Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 138
Filtrar
Más filtros

Tipo del documento
Intervalo de año de publicación
1.
Hepatology ; 2023 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-37055022

RESUMEN

Hepatobiliary cancers, including hepatocellular carcinoma and cancers of the biliary tract, share high mortality and rising incidence rates. They may also share several risk factors related to unhealthy western-type dietary and lifestyle patterns as well as increasing body weights and rates of obesity. Recent data also suggest a role for the gut microbiome in the development of hepatobiliary cancer and other liver pathologies. The gut microbiome and the liver interact bidirectionally through the "gut-liver axis," which describes the interactive relationship between the gut, its microbiota, and the liver. Here, we review the gut-liver interactions within the context of hepatobiliary carcinogenesis by outlining the experimental and observational evidence for the roles of gut microbiome dysbiosis, reduced gut barrier function, and exposure to inflammatory compounds as well as metabolic dysfunction as contributors to hepatobiliary cancer development. We also outline the latest findings regarding the impact of dietary and lifestyle factors on liver pathologies as mediated by the gut microbiome. Finally, we highlight some emerging gut microbiome editing techniques currently being investigated in the context of hepatobiliary diseases. Although much work remains to be done in determining the relationships between the gut microbiome and hepatobiliary cancers, emerging mechanistic insights are informing treatments, such as potential microbiota manipulation strategies and guiding public health advice on dietary/lifestyle patterns for the prevention of these lethal tumors.

2.
Metabolomics ; 20(4): 66, 2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38886248

RESUMEN

The coral holobiont is underpinned by complex metabolic exchanges between different symbiotic partners, which are impacted by environmental stressors. The chemical diversity of the compounds produced by the holobiont is high and includes primary and secondary metabolites, as well as volatiles. However, metabolites and volatiles have only been characterised in isolation so far. Here, we applied a paired metabolomic-volatilomic approach to characterise holistically the chemical response of the holobiont under stress. Montipora mollis fragments were subjected to high-light stress (8-fold higher than the controls) for 30 min. Photosystem II (PSII) photochemical efficiency values were 7-fold higher in control versus treatment corals immediately following high-light exposure, but returned to pre-stress levels after 30 min of recovery. Under high-light stress, we identified an increase in carbohydrates (> 5-fold increase in arabinose and fructose) and saturated fatty acids (7-fold increase in myristic and oleic acid), together with a decrease in fatty acid derivatives in both metabolites and volatiles (e.g., 80% decrease in oleamide and nonanal), and other antioxidants (~ 85% decrease in sorbitol and galactitol). These changes suggest short-term light stress induces oxidative stress. Correlation analysis between volatiles and metabolites identified positive links between sorbitol, galactitol, six other metabolites and 11 volatiles, with four of these compounds previously identified as antioxidants. This suggests that these 19 compounds may be related and share similar functions. Taken together, our findings demonstrate how paired metabolomics-volatilomics may illuminate broader metabolic shifts occurring under stress and identify linkages between uncharacterised compounds to putatively determine their functions.


Asunto(s)
Antozoos , Luz , Metabolómica , Estrés Fisiológico , Animales , Antozoos/metabolismo , Metabolómica/métodos , Compuestos Orgánicos Volátiles/metabolismo , Compuestos Orgánicos Volátiles/análisis , Complejo de Proteína del Fotosistema II/metabolismo
3.
Mutagenesis ; 2024 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-38441165

RESUMEN

Gut barrier dysfunction and related inflammation are known to be associated with the development and progression of colorectal cancer (CRC). We investigated associations of 292 single-nucleotide polymorphisms (SNPs) from 27 genes related to endotoxins/lipopolysaccharide (LPS) sensing and tolerance, mucin synthesis, inflammation, and Crohn's disease with colon and rectal cancer risks. Incident CRC cases (N=1,374; colon=871, rectum=503) were matched 1:1 to controls nested within the European Prospective Investigation into Cancer and Nutrition cohort. Previously measured serum concentrations of gut barrier function and inflammation biomarkers (flagellin/LPS-specific immunoglobulins and C-reactive protein [CRP]) were available for a sub-set of participants (Ncases=1,001; Ncontrols=667). Forty-two unique SNPs from 19 different genes were associated with serum biomarkers at Punadjusted≤0.05 among controls. Among SNPs associated with a gut permeability score, 24 SNPs were in genes related to LPS sensing and mucin synthesis. Nine out of 12 SNPs associated with CRP were in genes related to inflammation or Crohn's disease. TLR4 was associated with colon cancer at the SNP level (nine SNPs, all Punadjusted≤0.04) and at the gene level (Punadjusted≤0.01). TLR4 rs10759934 was associated with rectal cancer but not colon cancer. Similarly, IL10 was associated with rectal cancer risk at a SNP and gene level (both Punadjusted ≤ 0.01), but not colon cancer. Genes and SNPs were selected a priori therefore we present unadjusted P-values. However, no association was statistically significant after multiple testing correction. This large and comprehensive study has identified gut barrier function and inflammation-related genes possibly contributing to CRC risk in European populations and is consistent with potential etiological links between host genetic background, gut barrier permeability, microbial endotoxemia and CRC development.

4.
Molecules ; 29(11)2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38893342

RESUMEN

The authors of this Comment are longstanding selenium investigators with a total of 200 or more published articles on selenium; the corresponding author (Margaret P [...].


Asunto(s)
COVID-19 , Suplementos Dietéticos , Selenio , Humanos , COVID-19/prevención & control , COVID-19/virología , COVID-19/epidemiología , SARS-CoV-2/efectos de los fármacos
5.
Br J Cancer ; 128(8): 1529-1540, 2023 04.
Artículo en Inglés | MEDLINE | ID: mdl-36759722

RESUMEN

BACKGROUND: Iron is an essential micronutrient with differing intake patterns and metabolism between men and women. Epidemiologic evidence on the association of dietary iron and its heme and non-heme components with colorectal cancer (CRC) development is inconclusive. METHODS: We examined baseline dietary questionnaire-assessed intakes of total, heme, and non-heme iron and CRC risk in the EPIC cohort. Sex-specific multivariable-adjusted hazard ratios (HRs) and 95% confidence intervals (CIs) were computed using Cox regression. We modelled substitution of a 1 mg/day of heme iron intake with non-heme iron using the leave one-out method. RESULTS: Of 450,105 participants (318,680 women) followed for 14.2 ± 4.0 years, 6162 (3511 women) developed CRC. In men, total iron intake was not associated with CRC risk (highest vs. lowest quintile, HRQ5vs.Q1:0.88; 95%CI:0.73, 1.06). An inverse association was observed for non-heme iron (HRQ5vs.Q1:0.80, 95%CI:0.67, 0.96) whereas heme iron showed a non-significant association (HRQ5vs.Q1:1.10; 95%CI:0.96, 1.27). In women, CRC risk was not associated with intakes of total (HRQ5vs.Q1:1.11, 95%CI:0.94, 1.31), heme (HRQ5vs.Q1:0.95; 95%CI:0.84, 1.07) or non-heme iron (HRQ5vs.Q1:1.03, 95%CI:0.88, 1.20). Substitution of heme with non-heme iron demonstrated lower CRC risk in men (HR:0.94; 95%CI: 0.89, 0.99). CONCLUSIONS: Our findings suggest potential sex-specific CRC risk associations for higher iron consumption that may differ by dietary sources.


Asunto(s)
Neoplasias Colorrectales , Hemo , Masculino , Humanos , Femenino , Estudios Prospectivos , Estudios de Cohortes , Factores de Riesgo , Dieta , Ingestión de Alimentos , Neoplasias Colorrectales/epidemiología , Neoplasias Colorrectales/etiología , Hierro
6.
J Gen Virol ; 104(11)2023 11.
Artículo en Inglés | MEDLINE | ID: mdl-37962188

RESUMEN

Parainfluenza virus type 5 (PIV5) can either have a persistent or a lytic phenotype in cultured cells. We have previously shown that the phenotype is determined by the phosphorylation status of the phosphoprotein (P). Single amino acid substitutions at critical residues, including a serine-to-phenylalanine substitution at position 157 on P, result in a switch between persistent and lytic phenotypes. Here, using PIV5 vectors expressing either mCherry or GFP with persistent or lytic phenotypes, we show that in co-infections the persistent phenotype is dominant. Thus, in contrast to the cell death observed with cells infected solely with the lytic variant, in co-infected cells persistence is immediately established and both lytic and persistent genotypes persist. Furthermore, 10-20 % of virus released from dually infected cells contains both genotypes, indicating that PIV5 particles can package more than one genome. Co-infected cells continue to maintain both genotypes/phenotypes during cell passage, as do individual colonies of cells derived from a culture of persistently infected cells. A refinement of our model on how the dynamics of virus selection may occur in vivo is presented.


Asunto(s)
Coinfección , Virus de la Parainfluenza 5 , Paramyxovirinae , Infecciones por Respirovirus , Humanos , Virus de la Parainfluenza 5/genética , Fenotipo
7.
BMC Med ; 21(1): 5, 2023 01 04.
Artículo en Inglés | MEDLINE | ID: mdl-36600297

RESUMEN

BACKGROUND: Observational studies have linked childhood obesity with elevated risk of colorectal cancer; however, it is unclear if this association is causal or independent from the effects of obesity in adulthood on colorectal cancer risk. METHODS: We conducted Mendelian randomization (MR) analyses to investigate potential causal relationships between self-perceived body size (thinner, plumper, or about average) in early life (age 10) and measured body mass index in adulthood (mean age 56.5) with risk of colorectal cancer. The total and independent effects of body size exposures were estimated using univariable and multivariable MR, respectively. Summary data were obtained from a genome-wide association study of 453,169 participants in UK Biobank for body size and from a genome-wide association study meta-analysis of three colorectal cancer consortia of 125,478 participants. RESULTS: Genetically predicted early life body size was estimated to increase odds of colorectal cancer (odds ratio [OR] per category change: 1.12, 95% confidence interval [CI]: 0.98-1.27), with stronger results for colon cancer (OR: 1.16, 95% CI: 1.00-1.35), and distal colon cancer (OR: 1.25, 95% CI: 1.04-1.51). After accounting for adult body size using multivariable MR, effect estimates for early life body size were attenuated towards the null for colorectal cancer (OR: 0.97, 95% CI: 0.77-1.22) and colon cancer (OR: 0.97, 95% CI: 0.76-1.25), while the estimate for distal colon cancer was of similar magnitude but more imprecise (OR: 1.27, 95% CI: 0.90-1.77). Genetically predicted adult life body size was estimated to increase odds of colorectal (OR: 1.27, 95% CI: 1.03, 1.57), colon (OR: 1.32, 95% CI: 1.05, 1.67), and proximal colon (OR: 1.57, 95% CI: 1.21, 2.05). CONCLUSIONS: Our findings suggest that the positive association between early life body size and colorectal cancer risk is likely due to large body size retainment into adulthood.


Asunto(s)
Neoplasias del Colon , Obesidad Infantil , Adulto , Humanos , Niño , Persona de Mediana Edad , Adiposidad/genética , Factores de Riesgo , Análisis de la Aleatorización Mendeliana , Estudio de Asociación del Genoma Completo , Índice de Masa Corporal , Polimorfismo de Nucleótido Simple
8.
Photosynth Res ; 155(2): 191-202, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36417105

RESUMEN

Light intensity and temperature independently impact all parts of the photosynthetic machinery in plants and algae. Yet to date, the vast majority of pulse amplitude modulated (PAM) chlorophyll a fluorescence measurements have been performed at well-defined light intensities, but rarely at well-defined temperatures. In this work, we show that PAM measurements performed at various temperatures produce vastly different results in the chlorophyte Chlorella vulgaris. Using a recently developed Phenoplate technique to map quantum yield of Photosystem II (Y(II)) and non-photochemical quenching (NPQ) as a function of temperature, we show that the fast-relaxing NPQ follows an inverse normal distribution with respect to temperature and appears insensitive to previous temperature acclimation. The slow-relaxing or residual NPQ after 5 minutes of dark recovery follows a normal distribution similar to Y(II) but with a peak in the higher temperature range. Surprisingly, higher slow- and fast-relaxing NPQ values were observed in high-light relative to low-light acclimated cultures. Y(II) values peaked at the adaptation temperature regardless of temperature or light acclimation. Our novel findings show the complete temperature working spectrum of Y(II) and how excess energy quenching is managed across a wide range of temperatures in the model microalgal species C. vulgaris. Finally, we draw attention to the fact that the effect of the temperature component in PAM measurements has been wildly underestimated, and results from experiments at room temperature can be misleading.


Asunto(s)
Chlorella vulgaris , Chlorella vulgaris/metabolismo , Clorofila A , Clorofila , Termografía , Fotosíntesis , Luz , Temperatura , Fluorescencia , Complejo de Proteína del Fotosistema II/metabolismo
9.
Dig Dis Sci ; 68(8): 3300-3311, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37338617

RESUMEN

BACKGROUND: Streptococcus gallolyticus subspecies gallolyticus (SGG) and Fusobacterium (F.) nucleatum have been implicated in colorectal carcinogenesis. Here, the association of immune responses to bacterial exposure with advancing stages of colorectal neoplasia was assessed by multiplex serology. METHODS: Immunoglobulin (Ig) A and G antibody responses to eleven proteins each of F. nucleatum and SGG were measured in plasma of controls (n = 100) and patients with colorectal cancer (CRC, n = 25), advanced adenoma (n = 82), or small polyps (n = 85). Multivariable logistic regression was used to evaluate the association of bacterial sero-positivity with colorectal neoplasia. In a cohort subset with matched data (n = 45), F. nucleatum sero-positivity was correlated with bacterial abundance in both neoplastic and matched normal tissue. RESULTS: IgG sero-positivity to Fn1426 of F. nucleatum was associated with an increased CRC risk (OR = 4.84; 95% CI 1.46-16.0), while IgA sero-positivity to any SGG protein or specifically Gallo0272 and Gallo1675 alone was associated with increased advanced adenoma occurrence (OR = 2.02, 95% CI 1.10-3.71; OR = 2.67, 95% CI 1.10-6.46; and OR = 6.17, 95% CI 1.61-23.5, respectively). Only F. nucleatum abundance in the normal mucosa positively correlated with the IgA response to the Fn1426 antigen (Correlation coefficient (r) = 0.38, p < 0.01). CONCLUSION: Antibody responses to SGG and F. nucleatum were associated with occurrence of colorectal adenomas and CRC, respectively. Further studies are needed to clarify the role these microbes or the immune response to their antigens may have in colorectal carcinogenesis stages.


Asunto(s)
Adenoma , Neoplasias Colorrectales , Infecciones por Fusobacterium , Humanos , Fusobacterium nucleatum , Streptococcus gallolyticus , Formación de Anticuerpos , Neoplasias Colorrectales/microbiología , Bacterias , Carcinogénesis
10.
Clin Gastroenterol Hepatol ; 20(5): e1061-e1082, 2022 05.
Artículo en Inglés | MEDLINE | ID: mdl-33279777

RESUMEN

BACKGROUND & AIMS: Colorectal cancer risk can be lowered by adherence to the World Cancer Research Fund/American Institute for Cancer Research (WCRF/AICR) guidelines. We derived metabolic signatures of adherence to these guidelines and tested their associations with colorectal cancer risk in the European Prospective Investigation into Cancer and Nutrition cohort. METHODS: Scores reflecting adherence to the WCRF/AICR recommendations (scale, 1-5) were calculated from participant data on weight maintenance, physical activity, diet, and alcohol among a discovery set of 5738 cancer-free European Prospective Investigation into Cancer and Nutrition participants with metabolomics data. Partial least-squares regression was used to derive fatty acid and endogenous metabolite signatures of the WCRF/AICR score in this group. In an independent set of 1608 colorectal cancer cases and matched controls, odds ratios (ORs) and 95% CIs were calculated for colorectal cancer risk per unit increase in WCRF/AICR score and per the corresponding change in metabolic signatures using multivariable conditional logistic regression. RESULTS: Higher WCRF/AICR scores were characterized by metabolic signatures of increased odd-chain fatty acids, serine, glycine, and specific phosphatidylcholines. Signatures were inversely associated more strongly with colorectal cancer risk (fatty acids: OR, 0.51 per unit increase; 95% CI, 0.29-0.90; endogenous metabolites: OR, 0.62 per unit change; 95% CI, 0.50-0.78) than the WCRF/AICR score (OR, 0.93 per unit change; 95% CI, 0.86-1.00) overall. Signature associations were stronger in male compared with female participants. CONCLUSIONS: Metabolite profiles reflecting adherence to WCRF/AICR guidelines and additional lifestyle or biological risk factors were associated with colorectal cancer. Measuring a specific panel of metabolites representative of a healthy or unhealthy lifestyle may identify strata of the population at higher risk of colorectal cancer.


Asunto(s)
Neoplasias Colorrectales , Estilo de Vida Saludable , Estudios de Cohortes , Neoplasias Colorrectales/epidemiología , Dieta/efectos adversos , Ácidos Grasos , Femenino , Humanos , Masculino , Estudios Prospectivos , Factores de Riesgo
11.
Mol Ecol ; 31(2): 571-587, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34716959

RESUMEN

Ocean deoxygenation events are intensifying worldwide and can rapidly drive adult corals into a state of metabolic crisis and bleaching-induced mortality, but whether coral larvae are subject to similar stress remains untested. We experimentally exposed apo-symbiotic coral larvae of Acropora selago to deoxygenation stress with subsequent reoxygenation aligned to their night-day light cycle, and followed their gene expression using RNA-Seq. After 12 h of deoxygenation stress (~2 mg O2 /L), coral planulae demonstrated a low expression of HIF-targeted hypoxia response genes concomitant with a significantly high expression of PHD2 (a promoter of HIFα proteasomal degradation), similar to corresponding adult corals. Despite exhibiting a consistent swimming phenotype compared to control samples, the differential gene expression observed in planulae exposed to deoxygenation-reoxygenation suggests a disruption of pathways involved in developmental regulation, mitochondrial activity, lipid metabolism, and O2 -sensitive epigenetic regulators. Importantly, we found that treated larvae exhibited a disruption in the expression of conserved HIF-targeted developmental regulators, for example, Homeobox (HOX) genes, corroborating how changes in external oxygen levels can affect animal development. We discuss how the observed deoxygenation responses may be indicative of a possible acclimation response or alternatively may imply negative latent impacts for coral larval fitness.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Arrecifes de Coral , Señales (Psicología) , Hipoxia/genética , Larva/genética , Estrés Fisiológico/genética
12.
J Immunol ; 205(1): 261-271, 2020 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-32423918

RESUMEN

IFNs, produced during viral infections, induce the expression of hundreds of IFN-stimulated genes (ISGs). Some ISGs have specific antiviral activity, whereas others regulate the cellular response. Besides functioning as an antiviral effector, ISG15 is a negative regulator of IFN signaling, and inherited ISG15 deficiency leads to autoinflammatory IFNopathies, in which individuals exhibit elevated ISG expression in the absence of pathogenic infection. We have recapitulated these effects in cultured human A549-ISG15-/- cells and (using A549-UBA7-/- cells) confirmed that posttranslational modification by ISG15 (ISGylation) is not required for regulation of the type I IFN response. ISG15-deficient cells pretreated with IFN-α were resistant to paramyxovirus infection. We also showed that IFN-α treatment of ISG15-deficient cells led to significant inhibition of global protein synthesis, leading us to ask whether resistance was due to the direct antiviral activity of ISGs or whether cells were nonpermissive because of translation defects. We took advantage of the knowledge that IFN-induced protein with tetratricopeptide repeats 1 (IFIT1) is the principal antiviral ISG for parainfluenza virus 5. Knockdown of IFIT1 restored parainfluenza virus 5 infection in IFN-α-pretreated, ISG15-deficient cells, confirming that resistance was due to the direct antiviral activity of the IFN response. However, resistance could be induced if cells were pretreated with IFN-α for longer times, presumably because of inhibition of protein synthesis. These data show that the cause of virus resistance is 2-fold; ISG15 deficiency leads to the early overexpression of specific antiviral ISGs, but the later response is dominated by an unanticipated, ISG15-dependent loss of translational control.


Asunto(s)
Citocinas/deficiencia , Resistencia a la Enfermedad/genética , Interferón-alfa/metabolismo , Infecciones por Paramyxoviridae/inmunología , Transducción de Señal/inmunología , Ubiquitinas/deficiencia , Células A549 , Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Chlorocebus aethiops , Técnicas de Silenciamiento del Gen , Técnicas de Inactivación de Genes , Humanos , Virus de la Parainfluenza 2 Humana/inmunología , Virus de la Parainfluenza 3 Humana/inmunología , Virus de la Parainfluenza 5/inmunología , Infecciones por Paramyxoviridae/virología , Procesamiento Proteico-Postraduccional/inmunología , Proteínas de Unión al ARN/genética , Proteínas de Unión al ARN/metabolismo , Transducción de Señal/genética , Enzimas Activadoras de Ubiquitina/genética , Células Vero
13.
Carcinogenesis ; 42(5): 705-713, 2021 05 28.
Artículo en Inglés | MEDLINE | ID: mdl-33780524

RESUMEN

Advanced glycation end-products (AGEs) are a heterogeneous group of compounds formed by the non-enzymatic reaction between amino acids and reducing sugars, or dicarbonyls as intermediate compounds. Experimental studies suggest that AGEs may promote colorectal cancer, but prospective epidemiologic studies are inconclusive. We conducted a case-control study nested within a large European cohort. Plasma concentrations of three protein-bound AGEs-Nε-(carboxy-methyl)lysine (CML), Nε-(carboxy-ethyl)lysine (CEL) and Nδ-(5-hydro-5-methyl-4-imidazolon-2-yl)-ornithine (MG-H1)-were measured by ultra-performance liquid chromatography-tandem mass spectrometry in baseline samples collected from 1378 incident primary colorectal cancer cases and 1378 matched controls. Multivariable-adjusted odds ratios (ORs) and 95% confidence intervals (CIs) were computed using conditional logistic regression for colorectal cancer risk associated with CML, CEL, MG-H1, total AGEs, and [CEL+MG-H1: CML] and [CEL:MG-H1] ratios. Inverse colorectal cancer risk associations were observed for CML (OR comparing highest to lowest quintile, ORQ5 versus Q1 = 0.40, 95% CI: 0.27-0.59), MG-H1 (ORQ5 versus Q1 = 0.73, 95% CI: 0.53-1.00) and total AGEs (OR Q5 versus Q1 = 0.52, 95% CI: 0.37-0.73), whereas no association was observed for CEL. A higher [CEL+MG-H1: CML] ratio was associated with colorectal cancer risk (ORQ5 versus Q1 = 1.91, 95% CI: 1.31-2.79). The associations observed did not differ by sex, or by tumour anatomical sub-site. Although individual AGEs concentrations appear to be inversely associated with colorectal cancer risk, a higher ratio of methylglyoxal-derived AGEs versus those derived from glyoxal (calculated by [CEL+MG-H1: CML] ratio) showed a strong positive risk association. Further insight on the metabolism of AGEs and their dicarbonyls precursors, and their roles in colorectal cancer development is needed.


Asunto(s)
Neoplasias Colorrectales/genética , Productos Finales de Glicación Avanzada/genética , Lisina/análogos & derivados , Ornitina/análogos & derivados , Adulto , Anciano , Cromatografía Liquida , Estudios de Cohortes , Neoplasias Colorrectales/sangre , Neoplasias Colorrectales/patología , Femenino , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Productos Finales de Glicación Avanzada/sangre , Humanos , Imidazoles/sangre , Lisina/sangre , Lisina/genética , Masculino , Persona de Mediana Edad , Oportunidad Relativa , Ornitina/sangre , Ornitina/genética , Espectrometría de Masas en Tándem
14.
Int J Cancer ; 148(4): 876-883, 2021 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-32838475

RESUMEN

Low selenium status may be associated with increased risk of prostate cancer (PC), particularly aggressive PC, and variation in selenoprotein genes may constitute an important modifying factor. We aimed to investigate the association between two selenium status biomarkers [toenail selenium, plasma selenoprotein P (SELENOP)] and risk of advanced, high-grade and advanced-stage PC. We further studied whether variations in selenoprotein genes were associated with PC risk and selenium biomarker concentrations. In the "Diet, Cancer and Health" cohort, 27 178 men aged 50 to 65 years were enrolled from 1993 to 1997. Between baseline and 2012, 1160 cohort participants were diagnosed with advanced PC; among these 462 had high-grade and 281 had advanced-stage disease at diagnosis. Each case was risk set-matched to one control. Toenail selenium and plasma SELENOP concentrations were measured by neutron activation analysis and a SELENOP-ELISA, respectively, and genotyping was performed for 27 selected single nucleotide polymorphisms (SNPs) in 12 selenium pathway genes (including seven selenoproteins) by allele-specific PCR. Toenail selenium and circulating SELENOP concentrations were not associated with advanced, high-grade or advanced-stage PC. After adjustment for multiple testing, none of the genes were associated with PC risk. Neither toenail selenium nor plasma SELENOP was associated with advanced, high-grade or advanced-stage PC.


Asunto(s)
Biomarcadores de Tumor/sangre , Uñas/metabolismo , Neoplasias de la Próstata/sangre , Selenio/metabolismo , Selenoproteína P/sangre , Biomarcadores de Tumor/genética , Estudios de Casos y Controles , Estudios de Cohortes , Regulación Neoplásica de la Expresión Génica , Predisposición Genética a la Enfermedad/genética , Genotipo , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo de Nucleótido Simple , Neoplasias de la Próstata/diagnóstico , Neoplasias de la Próstata/genética , Factores de Riesgo , Selenoproteína P/genética
15.
J Gen Virol ; 102(5)2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-34020727

RESUMEN

Viral infections activate the powerful interferon (IFN) response that induces the expression of several hundred IFN stimulated genes (ISGs). The principal role of this extensive response is to create an unfavourable environment for virus replication and to limit spread; however, untangling the biological consequences of this large response is complicated. In addition to a seemingly high degree of redundancy, several ISGs are usually required in combination to limit infection as individual ISGs often have low to moderate antiviral activity. Furthermore, what ISG or combination of ISGs are antiviral for a given virus is usually not known. For these reasons, and since the function(s) of many ISGs remains unexplored, genome-wide approaches are well placed to investigate what aspects of this response result in an appropriate, virus-specific phenotype. This review discusses the advances screening approaches have provided for the study of host defence mechanisms, including clustered regularly interspaced short palindromic repeats/CRISPR associated protein 9 (CRISPR/Cas9), ISG expression libraries and RNA interference (RNAi) technologies.


Asunto(s)
Antivirales/inmunología , Pruebas Genéticas , Transducción de Señal/inmunología , Animales , Sistemas CRISPR-Cas , Expresión Génica , Estudio de Asociación del Genoma Completo , Humanos , Inmunidad Innata/genética , Inmunidad Innata/inmunología , Interferones/genética , Interferones/inmunología , Interferencia de ARN , Transducción de Señal/genética , Replicación Viral/inmunología
16.
J Virol ; 94(13)2020 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-32295916

RESUMEN

During the replication of parainfluenza virus 5 (PIV5), copyback defective virus genomes (DVGs) are erroneously produced and are packaged into "infectious" virus particles. Copyback DVGs are the primary inducers of innate intracellular responses, including the interferon (IFN) response. While DVGs can interfere with the replication of nondefective (ND) virus genomes and activate the IFN-induction cascade before ND PIV5 can block the production of IFN, we demonstrate that the converse is also true, i.e., high levels of ND virus can block the ability of DVGs to activate the IFN-induction cascade. By following the replication and amplification of DVGs in A549 cells that are deficient in a variety of innate intracellular antiviral responses, we show that DVGs induce an uncharacterized IFN-independent innate response(s) that limits their replication. High-throughput sequencing was used to characterize the molecular structure of copyback DVGs. While there appears to be no sequence-specific break or rejoining points for the generation of copyback DVGs, our findings suggest there are region, size, and/or structural preferences selected for during for their amplification.IMPORTANCE Copyback defective virus genomes (DVGs) are powerful inducers of innate immune responses both in vitro and in vivo They impact the outcome of natural infections, may help drive virus-host coevolution, and promote virus persistence. Due to their potent interfering and immunostimulatory properties, DVGs may also be used therapeutically as antivirals and vaccine adjuvants. However, little is known of the host cell restrictions which limit their amplification. We show here that the generation of copyback DVGs readily occurs during parainfluenza virus 5 (PIV5) replication, but that their subsequent amplification is restricted by the induction of innate intracellular responses. Molecular characterization of PIV5 copyback DVGs suggests that while there are no genome sequence-specific breaks or rejoin points for the generation of copyback DVGs, genome region, size, and structural preferences are selected for during their evolution and amplification.


Asunto(s)
Inmunidad Innata/inmunología , Virus de la Parainfluenza 5/genética , Virus de la Parainfluenza 5/inmunología , Células A549 , Animales , Secuencia de Bases/genética , Línea Celular , Chlorocebus aethiops , Citoplasma , Virus Defectuosos/genética , Genoma Viral/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Interferones/genética , ARN Viral/genética , Células Vero , Virión/genética , Virosis/genética , Replicación Viral/genética
17.
J Virol ; 94(17)2020 08 17.
Artículo en Inglés | MEDLINE | ID: mdl-32581094

RESUMEN

The Epstein-Barr virus (EBV) BHLF1 gene encodes an abundant linear and several circular RNAs believed to perform noncoding functions during virus replication, although an open reading frame (ORF) is retained among an unknown percentage of EBV isolates. Evidence suggests that BHLF1 is also transcribed during latent infection, which prompted us to investigate the contribution of this locus to latency. Analysis of transcripts transiting BHLF1 revealed that its transcription is widespread among B-cell lines supporting the latency I or III program of EBV protein expression and is more complex than originally presumed. EBV-negative Burkitt lymphoma cell lines infected with either wild-type or two different BHLF1 mutant EBVs were initially indistinguishable in supporting latency III. However, cells infected with BHLF1- virus ultimately transitioned to the more restrictive latency I program, whereas cells infected with wild-type virus either sustained latency III or transitioned more slowly to latency I. Upon infection of primary B cells, which require latency III for growth in vitro, both BHLF1- viruses exhibited variably reduced immortalization potential relative to the wild-type virus. Finally, in transfection experiments, efficient protein expression from an intact BHLF1 ORF required the EBV posttranscriptional regulator protein SM, whose expression is limited to the replicative cycle. Thus, one way in which BHLF1 may contribute to latency is through a mechanism, possibly mediated or regulated by a long noncoding RNA, that supports latency III critical for the establishment of EBV latency and lifelong persistence within its host, whereas any retained protein-dependent function of BHLF1 may be restricted to the replication cycle.IMPORTANCE Epstein-Barr virus (EBV) has significant oncogenic potential that is linked to its latent infection of B lymphocytes, during which virus replication is not supported. The establishment of latent infection, which is lifelong and can precede tumor development by years, requires the concerted actions of nearly a dozen EBV proteins and numerous small non-protein-coding RNAs. Elucidating how these EBV products contribute to latency is crucial for understanding EBV's role in specific malignancies and, ultimately, for clinical intervention. Historically, EBV genes that contribute to virus replication have been excluded from consideration of a role in latency, primarily because of the general incompatibility between virus production and cell survival. However, here, we provide evidence that the genetic locus containing one such gene, BHLF1, indeed contributes to key aspects of EBV latency, including its ability to promote the continuous growth of B lymphocytes, thus providing significant new insight into EBV biology and oncogenic potential.


Asunto(s)
Linfocitos B/virología , Herpesvirus Humano 4/genética , Herpesvirus Humano 4/metabolismo , Proteínas Virales/genética , Proteínas Virales/metabolismo , Latencia del Virus/fisiología , Linfoma de Burkitt , Línea Celular , Infecciones por Virus de Epstein-Barr/virología , Antígenos Nucleares del Virus de Epstein-Barr/genética , Antígenos Nucleares del Virus de Epstein-Barr/metabolismo , Regulación Viral de la Expresión Génica , Células HEK293 , Herpesvirus Humano 4/crecimiento & desarrollo , Humanos , ARN Largo no Codificante/genética , Transcriptoma , Replicación Viral
18.
Glob Chang Biol ; 27(2): 312-326, 2021 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-33197302

RESUMEN

Exposure of marine life to low oxygen is accelerating worldwide via climate change and localized pollution. Mass coral bleaching and mortality have recently occurred where reefs have experienced chronic low oxygen events. However, the mechanistic basis of tolerance to oxygen levels inadequate to sustain normal functioning (i.e. hypoxia) and whether it contributes to bleaching susceptibility, remain unknown. We therefore experimentally exposed colonies of the environmentally resilient Acropora tenuis, a common reef-building coral from the Great Barrier Reef, to deoxygenation-reoxygenation stress that was aligned to their natural night-day light cycle. Specifically, the treatment involved removing the 'night-time O2 buffer' to challenge the inherent hypoxia thresholds. RNA-Seq analysis revealed that coral possess a complete and active hypoxia-inducible factor (HIF)-mediated hypoxia response system (HRS) homologous to other metazoans. As expected, A. tenuis exhibited bleaching resistance and showed a strong inducibility of HIF target genes in response to deoxygenation stress. We applied this same approach in parallel to a colony of Acropora selago, known to be environmnetally susceptible, which conversely exhibited a bleaching phenotype response. This phenotypic divergence of A. selago was accompanied by contrasting gene expression profiles indicative of varied effectiveness of their HIF-HRS. Based on our RNA-Seq analysis, we propose (a) that the HIF-HRS is central for corals to manage deoxygenation stress and (b) that key genes of this system (and the wider gene network) may contribute to variation in coral bleaching susceptibility. Our analysis suggests that heat shock protein (hsp) 70 and 90 are important for low oxygen stress tolerance and further highlights how hsp90 expression might also affect the inducibility of coral HIF-HRS in overcoming a metabolic crisis under deoxygenation stress. We propose that differences in coral HIF-HRS could be central in regulating sensitivity to other climate change stressors-notably thermal stress-that commonly drive bleaching.


Asunto(s)
Antozoos , Animales , Antozoos/genética , Cambio Climático , Arrecifes de Coral , Contaminación Ambiental , Hipoxia
19.
Org Biomol Chem ; 19(42): 9211-9222, 2021 11 03.
Artículo en Inglés | MEDLINE | ID: mdl-34643629

RESUMEN

The evolution and growth of multiple-herbicide resistance (MHR) in grass weeds continues to threaten global cereal production. While various processes can contribute to resistance, earlier work has identified the phi class glutathione-S-transferase (AmGSTF1) as a functional biomarker of MHR in black-grass (Alopecurus myosuroides). This study provides further insights into the role of AmGSTF1 in MHR using a combination of chemical and structural biology. Crystal structures of wild-type AmGSTF1, together with two specifically designed variants that allowed the co-crystal structure determination with glutathione and a glutathione adduct of the AmGSTF1 inhibitor 4-chloro-7-nitro-benzofurazan (NBD-Cl) were obtained. These studies demonstrated that the inhibitory activity of NBD-Cl was associated with the occlusion of the active site and the impediment of substrate binding. A search for other selective inhibitors of AmGSTF1, using ligand-fishing experiments, identified a number of flavonoids as potential ligands. Subsequent experiments using black-grass extracts discovered a specific flavonoid as a natural ligand of the recombinant enzyme. A series of related synthetic flavonoids was prepared and their binding to AmGSTF1 was investigated showing a high affinity for derivatives bearing a O-5-decyl-α-carboxylate. Molecular modelling based on high-resolution crystal structures allowed a binding pose to be defined which explained flavonoid binding specificity. Crucially, high binding affinity was linked to a reversal of the herbicide resistance phenotype in MHR black-grass. Collectively, these results present a nature-inspired new lead for the development of herbicide synergists to counteract MHR in weeds.


Asunto(s)
Resistencia a los Herbicidas
20.
J Phycol ; 57(1): 111-127, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-32885422

RESUMEN

Fast Repetition Rate fluorometry (FRRf) has been increasingly used to measure marine primary productivity by oceanographers to understand how carbon (C) uptake patterns vary over space and time in the global ocean. As FRRf measures electron transport rates through photosystem II (ETRPSII ), a critical, but difficult to predict conversion factor termed the "electron requirement for carbon fixation" (Φe,C ) is needed to scale ETRPSII to C-fixation rates. Recent studies have generally focused on understanding environmental regulation of Φe,C , while taxonomic control has been explored by only a handful of laboratory studies encompassing a limited diversity of phytoplankton species. We therefore assessed Φe,C for a wide range of marine phytoplankton (n = 17 strains) spanning multiple taxonomic and size classes. Data mined from previous studies were further considered to determine whether Φe,C variability could be explained by taxonomy versus other phenotypic traits influencing growth and physiological performance (e.g., cell size). We found that Φe,C exhibited considerable variability (~4-10 mol e-  · [mol C]-1 ) and was negatively correlated with growth rate (R2  = 0.7, P < 0.01). Diatoms exhibited a lower Φe,C compared to chlorophytes during steady-state, nutrient-replete growth. Inclusion of meta-analysis data did not find significant relationships between Φe,C and class, or growth rate, although confounding factors inherent to methodological inconsistencies between studies likely contributed to this. Knowledge of empirical relationships between Φe,C and growth rate coupled with recent improvements in quantifying phytoplankton growth rates in situ, facilitate up-scaling of FRRf campaigns to routinely derive Φe,C needed to assess ocean C-cycling.


Asunto(s)
Electrones , Fitoplancton , Carbono , Ciclo del Carbono , Fotosíntesis , Complejo de Proteína del Fotosistema II/metabolismo , Fitoplancton/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA