody alone. However, broad application of this combination has been limited by toxicities. Cadonilimab (AK104) is a symmetric tetravalent bispecific antibody with a crystallizable fragment (Fc)-null design. In addition to demonstrating biological activity similar to that of the combination of CTLA-4 and PD-1 antibodies, cadonilimab possess higher binding avidity in a high-density PD-1 and CTLA-4 setting than in a low-density PD-1 setting, while a mono-specific anti-PD-1 antibody does not demonstrate this differential activity. With no binding to Fc receptors, cadonilimab shows minimal antibody-dependent cellular cytotoxicity, antibody-dependent cellular phagocytosis, and interleukin-6 (IL-6)/IL-8 release. These features all likely contribute to significantly lower toxicities of cadonilimab observed in the clinic. Higher binding avidity of cadonilimab in a tumor-like setting and Fc-null design may lead to better drug retention in tumors and contribute to better safety while achieving anti-tumor efficacy.


Asunto(s)
Anticuerpos Biespecíficos , Antígeno CTLA-4 , Citotoxicidad Celular Dependiente de Anticuerpos , Terapia Combinada , Inhibidores de Puntos de Control Inmunológico
3.
Front Immunol ; 13: 924542, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35833116

RESUMEN

Background: IgG4 anbibodies are deficient in stability and may contribute to tumor-associated escape from immune surveillance. We developed an IgG1 backbone anti-programmed cell death protein-1 (PD-1) antibody, penpulimab, which is designed to remove crystallizable fragment (Fc) gamma receptor (FcγR) binding that mediates antibody-dependent cell-mediated cytotoxicity (ADCC), antibody-dependent cellular phagocytosis (ADCP) and proinflammatory cytokine release. Methods: Aggregation of different anti-PD-1 antibodies was tested by size exclusion chromatography, and melting temperature midpoint (Tm) and aggregation temperature onset (Tagg) were also determined. The affinity constants of penpulimab for PD-1 and human FcγRs were measured by surface plasmon resonance and biolayer interferometry. ADCC and ADCP were determined in cellular assays and antibody-dependent cytokine release (ADCR) from human macrophages was detected by ELISA. Binding kinetics of penpulimab to human PD-1 was determined by Biacore, and epitope/paratope mapping of PD-1/penpulimab was investigated using x-ray crystallography. Additionally, patients from six ongoing trials were included for analysis of immune-related adverse events (irAEs). Results: Penpulimab demonstrated better stability and a lower level of host-cell protein residue compared with IgG4 backbone anti-PD-1 antibodies. As expected, penpulimab exhibited no apparent binding to FcγRIa, FcγRIIa_H131, FcγRIIIa_V158 and FcγRIIIa_F158, elicited no apparent ADCC and ADCP activities, and induced no remarkable IL-6 and IL-8 release by activated macrophages in vitro. Penpulimab was shown in the co-crystal study to bind to human PD-1 N-glycosylation site at N58 and had a slower off-rate from PD-1 versus nivolumab or pembrolizumab. Four hundred sixty-five patients were analyzed for irAEs. Fifteen (3.2%) patients had grade 3 or above irAEs. No death from irAEs was reported. Conclusions: IgG1 backbone anti-PD1 antibody penpulimab has a good stability and reduced host cell protein residue, as well as potent binding to the antigen. Fc engineering has eliminated Fc-mediated effector functions of penpulimab including ADCC, ADCP and reduced ADCR, which may contribute to its more favorable safety profile. Clinical Trial Registration: www.ClinicalTrials.gov, identifier: AK105-101: NCT03352531, AK105-201: NCT03722147, AK105-301: NCT03866980, AK105-202:NCT03866967, AK105-203: NCT04172571, AK105-204: NCT04172506.


Asunto(s)
Citotoxicidad Celular Dependiente de Anticuerpos , Inmunoglobulina G , Anticuerpos Monoclonales , Ensayos Clínicos como Asunto , Citocinas , Humanos , Incidencia
4.
J Immunother Cancer ; 10(11)2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-36450383

RESUMEN

BACKGROUND: CD47 is a widely expressed transmembrane glycoprotein that delivers an antiphagocytic signal on macrophages through its interaction with SIRPα. CD47 is highly expressed in cancer cells and its overexpression is correlated with poor prognosis. CD47 blocking antibodies are actively being developed worldwide for cancer therapy, and the most challenging concern is associated with hematotoxicity. Ligufalimab (AK117) is a novel humanized IgG4 anti-CD47 antibody without hemagglutination effect. Blockade of CD47-SIRPα pathway by AK117 leads to a promising therapeutic strategy for cancer treatment with unique safety features. METHODS: AK117 was discovered through a screening hierarchy excluding hemagglutination. AK117 was characterized by detecting CD47-SIRPα blocking potential. Its effect on human red blood cells was examined and the mechanism of its binding with erythrocytes was studied. The abilities of AK117 and its combination with various opsonizing antibodies to promote macrophage-dependent phagocytosis of multiple human tumor cells were determined using fluorescence microscopy and flow cytometry. In vivo, the antitumor efficacy of AK117 monotherapy and combination with AK112 (an anti-PD-1/VEGF-A bispecific antibody) was assessed in a variety of xenograft models. Toxicologic studies were evaluated in non-human primates. RESULTS: AK117 bound to CD47 with high affinity and blocked the CD47-SIRPα interaction. AK117 did not induce hemagglutination and showed significantly lower degree of erythrophagocytosis compared with Hu5F9-G4, and this mechanism of hemagglutination resistance might be related to the binding conformation. AK117 enhanced macrophage-mediated phagocytosis in both hematologic cancer and solid tumor cell lines as a single agent or in combination with cetuximab and rituximab in vitro, respectively. The antitumor effects of AK117 as a single agent or in combination with AK112 were also encouraging in various xenograft models. In non-human primates, AK117 showed less hematotoxicity compared with Hu5F9-G4. CONCLUSIONS: AK117 eliminated hemagglutination and also enabled to maintain full effectiveness of CD47 blockade on tumor cells, which resulted in excellent antitumor efficacy and favorable safety profile of AK117. A series of clinical trials of AK117 as a therapeutic agent in combination with various agents such as AK112 are in progress for the treatment of multiple hematologic malignancies and solid tumors.


Asunto(s)
Anticuerpos Biespecíficos , Neoplasias Hematológicas , Animales , Humanos , Anticuerpos Monoclonales/farmacología , Anticuerpos Monoclonales/uso terapéutico , Cetuximab , Inhibidores de Puntos de Control Inmunológico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA