Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Stem Cells ; 42(6): 554-566, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38613477

RESUMEN

Microtia is a congenital auricle dysplasia with a high incidence and tissue engineering technology provides a promising strategy to reconstruct auricles. We previously described that the engineered cartilage constructed from microtia chondrocytes exhibited inferior levels of biochemical and biomechanical properties, which was proposed to be resulted of the decreased migration ability of microtia chondrocytes. In the current study, we found that Rho GTPase members were deficient in microtia chondrocytes. By overexpressing RhoA, Rac1, and CDC42, respectively, we further demonstrated that RhoA took great responsibility for the decreased migration ability of microtia chondrocytes. Moreover, we constructed PGA/PLA scaffold-based cartilages to verify the chondrogenic ability of RhoA overexpressed microtia chondrocytes, and the results showed that overexpressing RhoA was of limited help in improving the quality of microtia chondrocyte engineered cartilage. However, coculture of adipose-derived stem cells (ADSCs) significantly improved the biochemical and biomechanical properties of engineered cartilage. Especially, coculture of RhoA overexpressed microtia chondrocytes and ADSCs produced an excellent effect on the wet weight, cartilage-specific extracellular matrix, and biomechanical property of engineered cartilage. Furthermore, we presented that coculture of RhoA overexpressed microtia chondrocytes and ADSCs combined with human ear-shaped PGA/PLA scaffold and titanium alloy stent fabricated by CAD/CAM and 3D printing technology effectively constructed and maintained auricle structure in vivo. Collectively, our results provide evidence for the essential role of RhoA in microtia chondrocytes and a developed strategy for the construction of patient-specific tissue-engineered auricular cartilage.


Asunto(s)
Condrocitos , Técnicas de Cocultivo , Microtia Congénita , Ingeniería de Tejidos , Proteína de Unión al GTP rhoA , Condrocitos/metabolismo , Condrocitos/citología , Humanos , Ingeniería de Tejidos/métodos , Proteína de Unión al GTP rhoA/metabolismo , Proteína de Unión al GTP rhoA/genética , Microtia Congénita/metabolismo , Microtia Congénita/genética , Cartílago Auricular/citología , Cartílago Auricular/metabolismo , Células Madre/metabolismo , Células Madre/citología , Tejido Adiposo/citología , Tejido Adiposo/metabolismo , Condrogénesis/genética , Masculino , Andamios del Tejido/química , Femenino
2.
J Transl Med ; 21(1): 231, 2023 03 31.
Artículo en Inglés | MEDLINE | ID: mdl-37004048

RESUMEN

BACKGROUND: Hypertrophic scar is a fibrotic disease following wound healing and is characterized by excessive extracellular matrix deposition. Autologous microfat grafting proves an effective strategy for the treatment thereof as it could improve the texture of scars and relieve relevant symptoms. This study aims to explore the potential mechanisms underlying the anti-fibrotic effect of microfat on hypertrophic scars. METHODS: In this study, we injected microfat into transplanted hypertrophic scars in mouse models and investigated the subsequent histological changes and differential expression of mRNAs therein. As for in vitro studies, we co-cultured microfat and hypertrophic scar fibroblasts (HSFs) and analyzed molecular profile changes in HSFs co-cultured with microfat by RNA sequencing. Moreover, to identify the key transcription factors (TFs) which might be responsible for the anti-fibrotic function of microfat, we screened the differentially expressed TFs and transfected HSFs with lentivirus to overexpress or knockdown certain differentially expressed TFs. Furthermore, comparative secretome analyses were conducted to investigate the proteins secreted by co-cultured microfat; changes in gene expression of HSFs were examined after the administration of the potential anti-fibrotic protein. Finally, the relationship between the key TF in HSFs and the microfat-secreted anti-fibrotic adipokine was analyzed. RESULTS: The anti-fibrotic effect of microfat was confirmed by in vivo transplanted hypertrophic scar models, as the number of α-SMA-positive myofibroblasts was decreased and the expression of fibrosis-related genes downregulated. Co-cultured microfat suppressed the extracellular matrix production of HSFs in in vitro experiment, and the transcription factor ETV4 was primarily differentially expressed in HSFs when compared with normal skin fibroblasts. Overexpression of ETV4 significantly decreased the expression of fibrosis-related genes in HSFs at both mRNA and protein levels. Fetuin-A secreted by microfat could also downregulate the expression of fibrosis-related genes in HSFs, partially through upregulating ETV4 expression. CONCLUSIONS: Our results demonstrated that transcription factor ETV4 is essential for the anti-fibrotic effect of microfat on hypertrophic scars, and that fetuin-A secreted by microfat could suppress the fibrotic characteristic of HSFs through upregulating ETV4 expression. Microfat wields an alleviative influence over hypertrophic scars via fetuin-A/ETV4 axis.


Asunto(s)
Cicatriz Hipertrófica , Animales , Ratones , Humanos , Cicatriz Hipertrófica/metabolismo , Cicatriz Hipertrófica/patología , Cicatriz Hipertrófica/terapia , alfa-2-Glicoproteína-HS/metabolismo , alfa-2-Glicoproteína-HS/farmacología , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , ARN Mensajero/genética , alfa-Fetoproteínas/metabolismo , Factores de Transcripción/metabolismo , Proteínas Proto-Oncogénicas c-ets/metabolismo , Proteínas Proto-Oncogénicas c-ets/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA