Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 62
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nat Rev Mol Cell Biol ; 24(6): 430-447, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-36596869

RESUMEN

Genes specifying long non-coding RNAs (lncRNAs) occupy a large fraction of the genomes of complex organisms. The term 'lncRNAs' encompasses RNA polymerase I (Pol I), Pol II and Pol III transcribed RNAs, and RNAs from processed introns. The various functions of lncRNAs and their many isoforms and interleaved relationships with other genes make lncRNA classification and annotation difficult. Most lncRNAs evolve more rapidly than protein-coding sequences, are cell type specific and regulate many aspects of cell differentiation and development and other physiological processes. Many lncRNAs associate with chromatin-modifying complexes, are transcribed from enhancers and nucleate phase separation of nuclear condensates and domains, indicating an intimate link between lncRNA expression and the spatial control of gene expression during development. lncRNAs also have important roles in the cytoplasm and beyond, including in the regulation of translation, metabolism and signalling. lncRNAs often have a modular structure and are rich in repeats, which are increasingly being shown to be relevant to their function. In this Consensus Statement, we address the definition and nomenclature of lncRNAs and their conservation, expression, phenotypic visibility, structure and functions. We also discuss research challenges and provide recommendations to advance the understanding of the roles of lncRNAs in development, cell biology and disease.


Asunto(s)
ARN Largo no Codificante , ARN Largo no Codificante/genética , Núcleo Celular/genética , Cromatina/genética , Secuencias Reguladoras de Ácidos Nucleicos , ARN Polimerasa II/genética
2.
Nat Rev Mol Cell Biol ; 22(2): 96-118, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33353982

RESUMEN

Evidence accumulated over the past decade shows that long non-coding RNAs (lncRNAs) are widely expressed and have key roles in gene regulation. Recent studies have begun to unravel how the biogenesis of lncRNAs is distinct from that of mRNAs and is linked with their specific subcellular localizations and functions. Depending on their localization and their specific interactions with DNA, RNA and proteins, lncRNAs can modulate chromatin function, regulate the assembly and function of membraneless nuclear bodies, alter the stability and translation of cytoplasmic mRNAs and interfere with signalling pathways. Many of these functions ultimately affect gene expression in diverse biological and physiopathological contexts, such as in neuronal disorders, immune responses and cancer. Tissue-specific and condition-specific expression patterns suggest that lncRNAs are potential biomarkers and provide a rationale to target them clinically. In this Review, we discuss the mechanisms of lncRNA biogenesis, localization and functions in transcriptional, post-transcriptional and other modes of gene regulation, and their potential therapeutic applications.


Asunto(s)
Regulación de la Expresión Génica , Enfermedades del Sistema Inmune/patología , Neoplasias/patología , Trastornos del Neurodesarrollo/patología , ARN Largo no Codificante/genética , Animales , Humanos , Enfermedades del Sistema Inmune/genética , Neoplasias/genética , Trastornos del Neurodesarrollo/genética , Transducción de Señal
3.
Cell ; 173(6): 1318-1319, 2018 05 31.
Artículo en Inglés | MEDLINE | ID: mdl-29856950

RESUMEN

The role of the noncoding genome in cancer biology is continually expanding. Cho et al. reveal a new and unexpected mechanism for the regulation of MYC expression mediated by the promoter sequence of its neighbor gene PVT1. This DNA element acts as a promoter-enhancer competitor and a candidate tumor suppressor.


Asunto(s)
Regiones Promotoras Genéticas , ARN Largo no Codificante , Línea Celular Tumoral , ADN de Neoplasias
4.
EMBO J ; 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38951610

RESUMEN

Cells have evolved a robust and highly regulated DNA damage response to preserve their genomic integrity. Although increasing evidence highlights the relevance of RNA regulation, our understanding of its impact on a fully efficient DNA damage response remains limited. Here, through a targeted CRISPR-knockout screen, we identify RNA-binding proteins and modifiers that participate in the p53 response. Among the top hits, we find the m6A reader YTHDC1 as a master regulator of p53 expression. YTHDC1 binds to the transcription start sites of TP53 and other genes involved in the DNA damage response, promoting their transcriptional elongation. YTHDC1 deficiency also causes the retention of introns and therefore aberrant protein production of key DNA damage factors. While YTHDC1-mediated intron retention requires m6A, TP53 transcriptional pause-release is promoted by YTHDC1 independently of m6A. Depletion of YTHDC1 causes genomic instability and aberrant cancer cell proliferation mediated by genes regulated by YTHDC1. Our results uncover YTHDC1 as an orchestrator of the DNA damage response through distinct mechanisms of co-transcriptional mRNA regulation.

6.
Cell ; 142(3): 409-19, 2010 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-20673990

RESUMEN

Recently, more than 1000 large intergenic noncoding RNAs (lincRNAs) have been reported. These RNAs are evolutionarily conserved in mammalian genomes and thus presumably function in diverse biological processes. Here, we report the identification of lincRNAs that are regulated by p53. One of these lincRNAs (lincRNA-p21) serves as a repressor in p53-dependent transcriptional responses. Inhibition of lincRNA-p21 affects the expression of hundreds of gene targets enriched for genes normally repressed by p53. The observed transcriptional repression by lincRNA-p21 is mediated through the physical association with hnRNP-K. This interaction is required for proper genomic localization of hnRNP-K at repressed genes and regulation of p53 mediates apoptosis. We propose a model whereby transcription factors activate lincRNAs that serve as key repressors by physically associating with repressive complexes and modulate their localization to sets of previously active genes.


Asunto(s)
Regulación hacia Abajo , ARN no Traducido/metabolismo , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis , Ribonucleoproteína Heterogénea-Nuclear Grupo K/metabolismo , Humanos , Ratones , Datos de Secuencia Molecular , Transcripción Genética
7.
Mol Cell ; 63(3): 397-407, 2016 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-27477908

RESUMEN

Long noncoding RNAs (lncRNAs) are involved in diverse cellular processes through multiple mechanisms. Here, we describe a previously uncharacterized human lncRNA, CONCR (cohesion regulator noncoding RNA), that is transcriptionally activated by MYC and is upregulated in multiple cancer types. The expression of CONCR is cell cycle regulated, and it is required for cell-cycle progression and DNA replication. Moreover, cells depleted of CONCR show severe defects in sister chromatid cohesion, suggesting an essential role for CONCR in cohesion establishment during cell division. CONCR interacts with and regulates the activity of DDX11, a DNA-dependent ATPase and helicase involved in DNA replication and sister chromatid cohesion. These findings unveil a direct role for an lncRNA in the establishment of sister chromatid cohesion by modulating DDX11 enzymatic activity.


Asunto(s)
Cromátides/metabolismo , Replicación del ADN , ADN de Neoplasias/biosíntesis , Neoplasias/metabolismo , ARN Largo no Codificante/metabolismo , Células A549 , Animales , Apoptosis , Proliferación Celular , Cromátides/genética , ARN Helicasas DEAD-box/genética , ARN Helicasas DEAD-box/metabolismo , ADN Helicasas/genética , ADN Helicasas/metabolismo , ADN de Neoplasias/genética , Femenino , Regulación Neoplásica de la Expresión Génica , Células HCT116 , Células HeLa , Humanos , Ratones Endogámicos BALB C , Ratones Transgénicos , Neoplasias/genética , Neoplasias/patología , Proteínas Proto-Oncogénicas c-myc/genética , Proteínas Proto-Oncogénicas c-myc/metabolismo , Interferencia de ARN , ARN Largo no Codificante/genética , Factores de Tiempo , Transcripción Genética , Activación Transcripcional , Transfección , Carga Tumoral , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo
8.
Cell ; 135(2): 272-83, 2008 Oct 17.
Artículo en Inglés | MEDLINE | ID: mdl-18957202

RESUMEN

In most eukaryotes, histone methylation patterns regulate chromatin architecture and function: methylation of histone H3 lysine-9 (H3K9) demarcates heterochromatin, whereas H3K4 methylation demarcates euchromatin. We show here that the S. pombe JmjC-domain protein Lid2 is a trimethyl H3K4 demethylase responsible for H3K4 hypomethylation in heterochromatin. Lid2 interacts with the histone lysine-9 methyltransferase, Clr4, through the Dos1/Clr8-Rik1 complex, which also functions in the RNA interference pathway. Disruption of the JmjC domain alone results in severe heterochromatin defects and depletion of siRNA, whereas overexpressing Lid2 enhances heterochromatin silencing. The physical and functional link between H3K4 demethylation and H3K9 methylation suggests that the two reactions act in a coordinated manner. Surprisingly, crossregulation of H3K4 and H3K9 methylation in euchromatin also requires Lid2. We suggest that Lid2 enzymatic activity in euchromatin is regulated through a dynamic interplay with other histone-modification enzymes. Our findings provide mechanistic insight into the coordination of H3K4 and H3K9 methylation.


Asunto(s)
Eucromatina/metabolismo , Heterocromatina/metabolismo , Histonas/metabolismo , Oxidorreductasas N-Desmetilantes/metabolismo , Proteínas de Schizosaccharomyces pombe/metabolismo , Schizosaccharomyces/genética , Schizosaccharomyces/metabolismo , Segregación Cromosómica , Proteínas de Unión al ADN/metabolismo , Histona Metiltransferasas , N-Metiltransferasa de Histona-Lisina , Histonas/química , Lisina/metabolismo , Modelos Biológicos , Oxidorreductasas N-Desmetilantes/química , Mutación Puntual , Proteína Metiltransferasas/metabolismo , Estructura Terciaria de Proteína , Interferencia de ARN , Schizosaccharomyces/química , Proteínas de Schizosaccharomyces pombe/química , Factores de Transcripción/metabolismo
9.
EMBO Rep ; 21(3): e50107, 2020 03 04.
Artículo en Inglés | MEDLINE | ID: mdl-32078233

RESUMEN

lncRNAs actively regulate gene expression. They contribute to chromosomal interactions at close or distant genomic regions, which, in turn, regulate transcription [1]. Ariel et al [2] reveal in a recent study a new molecular mechanism of the Arabidopsis lncRNA APOLO. The authors extend previously reported functions of APOLO in cis-regulation of chromosomal looping and transcription of its neighbor gene to a set of distant genes involved in auxin-induced molecular pathways controlling lateral root development. Noteworthy, APOLO recognition of multiple trans-modulated targets occurs through a novel mechanism involving R-loop formation.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , ARN Largo no Codificante , Arabidopsis/genética , Proteínas de Arabidopsis/genética , ADN , Ácidos Indolacéticos , Estructuras R-Loop
10.
Mol Cell ; 47(4): 648-55, 2012 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-22841487

RESUMEN

Mammalian long intergenic noncoding RNAs (lincRNAs) are best known for modulating transcription. Here we report a posttranscriptional function for lincRNA-p21 as a modulator of translation. Association of the RNA-binding protein HuR with lincRNA-p21 favored the recruitment of let-7/Ago2 to lincRNA-p21, leading to lower lincRNA-p21 stability. Under reduced HuR levels, lincRNA-p21 accumulated in human cervical carcinoma HeLa cells, increasing its association with JUNB and CTNNB1 mRNAs and selectively lowering their translation. With elevated HuR, lincRNA-p21 levels declined, which in turn derepressed JunB and ß-catenin translation and increased the levels of these proteins. We propose that HuR controls translation of a subset of target mRNAs by influencing lincRNA-p21 levels. Our findings uncover a role for lincRNA as a posttranscriptional inhibitor of translation.


Asunto(s)
Biosíntesis de Proteínas , Procesamiento Postranscripcional del ARN , ARN Largo no Codificante/genética , Secuencia de Bases , Carboxipeptidasas/genética , Carboxipeptidasas/metabolismo , Proteínas ELAV/genética , Proteínas ELAV/metabolismo , Células HeLa , Humanos , MicroARNs/genética , Datos de Secuencia Molecular , Proteolisis , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transcripción Genética , Células Tumorales Cultivadas , beta Catenina/genética , beta Catenina/metabolismo
11.
Nucleic Acids Res ; 46(8): 4213-4227, 2018 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-29481642

RESUMEN

Oncogene-induced senescence (OIS), provoked in response to oncogenic activation, is considered an important tumor suppressor mechanism. Long non-coding RNAs (lncRNAs) are transcripts longer than 200 nt without a protein-coding capacity. Functional studies showed that deregulated lncRNA expression promote tumorigenesis and metastasis and that lncRNAs may exhibit tumor-suppressive and oncogenic function. Here, we first identified lncRNAs that were differentially expressed between senescent and non-senescent human fibroblast cells. Using RNA interference, we performed a loss-function screen targeting the differentially expressed lncRNAs, and identified lncRNA-OIS1 (lncRNA#32, AC008063.3 or ENSG00000233397) as a lncRNA required for OIS. Knockdown of lncRNA-OIS1 triggered bypass of senescence, higher proliferation rate, lower abundance of the cell-cycle inhibitor CDKN1A and high expression of cell-cycle-associated genes. Subcellular inspection of lncRNA-OIS1 indicated nuclear and cytosolic localization in both normal culture conditions as well as following oncogene induction. Interestingly, silencing lncRNA-OIS1 diminished the senescent-associated induction of a nearby gene (Dipeptidyl Peptidase 4, DPP4) with established role in tumor suppression. Intriguingly, similar to lncRNA-OIS1, silencing DPP4 caused senescence bypass, and ectopic expression of DPP4 in lncRNA-OIS1 knockdown cells restored the senescent phenotype. Thus, our data indicate that lncRNA-OIS1 links oncogenic induction and senescence with the activation of the tumor suppressor DPP4.


Asunto(s)
Senescencia Celular/genética , Dipeptidil Peptidasa 4/genética , ARN Largo no Codificante/metabolismo , Dipeptidil Peptidasa 4/metabolismo , Expresión Génica , Genes ras , Genoma , Células HEK293 , Humanos , Neoplasias/genética , Neoplasias/metabolismo
12.
Genes Dev ; 24(5): 443-54, 2010 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-20139222

RESUMEN

Transposable elements are common in genomes and must be controlled. Many organisms use DNA methylation to silence such selfish DNA, but the mechanisms that restrict the methylation to appropriate regions are largely unknown. We identified a JmjC domain protein in Neurospora, DNA METHYLATION MODULATOR-1 (DMM-1), that prevents aberrant spreading of DNA and histone H3K9 methylation from inactivated transposons into nearby genes. Mutation of a conserved residue within the JmjC Fe(II)-binding site abolished dmm-1 function, as did mutations in conserved cysteine-rich domains. Mutants defective only in dmm-1 mutants grow poorly, but growth is restored by reduction or elimination of DNA methylation using the drug 5-azacytosine or by mutation of the DNA methyltransferase gene dim-2. DMM-1 relies on an associated protein, DMM-2, which bears a DNA-binding motif, for localization and proper function. HP1 is required to recruit the DMM complex to the edges of methylated regions.


Asunto(s)
Elementos Transponibles de ADN/genética , ADN de Hongos/metabolismo , Histona Demetilasas con Dominio de Jumonji/metabolismo , Neurospora crassa/enzimología , Neurospora crassa/genética , Metilación de ADN/genética , ADN de Hongos/genética , Genes Fúngicos/genética , Histona Demetilasas con Dominio de Jumonji/genética , Mutación/genética
13.
Biochim Biophys Acta ; 1859(1): 200-8, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26196323

RESUMEN

Long noncoding RNAs (lncRNAs) are rapidly emerging as important regulators of gene expression in a wide variety of physiological and pathological cellular processes. In particular, a number of studies revealed that some lncRNAs participate in the p53 pathway, the unquestioned protagonist of tumor suppressor response. Indeed, several lncRNAs are not only part of the large pool of genes coordinated by p53 transcription factor, but are also required by p53 to fine-tune its response and to fully accomplish its tumor suppressor program. In this review we will discuss the current and fast growing knowledge about the contribution of lncRNAs to the complexity of the p53 network, the different mechanisms by which they affect gene regulation in this context, and their involvement in cancer. The incipient impact of lncRNAs in the p53 biological response may encourage the development of therapies and diagnostic methods focused on these noncoding molecules. This article is part of a Special Issue entitled: Clues to long noncoding RNA taxonomy1, edited by Dr. Tetsuro Hirose and Dr. Shinichi Nakagawa.


Asunto(s)
Redes Reguladoras de Genes , Neoplasias/genética , ARN Largo no Codificante/genética , Proteína p53 Supresora de Tumor/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Neoplasias/patología , ARN Largo no Codificante/biosíntesis , Transducción de Señal , Proteína p53 Supresora de Tumor/biosíntesis
14.
Nature ; 466(7305): 503-7, 2010 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-20622853

RESUMEN

X-linked mental retardation (XLMR) is a complex human disease that causes intellectual disability. Causal mutations have been found in approximately 90 X-linked genes; however, molecular and biological functions of many of these genetically defined XLMR genes remain unknown. PHF8 (PHD (plant homeo domain) finger protein 8) is a JmjC domain-containing protein and its mutations have been found in patients with XLMR and craniofacial deformities. Here we provide multiple lines of evidence establishing PHF8 as the first mono-methyl histone H4 lysine 20 (H4K20me1) demethylase, with additional activities towards histone H3K9me1 and me2. PHF8 is located around the transcription start sites (TSS) of approximately 7,000 RefSeq genes and in gene bodies and intergenic regions (non-TSS). PHF8 depletion resulted in upregulation of H4K20me1 and H3K9me1 at the TSS and H3K9me2 in the non-TSS sites, respectively, demonstrating differential substrate specificities at different target locations. PHF8 positively regulates gene expression, which is dependent on its H3K4me3-binding PHD and catalytic domains. Importantly, patient mutations significantly compromised PHF8 catalytic function. PHF8 regulates cell survival in the zebrafish brain and jaw development, thus providing a potentially relevant biological context for understanding the clinical symptoms associated with PHF8 patients. Lastly, genetic and molecular evidence supports a model whereby PHF8 regulates zebrafish neuronal cell survival and jaw development in part by directly regulating the expression of the homeodomain transcription factor MSX1/MSXB, which functions downstream of multiple signalling and developmental pathways. Our findings indicate that an imbalance of histone methylation dynamics has a critical role in XLMR.


Asunto(s)
Encéfalo/embriología , Encéfalo/enzimología , Cabeza/embriología , Histona Demetilasas/metabolismo , Histonas/metabolismo , Factores de Transcripción/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/embriología , Animales , Biocatálisis , Encéfalo/citología , Dominio Catalítico , Ciclo Celular , Línea Celular Tumoral , Supervivencia Celular , ADN Intergénico/genética , Regulación de la Expresión Génica , Histona Demetilasas/genética , Histonas/química , Proteínas de Homeodominio/genética , Humanos , Maxilares/citología , Maxilares/embriología , Lisina/metabolismo , Discapacidad Intelectual Ligada al Cromosoma X/enzimología , Discapacidad Intelectual Ligada al Cromosoma X/genética , Metilación , Neuronas/citología , Neuronas/enzimología , Regiones Promotoras Genéticas , Factores de Transcripción/deficiencia , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Pez Cebra/metabolismo , Proteínas de Pez Cebra/genética
15.
Nature ; 458(7235): 223-7, 2009 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-19182780

RESUMEN

There is growing recognition that mammalian cells produce many thousands of large intergenic transcripts. However, the functional significance of these transcripts has been particularly controversial. Although there are some well-characterized examples, most (>95%) show little evidence of evolutionary conservation and have been suggested to represent transcriptional noise. Here we report a new approach to identifying large non-coding RNAs using chromatin-state maps to discover discrete transcriptional units intervening known protein-coding loci. Our approach identified approximately 1,600 large multi-exonic RNAs across four mouse cell types. In sharp contrast to previous collections, these large intervening non-coding RNAs (lincRNAs) show strong purifying selection in their genomic loci, exonic sequences and promoter regions, with greater than 95% showing clear evolutionary conservation. We also developed a functional genomics approach that assigns putative functions to each lincRNA, demonstrating a diverse range of roles for lincRNAs in processes from embryonic stem cell pluripotency to cell proliferation. We obtained independent functional validation for the predictions for over 100 lincRNAs, using cell-based assays. In particular, we demonstrate that specific lincRNAs are transcriptionally regulated by key transcription factors in these processes such as p53, NFkappaB, Sox2, Oct4 (also known as Pou5f1) and Nanog. Together, these results define a unique collection of functional lincRNAs that are highly conserved and implicated in diverse biological processes.


Asunto(s)
Cromatina/genética , Secuencia Conservada , Mamíferos/genética , ARN/genética , Animales , Secuencia de Bases , Células Cultivadas , Secuencia Conservada/genética , ADN Intergénico , Exones/genética , Ratones , Regiones Promotoras Genéticas/genética , Reproducibilidad de los Resultados , Factores de Transcripción/metabolismo
16.
Nat Commun ; 15(1): 978, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38302450

RESUMEN

Besides the well-characterized protein network involved in the replication stress response, several regulatory RNAs have been shown to play a role in this critical process. However, it has remained elusive whether they act locally at the stressed forks. Here, by investigating the RNAs localizing on chromatin upon replication stress induced by hydroxyurea, we identified a set of lncRNAs upregulated in S-phase and controlled by stress transcription factors. Among them, we demonstrate that the previously uncharacterized lncRNA lncREST (long non-coding RNA REplication STress) is transcriptionally controlled by p53 and localizes at stressed replication forks. LncREST-depleted cells experience sustained replication fork progression and accumulate un-signaled DNA damage. Under replication stress, lncREST interacts with the protein NCL and assists in engaging its interaction with RPA. The loss of lncREST is associated with a reduced NCL-RPA interaction and decreased RPA on chromatin, leading to defective replication stress signaling and accumulation of mitotic defects, resulting in apoptosis and a reduction in tumorigenic potential of cancer cells. These findings uncover the function of a lncRNA in favoring the recruitment of replication proteins to sites of DNA replication.


Asunto(s)
Cromatina , ARN Largo no Codificante , Cromatina/genética , Replicación del ADN/genética , ARN Largo no Codificante/genética , Proteína de Replicación A/metabolismo , Fase S/genética , Daño del ADN
17.
EMBO Mol Med ; 16(1): 112-131, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38182795

RESUMEN

The therapeutic use of adeno-associated viral vector (AAV)-mediated gene disruption using CRISPR-Cas9 is limited by potential off-target modifications and the risk of uncontrolled integration of vector genomes into CRISPR-mediated double-strand breaks. To address these concerns, we explored the use of AAV-delivered paired Staphylococcus aureus nickases (D10ASaCas9) to target the Hao1 gene for the treatment of primary hyperoxaluria type 1 (PH1). Our study demonstrated effective Hao1 gene disruption, a significant decrease in glycolate oxidase expression, and a therapeutic effect in PH1 mice. The assessment of undesired genetic modifications through CIRCLE-seq and CAST-Seq analyses revealed neither off-target activity nor chromosomal translocations. Importantly, the use of paired-D10ASaCas9 resulted in a significant reduction in AAV integration at the target site compared to SaCas9 nuclease. In addition, our study highlights the limitations of current analytical tools in characterizing modifications introduced by paired D10ASaCas9, necessitating the development of a custom pipeline for more accurate characterization. These results describe a positive advance towards a safe and effective potential long-term treatment for PH1 patients.


Asunto(s)
Sistemas CRISPR-Cas , Hiperoxaluria Primaria , Humanos , Animales , Ratones , Desoxirribonucleasa I/genética , Desoxirribonucleasa I/metabolismo , Edición Génica , Hiperoxaluria Primaria/genética , Hiperoxaluria Primaria/terapia
18.
Brain Commun ; 5(6): fcad344, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38116140

RESUMEN

Huntingtin-lowering strategies are central to therapeutic approaches for Huntington's disease. Recent studies reported the induction of age- and cell type-specific phenotypes by conditional huntingtin knockout, but these experimental conditions did not precisely mimic huntingtin-lowering or gene-editing conditions in terms of the cells targeted and brain distribution, and no transcriptional profiles were provided. Here, we used the adeno-associated delivery system commonly used in CNS gene therapy programmes and the self-inactivating KamiCas9 gene-editing system to investigate the long-term consequences of wild-type mouse huntingtin inactivation in adult neurons and, thus, the feasibility and safety of huntingtin inactivation in these cells. Behavioural and neuropathological analyses and single-nuclei RNA sequencing indicated that huntingtin editing in 77% of striatal neurons and 16% of cortical projecting neurons in adult mice induced no behavioural deficits or cellular toxicity. Single-nuclei RNA sequencing in 11.5-month-old animals showed that huntingtin inactivation did not alter striatal-cell profiles or proportions. Few differentially expressed genes were identified and Augur analysis confirmed an extremely limited response to huntingtin inactivation in all cell types. Our results therefore indicate that wild-type huntingtin inactivation in adult striatal and projection neurons is well tolerated in the long term.

19.
Nat Commun ; 14(1): 4447, 2023 07 24.
Artículo en Inglés | MEDLINE | ID: mdl-37488096

RESUMEN

Cells must coordinate the activation of thousands of replication origins dispersed throughout their genome. Active transcription is known to favor the formation of mammalian origins, although the role that RNA plays in this process remains unclear. We show that the ORC1 subunit of the human Origin Recognition Complex interacts with RNAs transcribed from genes with origins in their transcription start sites (TSSs), displaying a positive correlation between RNA binding and origin activity. RNA depletion, or the use of ORC1 RNA-binding mutant, result in inefficient activation of proximal origins, linked to impaired ORC1 chromatin release. ORC1 RNA binding activity resides in its intrinsically disordered region, involved in intra- and inter-molecular interactions, regulation by phosphorylation, and phase-separation. We show that RNA binding favors ORC1 chromatin release, by regulating its phosphorylation and subsequent degradation. Our results unveil a non-coding function of RNA as a dynamic component of the chromatin, orchestrating the activation of replication origins.


Asunto(s)
Cromatina , Origen de Réplica , Humanos , Animales , Complejo de Reconocimiento del Origen , Fosforilación , ARN , Mamíferos
20.
Hum Mol Genet ; 19(R2): R152-61, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20729297

RESUMEN

Cellular homeostasis is achieved by the proper balance of regulatory networks that if disrupted can lead to cellular transformation. These cell circuits are fine-tuned and maintained by the coordinated function of proteins and non-coding RNAs (ncRNAs). In addition to the well-characterized protein coding and microRNAs constituents, large ncRNAs are also emerging as important regulatory molecules in tumor-suppressor and oncogenic pathways. Recent studies have revealed mechanistic insight of large ncRNAs regulating key cancer pathways at a transcriptional, post-transcriptional and epigenetic level. Here we synthesize these latest advances within the context of their mechanistic roles in regulating and maintaining cellular equilibrium. We posit that similar to protein-coding genes, large ncRNAs are a newly emerging class of oncogenic and tumor-suppressor genes. Our growing knowledge of the role of large ncRNAs in cellular transformation is pointing towards their potential use as biomarkers and targets for novel therapeutic approaches in the future.


Asunto(s)
Neoplasias/genética , ARN no Traducido/genética , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA