Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 377
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 181(5): 1080-1096.e19, 2020 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-32380006

RESUMEN

Environmental signals shape host physiology and fitness. Microbiota-derived cues are required to program conventional dendritic cells (cDCs) during the steady state so that they can promptly respond and initiate adaptive immune responses when encountering pathogens. However, the molecular underpinnings of microbiota-guided instructive programs are not well understood. Here, we report that the indigenous microbiota controls constitutive production of type I interferons (IFN-I) by plasmacytoid DCs. Using genome-wide analysis of transcriptional and epigenetic regulomes of cDCs from germ-free and IFN-I receptor (IFNAR)-deficient mice, we found that tonic IFNAR signaling instructs a specific epigenomic and metabolic basal state that poises cDCs for future pathogen combat. However, such beneficial biological function comes with a trade-off. Instructed cDCs can prime T cell responses against harmless peripheral antigens when removing roadblocks of peripheral tolerance. Our data provide fresh insights into the evolutionary trade-offs that come with successful adaptation of vertebrates to their microbial environment.


Asunto(s)
Células Dendríticas/inmunología , Interferón Tipo I/inmunología , Microbiota/inmunología , Inmunidad Adaptativa/inmunología , Inmunidad Adaptativa/fisiología , Animales , Linfocitos T CD8-positivos/inmunología , Células Dendríticas/microbiología , Femenino , Masculino , Ratones , Ratones Endogámicos C57BL , Microbiota/fisiología , Receptor de Interferón alfa y beta/metabolismo , Transducción de Señal/inmunología
2.
Cell ; 180(4): 796-812.e19, 2020 02 20.
Artículo en Inglés | MEDLINE | ID: mdl-32059778

RESUMEN

Optical tissue transparency permits scalable cellular and molecular investigation of complex tissues in 3D. Adult human organs are particularly challenging to render transparent because of the accumulation of dense and sturdy molecules in decades-aged tissues. To overcome these challenges, we developed SHANEL, a method based on a new tissue permeabilization approach to clear and label stiff human organs. We used SHANEL to render the intact adult human brain and kidney transparent and perform 3D histology with antibodies and dyes in centimeters-depth. Thereby, we revealed structural details of the intact human eye, human thyroid, human kidney, and transgenic pig pancreas at the cellular resolution. Furthermore, we developed a deep learning pipeline to analyze millions of cells in cleared human brain tissues within hours with standard lab computers. Overall, SHANEL is a robust and unbiased technology to chart the cellular and molecular architecture of large intact mammalian organs.


Asunto(s)
Aprendizaje Profundo , Imagenología Tridimensional/métodos , Imagen Óptica/métodos , Coloración y Etiquetado/métodos , Anciano de 80 o más Años , Animales , Encéfalo/diagnóstico por imagen , Ojo/diagnóstico por imagen , Femenino , Humanos , Imagenología Tridimensional/normas , Riñón/diagnóstico por imagen , Límite de Detección , Masculino , Ratones , Persona de Mediana Edad , Imagen Óptica/normas , Páncreas/diagnóstico por imagen , Coloración y Etiquetado/normas , Porcinos , Glándula Tiroides/diagnóstico por imagen
3.
Cell ; 171(2): 385-397.e11, 2017 Oct 05.
Artículo en Inglés | MEDLINE | ID: mdl-28919076

RESUMEN

T cell receptor (TCR) signaling without CD28 can elicit primary effector T cells, but memory T cells generated during this process are anergic, failing to respond to secondary antigen exposure. We show that, upon T cell activation, CD28 transiently promotes expression of carnitine palmitoyltransferase 1a (Cpt1a), an enzyme that facilitates mitochondrial fatty acid oxidation (FAO), before the first cell division, coinciding with mitochondrial elongation and enhanced spare respiratory capacity (SRC). microRNA-33 (miR33), a target of thioredoxin-interacting protein (TXNIP), attenuates Cpt1a expression in the absence of CD28, resulting in cells that thereafter are metabolically compromised during reactivation or periods of increased bioenergetic demand. Early CD28-dependent mitochondrial engagement is needed for T cells to remodel cristae, develop SRC, and rapidly produce cytokines upon restimulation-cardinal features of protective memory T cells. Our data show that initial CD28 signals during T cell activation prime mitochondria with latent metabolic capacity that is essential for future T cell responses.


Asunto(s)
Antígenos CD28/metabolismo , Activación de Linfocitos , Mitocondrias/metabolismo , Linfocitos T/citología , Linfocitos T/inmunología , Animales , Carnitina O-Palmitoiltransferasa , Inhibidores Enzimáticos/farmacología , Compuestos Epoxi/farmacología , Humanos , Interleucina-15/inmunología , Ratones , Ratones Endogámicos C57BL , Receptores de Antígenos de Linfocitos T/metabolismo , Estrés Fisiológico , Linfocitos T/metabolismo
4.
Cell ; 166(1): 63-76, 2016 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-27293185

RESUMEN

Activated effector T (TE) cells augment anabolic pathways of metabolism, such as aerobic glycolysis, while memory T (TM) cells engage catabolic pathways, like fatty acid oxidation (FAO). However, signals that drive these differences remain unclear. Mitochondria are metabolic organelles that actively transform their ultrastructure. Therefore, we questioned whether mitochondrial dynamics controls T cell metabolism. We show that TE cells have punctate mitochondria, while TM cells maintain fused networks. The fusion protein Opa1 is required for TM, but not TE cells after infection, and enforcing fusion in TE cells imposes TM cell characteristics and enhances antitumor function. Our data suggest that, by altering cristae morphology, fusion in TM cells configures electron transport chain (ETC) complex associations favoring oxidative phosphorylation (OXPHOS) and FAO, while fission in TE cells leads to cristae expansion, reducing ETC efficiency and promoting aerobic glycolysis. Thus, mitochondrial remodeling is a signaling mechanism that instructs T cell metabolic programming.


Asunto(s)
Dinámicas Mitocondriales , Linfocitos T/citología , Linfocitos T/metabolismo , Animales , Diferenciación Celular , Transporte de Electrón , Ácidos Grasos/metabolismo , GTP Fosfohidrolasas/metabolismo , Glucólisis , Humanos , Memoria Inmunológica , Ratones , Ratones Endogámicos C57BL , Oxidación-Reducción , Transducción de Señal , Linfocitos T/inmunología
5.
N Engl J Med ; 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38804512

RESUMEN

BACKGROUND: Minimal change disease and primary focal segmental glomerulosclerosis in adults, along with idiopathic nephrotic syndrome in children, are immune-mediated podocytopathies that lead to nephrotic syndrome. Autoantibodies targeting nephrin have been found in patients with minimal change disease, but their clinical and pathophysiological roles are unclear. METHODS: We conducted a multicenter study to analyze antinephrin autoantibodies in adults with glomerular diseases, including minimal change disease, focal segmental glomerulosclerosis, membranous nephropathy, IgA nephropathy, antineutrophil cytoplasmic antibody-associated glomerulonephritis, and lupus nephritis, as well as in children with idiopathic nephrotic syndrome and in controls. We also created an experimental mouse model through active immunization with recombinant murine nephrin. RESULTS: The study included 539 patients (357 adults and 182 children) and 117 controls. Among the adults, antinephrin autoantibodies were found in 46 of the 105 patients (44%) with minimal change disease, 7 of 74 (9%) with primary focal segmental glomerulosclerosis, and only in rare cases among the patients with other conditions. Of the 182 children with idiopathic nephrotic syndrome, 94 (52%) had detectable antinephrin autoantibodies. In the subgroup of patients with active minimal change disease or idiopathic nephrotic syndrome who were not receiving immunosuppressive treatment, the prevalence of antinephrin autoantibodies was as high as 69% and 90%, respectively. At study inclusion and during follow-up, antinephrin autoantibody levels were correlated with disease activity. Experimental immunization induced a nephrotic syndrome, a minimal change disease-like phenotype, IgG localization to the podocyte slit diaphragm, nephrin phosphorylation, and severe cytoskeletal changes in mice. CONCLUSIONS: In this study, circulating antinephrin autoantibodies were common in patients with minimal change disease or idiopathic nephrotic syndrome and appeared to be markers of disease activity. Their binding at the slit diaphragm induced podocyte dysfunction and nephrotic syndrome, which highlights their pathophysiological significance. (Funded by Deutsche Forschungsgemeinschaft and others.).

6.
Nature ; 589(7841): 281-286, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-33176333

RESUMEN

Kidney fibrosis is the hallmark of chronic kidney disease progression; however, at present no antifibrotic therapies exist1-3. The origin, functional heterogeneity and regulation of scar-forming cells that occur during human kidney fibrosis remain poorly understood1,2,4. Here, using single-cell RNA sequencing, we profiled the transcriptomes of cells from the proximal and non-proximal tubules of healthy and fibrotic human kidneys to map the entire human kidney. This analysis enabled us to map all matrix-producing cells at high resolution, and to identify distinct subpopulations of pericytes and fibroblasts as the main cellular sources of scar-forming myofibroblasts during human kidney fibrosis. We used genetic fate-tracing, time-course single-cell RNA sequencing and ATAC-seq (assay for transposase-accessible chromatin using sequencing) experiments in mice, and spatial transcriptomics in human kidney fibrosis, to shed light on the cellular origins and differentiation of human kidney myofibroblasts and their precursors at high resolution. Finally, we used this strategy to detect potential therapeutic targets, and identified NKD2 as a myofibroblast-specific target in human kidney fibrosis.


Asunto(s)
Linaje de la Célula , Fibrosis/patología , Túbulos Renales/patología , Miofibroblastos/patología , Insuficiencia Renal Crónica/patología , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Unión al Calcio/metabolismo , Estudios de Casos y Controles , Diferenciación Celular , Matriz Extracelular/metabolismo , Matriz Extracelular/patología , Femenino , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Masculino , Mesodermo/citología , Mesodermo/patología , Ratones , Miofibroblastos/metabolismo , Pericitos/citología , Pericitos/patología , RNA-Seq , Receptor alfa de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Receptor beta de Factor de Crecimiento Derivado de Plaquetas/metabolismo , Análisis de la Célula Individual , Transcriptoma
7.
Circulation ; 149(11): 860-884, 2024 03 12.
Artículo en Inglés | MEDLINE | ID: mdl-38152989

RESUMEN

BACKGROUND: SGLT2 (sodium-glucose cotransporter 2) inhibitors (SGLT2i) can protect the kidneys and heart, but the underlying mechanism remains poorly understood. METHODS: To gain insights on primary effects of SGLT2i that are not confounded by pathophysiologic processes or are secondary to improvement by SGLT2i, we performed an in-depth proteomics, phosphoproteomics, and metabolomics analysis by integrating signatures from multiple metabolic organs and body fluids after 1 week of SGLT2i treatment of nondiabetic as well as diabetic mice with early and uncomplicated hyperglycemia. RESULTS: Kidneys of nondiabetic mice reacted most strongly to SGLT2i in terms of proteomic reconfiguration, including evidence for less early proximal tubule glucotoxicity and a broad downregulation of the apical uptake transport machinery (including sodium, glucose, urate, purine bases, and amino acids), supported by mouse and human SGLT2 interactome studies. SGLT2i affected heart and liver signaling, but more reactive organs included the white adipose tissue, showing more lipolysis, and, particularly, the gut microbiome, with a lower relative abundance of bacteria taxa capable of fermenting phenylalanine and tryptophan to cardiovascular uremic toxins, resulting in lower plasma levels of these compounds (including p-cresol sulfate). SGLT2i was detectable in murine stool samples and its addition to human stool microbiota fermentation recapitulated some murine microbiome findings, suggesting direct inhibition of fermentation of aromatic amino acids and tryptophan. In mice lacking SGLT2 and in patients with decompensated heart failure or diabetes, the SGLT2i likewise reduced circulating p-cresol sulfate, and p-cresol impaired contractility and rhythm in human induced pluripotent stem cell-derived engineered heart tissue. CONCLUSIONS: SGLT2i reduced microbiome formation of uremic toxins such as p-cresol sulfate and thereby their body exposure and need for renal detoxification, which, combined with direct kidney effects of SGLT2i, including less proximal tubule glucotoxicity and a broad downregulation of apical transporters (including sodium, amino acid, and urate uptake), provides a metabolic foundation for kidney and cardiovascular protection.


Asunto(s)
Cresoles , Diabetes Mellitus Experimental , Diabetes Mellitus Tipo 2 , Células Madre Pluripotentes Inducidas , Inhibidores del Cotransportador de Sodio-Glucosa 2 , Ésteres del Ácido Sulfúrico , Humanos , Ratones , Animales , Inhibidores del Cotransportador de Sodio-Glucosa 2/farmacología , Transportador 2 de Sodio-Glucosa/metabolismo , Ácido Úrico , Triptófano , Diabetes Mellitus Experimental/tratamiento farmacológico , Diabetes Mellitus Experimental/complicaciones , Proteómica , Tóxinas Urémicas , Células Madre Pluripotentes Inducidas/metabolismo , Glucosa , Sodio/metabolismo , Diabetes Mellitus Tipo 2/complicaciones
8.
J Immunol ; 211(11): 1669-1679, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37850963

RESUMEN

T regulatory type 1 (Tr1) cells, which are defined by their regulatory function, lack of Foxp3, and high expression of IL-10, CD49b, and LAG-3, are known to be able to suppress Th1 and Th17 in the intestine. Th1 and Th17 cells are also the main drivers of crescentic glomerulonephritis (GN), the most severe form of renal autoimmune disease. However, whether Tr1 cells emerge in renal inflammation and, moreover, whether they exhibit regulatory function during GN have not been thoroughly investigated yet. To address these questions, we used a mouse model of experimental crescentic GN and double Foxp3mRFP IL-10eGFP reporter mice. We found that Foxp3neg IL-10-producing CD4+ T cells infiltrate the kidneys during GN progression. Using single-cell RNA sequencing, we could show that these cells express the core transcriptional factors characteristic of Tr1 cells. In line with this, Tr1 cells showed a strong suppressive activity ex vivo and were protective in experimental crescentic GN in vivo. Finally, we could also identify Tr1 cells in the kidneys of patients with antineutrophil cytoplasmic autoantibody-associated GN and define their transcriptional profile. Tr1 cells are currently used in several immune-mediated inflammatory diseases, such as T-cell therapy. Thus, our study provides proof of concept for Tr1 cell-based therapies in experimental GN.


Asunto(s)
Glomerulonefritis , Linfocitos T Reguladores , Humanos , Ratones , Animales , Interleucina-10/metabolismo , Células Th17 , Riñón/metabolismo , Factores de Transcripción/metabolismo , Células TH1
9.
Kidney Int ; 105(5): 935-952, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38447880

RESUMEN

The 14th International Podocyte Conference took place in Philadelphia, Pennsylvania, USA from May 23 to 26, 2023. It commenced with an early-career researchers' meeting on May 23, providing young scientists with a platform to present and discuss their research findings. Throughout the main conference, 29 speakers across 9 sessions shared their insights on podocyte biology, glomerular medicine, novel technologic advancements, and translational approaches. Additionally, the event featured 3 keynote lectures addressing engineered chimeric antigen receptor T cell- and mRNA-based therapies and the use of biobanks for enhanced disease comprehension. Furthermore, 4 brief oral abstract sessions allowed scientists to present their findings to a broad audience. The program also included a panel discussion addressing the challenges of conducting human research within the American Black community. Remarkably, after a 5-year hiatus from in-person conferences, the 14th International Podocyte Conference successfully convened scientists from around the globe, fostering the presentation and discussion of crucial research findings, as summarized in this review. Furthermore, to ensure continuous and sustainable education, research, translation, and trial medicine related to podocyte and glomerular diseases for the benefit of patients, the International Society of Glomerular Disease was officially launched during the conference.


Asunto(s)
Enfermedades Renales , Podocitos , Humanos , Glomérulos Renales , Enfermedades Renales/terapia , Biología
10.
PLoS Pathog ; 18(4): e1010430, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35446923

RESUMEN

Staphylococcus aureus is frequently detected in patients with sepsis and thus represents a major health burden worldwide. CD4+ T helper cells are involved in the immune response to S. aureus by supporting antibody production and phagocytosis. In particular, Th1 and Th17 cells secreting IFN-γ and IL-17A, are involved in the control of systemic S. aureus infections in humans and mice. To investigate the role of T cells in severe S. aureus infections, we established a mouse sepsis model in which the kidney was identified to be the organ with the highest bacterial load and abundance of Th17 cells. In this model, IL-17A but not IFN-γ was required for bacterial control. Using Il17aCre × R26YFP mice we could show that Th17 fate cells produce Th17 and Th1 cytokines, indicating a high degree of Th17 cell plasticity. Single cell RNA-sequencing of renal Th17 fate cells uncovered their heterogeneity and identified a cluster with a Th1 expression profile within the Th17 cell population, which was absent in mice with T-bet/Tbx21-deficiency in Th17 cells (Il17aCre x R26eYFP x Tbx21-flox). Blocking Th17 to Th1 transdifferentiation in Th17 fate cells in these mice resulted in increased S. aureus tissue loads. In summary, we highlight the impact of Th17 cells in controlling systemic S. aureus infections and show that T-bet expression by Th17 cells is required for bacterial clearance. While targeting the Th17 cell immune response is an important therapeutic option in autoimmunity, silencing Th17 cells might have detrimental effects in bacterial infections.


Asunto(s)
Sepsis , Infecciones Estafilocócicas , Proteínas de Dominio T Box/metabolismo , Animales , Plasticidad de la Célula , Humanos , Interleucina-17 , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Fenotipo , Staphylococcus aureus , Células TH1 , Células Th17
11.
Acta Neuropathol ; 147(1): 21, 2024 01 20.
Artículo en Inglés | MEDLINE | ID: mdl-38244080

RESUMEN

The longitudinal transition of phenotypes is pivotal in glioblastoma treatment resistance and DNA methylation emerged as an important tool for classifying glioblastoma phenotypes. We aimed to characterize DNA methylation subclass heterogeneity during progression and assess its clinical impact. Matched tissues from 47 glioblastoma patients were subjected to DNA methylation profiling, including CpG-site alterations, tissue and serum deconvolution, mass spectrometry, and immunoassay. Effects of clinical characteristics on temporal changes and outcomes were studied. Among 47 patients, 8 (17.0%) had non-matching classifications at recurrence. In the remaining 39 cases, 28.2% showed dominant DNA methylation subclass transitions, with 72.7% being a mesenchymal subclass. In general, glioblastomas with a subclass transition showed upregulated metabolic processes. Newly diagnosed glioblastomas with mesenchymal transition displayed increased stem cell-like states and decreased immune components at diagnosis and exhibited elevated immune signatures and cytokine levels in serum. In contrast, tissue of recurrent glioblastomas with mesenchymal transition showed increased immune components but decreased stem cell-like states. Survival analyses revealed comparable outcomes for patients with and without subclass transitions. This study demonstrates a temporal heterogeneity of DNA methylation subclasses in 28.2% of glioblastomas, not impacting patient survival. Changes in cell state composition associated with subclass transition may be crucial for recurrent glioblastoma targeted therapies.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Humanos , Glioblastoma/genética , Glioblastoma/terapia , Metilación de ADN , Recurrencia Local de Neoplasia/genética , Análisis de Supervivencia
12.
Nephrol Dial Transplant ; 39(3): 453-462, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-37697716

RESUMEN

BACKGROUND AND HYPOTHESIS: Specific urinary peptides hold information on disease pathophysiology, which, in combination with artificial intelligence, could enable non-invasive assessment of chronic kidney disease (CKD) aetiology. Existing approaches are generally specific for the diagnosis of single aetiologies. We present the development of models able to simultaneously distinguish and spatially visualize multiple CKD aetiologies. METHODS: The urinary peptide data of 1850 healthy control (HC) and CKD [diabetic kidney disease (DKD), immunoglobulin A nephropathy (IgAN) and vasculitis] participants were extracted from the Human Urinary Proteome Database. Uniform manifold approximation and projection (UMAP) coupled to a support vector machine algorithm was used to generate multi-peptide models to perform binary (DKD, HC) and multiclass (DKD, HC, IgAN, vasculitis) classifications. This pipeline was compared with the current state-of-the-art single-aetiology CKD urinary peptide models. RESULTS: In an independent test set, the developed models achieved 90.35% and 70.13% overall predictive accuracies, respectively, for the binary and the multiclass classifications. Omitting the UMAP step led to improved predictive accuracies (96.14% and 85.06%, respectively). As expected, the HC class was distinguished with the highest accuracy. The different classes displayed a tendency to form distinct clusters in the 3D space based on their disease state. CONCLUSION: Urinary peptide data present an effective basis for CKD aetiology differentiation using machine learning models. Although adding the UMAP step to the models did not improve prediction accuracy, it may provide a unique visualization advantage. Additional studies are warranted to further validate the pipeline's clinical potential as well as to expand it to other CKD aetiologies and also other diseases.


Asunto(s)
Glomerulonefritis por IGA , Insuficiencia Renal Crónica , Vasculitis , Humanos , Biomarcadores , Diagnóstico Diferencial , Inteligencia Artificial , Glomerulonefritis por IGA/complicaciones , Biopsia Líquida/efectos adversos , Péptidos , Proteómica
13.
Eur Radiol ; 2024 May 22.
Artículo en Inglés | MEDLINE | ID: mdl-38777903

RESUMEN

OBJECTIVE: To analyze changes in the muscular fat fraction (FF) during immobilization at the intensive care unit (ICU) using dual-energy CT (DECT) and evaluate the predictive value of the DECT FF as a new imaging biomarker for morbidity and survival. METHODS: Immobilized ICU patients (n = 81, 43.2% female, 60.3 ± 12.7 years) were included, who received two dual-source DECT scans (CT1, CT2) within a minimum interval of 10 days between 11/2019 and 09/2022. The DECT FF was quantified for the posterior paraspinal muscle by two radiologists using material decomposition. The skeletal muscle index (SMI), muscle radiodensity attenuation (MRA), subcutaneous-/ visceral adipose tissue area (SAT, VAT), and waist circumference (WC) were assessed. Reasons for ICU admission, clinical scoring systems, therapeutic regimes, and in-hospital mortality were noted. Linear mixed models, Cox regression, and intraclass correlation coefficients were employed. RESULTS: Between CT1 and CT2 (median 21 days), the DECT FF increased (from 20.9% ± 12.0 to 27.0% ± 12.0, p = 0.001). The SMI decreased (35.7 cm2/m2 ± 8.8 to 31.1 cm2/m2 ± 7.6, p < 0.001) as did the MRA (29 HU ± 10 to 26 HU ± 11, p = 0.009). WC, SAT, and VAT did not change. In-hospital mortality was 61.5%. In multivariable analyses, only the change in DECT FF was associated with in-hospital mortality (hazard ratio (HR) 9.20 [1.78-47.71], p = 0.008), renal replacement therapy (HR 48.67 [9.18-258.09], p < 0.001), and tracheotomy at ICU (HR 37.22 [5.66-245.02], p < 0.001). Inter-observer reproducibility of DECT FF measurements was excellent (CT1: 0.98 [0.97; 0.99], CT2: 0.99 [0.96-0.99]). CONCLUSION: The DECT FF appears to be suitable for detecting increasing myosteatosis. It seems to have predictive value as a new imaging biomarker for ICU patients. CLINICAL RELEVANCE STATEMENT: The dual-energy CT muscular fat fraction appears to be a robust imaging biomarker to detect and monitor myosteatosis. It has potential for prognosticating, risk stratifying, and thereby guiding therapeutic nutritional regimes and physiotherapy in critically ill patients. KEY POINTS: The dual-energy CT muscular fat fraction detects increasing myosteatosis caused by immobilization. Change in dual-energy CT muscular fat fraction was a predictor of  in-hospital morbidity and mortality. Dual-energy CT muscular fat fraction had a predictive value superior to established CT body composition parameters.

14.
J Immunol ; 208(7): 1585-1594, 2022 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-35296538

RESUMEN

Innate lymphoid cells (ILCs) that express NK cell receptors (NCRs) and the transcription factor T-bet populate nonlymphoid tissues and are crucial in immune responses against viral infections and malignancies. Recent studies highlighted the heterogeneity of this ILC population and extended their functional spectrum to include important roles in tissue homeostasis and autoimmunity. In this article, we provide detailed profiling of NCR+T-bet+ ILC populations in the murine kidney, identifying conventional NK (cNK) cells and type 1 ILCs (ILC1s) as the two major subsets. Induction of renal inflammation in a mouse model of glomerulonephritis did not substantially influence abundance or phenotype of cNK cells or ILC1s in the kidney. For functional analyses in this model, widely used depletion strategies for total NCR+ ILCs (anti-NK1.1 Ab application) and cNK cells (anti-asialoGM1 serum application) were unreliable tools, because they were accompanied by significant off-target depletion of kidney NKT cells and CD8+ T cells, respectively. However, neither depletion of cNK cells and ILC1s in NKT cell-deficient mice nor specific genetic deletion of cNK cells in Ncr1 Cre/wt × Eomes fl/fl mice altered the clinical course of experimental glomerulonephritis. In summary, we show in this article that cNK cells and ILC1s are dispensable for initiation and progression of immune-mediated glomerular disease and advise caution in the use of standard Ab depletion methods to study NCR+ ILC function in mouse models.


Asunto(s)
Glomerulonefritis , Inmunidad Innata , Animales , Linfocitos T CD8-positivos , Riñón , Células Asesinas Naturales , Ratones
15.
Mol Cell Proteomics ; 21(2): 100190, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34958949

RESUMEN

Hypoxia-induced intrauterine growth restriction increases the risk for cardiovascular, renal, and other chronic diseases in adults, representing thus a major public health problem. Still, not much is known about the fetal mechanisms that predispose these individuals to disease. Using a previously validated mouse model of fetal hypoxia and bottom-up proteomics, we characterize the response of the fetal kidney to chronic hypoxic stress. Fetal kidneys exhibit a dichotomous response to chronic hypoxia, comprising on the one hand cellular adaptations that promote survival (glycolysis, autophagy, and reduced DNA and protein synthesis), but on the other processes that induce a senescence-like phenotype (infiltration of inflammatory cells, DNA damage, and reduced proliferation). Importantly, chronic hypoxia also reduces the expression of the antiaging proteins klotho and Sirt6, a mechanism that is evolutionary conserved between mice and humans. Taken together, we uncover that predetermined aging during fetal development is a key event in chronic hypoxia, establishing a solid foundation for Barker's hypothesis of fetal programming of adult diseases. This phenotype is associated with a characteristic biomarker profile in tissue and serum samples, exploitable for detecting and targeting accelerated aging in chronic hypoxic human diseases.


Asunto(s)
Hipoxia Fetal , Sirtuinas , Envejecimiento , Animales , Desarrollo Fetal , Hipoxia , Ratones , Fenotipo
16.
Langenbecks Arch Surg ; 409(1): 193, 2024 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-38900254

RESUMEN

BACKGROUND: Emergencies and emergency surgeries are a central part of everyday surgical care in Germany. However, it is unclear how emergency surgery is practically trained in clinics on a daily basis and what training concept is underlying. Therefore, the aim of this survey study was to capture the status quo of emergency surgical training of German general and visceral surgeons. METHODS: The members of the German Society for General and Visceral Surgery were surveyed online (n = 5281). The questionnaire included demographic data and expertise in surgery and assistance in emergency surgery regarding common emergency surgical operations. In addition, further training measures in emergency surgery and their support by employers were queried. RESULTS: Only complete questionnaires (n = 184, response rate 3.5%) were included in the analysis. Most participants were in training (n = 69; 38%), followed by senior physicians (n = 52; 29%), specialists (n = 31; 17%) and chief physicians (n = 30; 17%). 64% of the participants were employed at university hospitals or maximum care hospitals. Regarding further training opportunities, in-clinic shock room training was most frequently used. Outside of their own clinic, the ATLS course was most frequently mentioned. Operations for cholecystitis and appendicitis as well as emergency stoma procedures are the most common emergency procedures. There was a strong difference in the frequency of operated cases depending on the level of training. For operations to treat acute abdominal traumas (hemostasis of liver and spleen, packing) as well as outside of visceral surgery, only low competence was reported. Over 90% of survey participants consider emergency surgery to be an indispensable core competence. Neither in the old (76%) nor in the new training regulations (47%) is emergency surgery adequately represented according to the participants' assessment. There was a significantly lower prevalence of the "sub-steps concept" in emergency surgery at 38% compared to elective surgery (44%). Important elements of imparting skills in emergency surgery are simulation and courses as well as operative sub-steps, according to the majority of survey participants. CONCLUSION: The results show that general and visceral surgeons in Germany are introduced to emergency surgery too little structured during further training and at specialist level. The survey participants had, as expected, hardly any experience in emergency surgery outside of visceral surgery but surprisingly also little experience in visceral surgical trauma care. There is a need to discuss the future organization of emergency surgical training. Adequate simulation structures and extracurricular courses could contribute to an improvement in this respect.


Asunto(s)
Competencia Clínica , Humanos , Alemania , Encuestas y Cuestionarios , Femenino , Masculino , Adulto , Urgencias Médicas , Persona de Mediana Edad , Cirugía General/educación
17.
J Am Soc Nephrol ; 34(6): 1003-1018, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-36913357

RESUMEN

SIGNIFICANCE STATEMENT: T-cell infiltration is a hallmark of crescentic GN (cGN), often caused by ANCA-associated vasculitis. Pathogenic T-cell subsets, their clonality, and downstream effector mechanisms leading to kidney injury remain to be fully elucidated. Single-cell RNA sequencing and T-cell receptor sequencing revealed activated, clonally expanded cytotoxic CD4 + and CD8 + T cells in kidneys from patients with ANCA-associated cGN. In experimental cGN, kidney-infiltrating CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), which induced apoptosis in renal tissue cells by activation of procaspase-3, and aggravated disease pathology. These findings describe a pathogenic function of (clonally expanded) cytotoxic T cells in cGN and identify GzmB as a mediator and potential therapeutic target in immune-mediated kidney disease. BACKGROUND: Crescentic GN (cGN) is an aggressive form of immune-mediated kidney disease that is an important cause of end stage renal failure. Antineutrophilic cytoplasmic antibody (ANCA)-associated vasculitis is a common cause. T cells infiltrate the kidney in cGN, but their precise role in autoimmunity is not known. METHODS: Combined single-cell RNA sequencing and single-cell T-cell receptor sequencing were conducted on CD3 + T cells isolated from renal biopsies and blood of patients with ANCA-associated cGN and from kidneys of mice with experimental cGN. Functional and histopathological analyses were performed with Cd8a-/- and GzmB-/- mice. RESULTS: Single-cell analyses identified activated, clonally expanded CD8 + and CD4 + T cells with a cytotoxic gene expression profile in the kidneys of patients with ANCA-associated cGN. Clonally expanded CD8 + T cells expressed the cytotoxic molecule, granzyme B (GzmB), in the mouse model of cGN. Deficiency of CD8 + T cells or GzmB ameliorated the course of cGN. CD8 + T cells promoted macrophage infiltration and GzmB activated procaspase-3 in renal tissue cells, thereby increasing kidney injury. CONCLUSIONS: Clonally expanded cytotoxic T cells have a pathogenic function in immune-mediated kidney disease.


Asunto(s)
Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos , Glomerulonefritis Membranoproliferativa , Glomerulonefritis , Animales , Ratones , Caspasa 3 , Granzimas , Linfocitos T Citotóxicos/metabolismo , Linfocitos T Citotóxicos/patología , Anticuerpos Anticitoplasma de Neutrófilos , Glomerulonefritis Membranoproliferativa/complicaciones , Vasculitis Asociada a Anticuerpos Citoplasmáticos Antineutrófilos/complicaciones , Enfermedad Aguda
18.
Int J Mol Sci ; 25(5)2024 Feb 22.
Artículo en Inglés | MEDLINE | ID: mdl-38473806

RESUMEN

Cisplatin nephrotoxicity is a critical limitation of solid cancer treatment. Until now, the complex interplay of various pathophysiological mechanisms leading to proximal tubular cell apoptosis after cisplatin exposure has not been fully understood. In our study, we assessed the role of the autophagy-related protein BECLIN1 (ATG6) in cisplatin-induced acute renal injury (AKI)-a candidate protein involved in autophagy and with putative impact on apoptosis by harboring a B-cell lymphoma 2 (BCL2) interaction site of unknown significance. By using mice with heterozygous deletion of Becn1, we demonstrate that reduced intracellular content of BECLIN1 does not impact renal function or autophagy within 12 months. However, these mice were significantly sensitized towards cisplatin-induced AKI, and by using Becn1+/-;Sglt2-Cre;Tomato/EGFP mice with subsequent primary cell analysis, we confirmed that nephrotoxicity depends on proximal tubular BECLIN1 content. Mechanistically, BECLIN1 did not impact autophagy or primarily the apoptotic pathway. In fact, a lack of BECLIN1 sensitized mice towards cisplatin-induced ER stress. Accordingly, the ER stress inhibitor tauroursodeoxycholic acid (TUDCA) blunted cisplatin-induced cell death in Becn1 heterozygosity. In conclusion, our data first highlight a novel role of BECLIN1 in protecting against cellular ER stress independent from autophagy. These novel findings open new therapeutic avenues to intervene in this important intracellular stress response pathway with a promising impact on future AKI management.


Asunto(s)
Lesión Renal Aguda , Cisplatino , Ratones , Animales , Cisplatino/farmacología , Beclina-1/metabolismo , Lesión Renal Aguda/metabolismo , Autofagia , Apoptosis
19.
Int J Mol Sci ; 25(6)2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38542491

RESUMEN

Effective management of glomerular kidney disease, one of the main categories of chronic kidney disease (CKD), requires accurate diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for the assessment of specific aspects of glomerular diseases have been reported in the literature. Though, the vast majority of these have not been implemented in clinical practice or are not available on a global scale due to limited access, missing medical infrastructure, or economical as well as political reasons. The aim of this review is to compile all currently available information on the diagnostic, prognostic, and predictive biomarkers currently available for the management of glomerular diseases, and provide guidance on the application of these biomarkers. As a result of the compiled evidence for the different biomarkers available, we present a decision tree for a non-invasive, biomarker-guided diagnostic path. The data currently available demonstrate that for the large majority of patients with glomerular diseases, valid biomarkers are available. However, despite the obvious disadvantages of kidney biopsy, being invasive and not applicable for monitoring, especially in the context of rare CKD etiologies, kidney biopsy still cannot be replaced by non-invasive strategies.


Asunto(s)
Riñón , Insuficiencia Renal Crónica , Humanos , Progresión de la Enfermedad , Riñón/patología , Insuficiencia Renal Crónica/diagnóstico , Insuficiencia Renal Crónica/terapia , Insuficiencia Renal Crónica/patología , Glomérulos Renales/patología , Biomarcadores , Tasa de Filtración Glomerular
20.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artículo en Inglés | MEDLINE | ID: mdl-38612488

RESUMEN

Effective management of chronic kidney disease (CKD), a major health problem worldwide, requires accurate and timely diagnosis, prognosis of progression, assessment of therapeutic efficacy, and, ideally, prediction of drug response. Multiple biomarkers and algorithms for evaluating specific aspects of CKD have been proposed in the literature, many of which are based on a small number of samples. Based on the evidence presented in relevant studies, a comprehensive overview of the different biomarkers applicable for clinical implementation is lacking. This review aims to compile information on the non-invasive diagnostic, prognostic, and predictive biomarkers currently available for the management of CKD and provide guidance on the application of these biomarkers. We specifically focus on biomarkers that have demonstrated added value in prospective studies or those based on prospectively collected samples including at least 100 subjects. Published data demonstrate that several valid non-invasive biomarkers of potential value in the management of CKD are currently available.


Asunto(s)
Insuficiencia Renal Crónica , Humanos , Estudios Prospectivos , Biomarcadores , Insuficiencia Renal Crónica/diagnóstico , Fibrosis , Riñón
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA