Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
BMC Genomics ; 21(1): 81, 2020 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-31992199

RESUMEN

BACKGROUND: Zanthoxylum armatum (Z. armatum) is a highly economically important tree that presents a special numbing taste. However, the underlying regulatory mechanism of the numbing taste remains poorly understood. Thus, the elucidation of the key genes associated with numbing taste biosynthesis pathways is critical for providing genetic information on Z. armatumand the breeding of high-quality germplasms of this species. RESULTS: Here, de novo transcriptome assembly was performed for the five major organs of Z. armatum, including the roots, stems, leaf buds, mature leaves and fruits. A total of 111,318 unigenes were generated with an average length of 1014 bp. Additionally, a large number of SSRs were obtained to improve our understanding of the phylogeny and genetics of Z. armatum. The organ-specific unigenes of the five major samples were screened and annotated via GO and KEGG enrichment analysis. A total of 53 and 34 unigenes that were exclusively upregulated in fruit samples were identified as candidate unigenes for terpenoid biosynthesis or fatty acid biosynthesis, elongation and degradation pathways, respectively. Moreover, 40 days after fertilization (Fr4 stage) could be an important period for the accumulation of terpenoid compounds during the fruit development and maturation of Z. armatum. The Fr4 stage could be a key point at which the first few steps of the fatty acid biosynthesis process are promoted, and the catalysis of subsequent reactions could be significantly induced at 62 days after fertilization (Fr6 stage). CONCLUSIONS: The present study realized de novo transcriptome assembly for the five major organs of Z. armatum. To the best of our knowledge, this study provides the first comprehensive analysis revealing the genes underlying the special numbing taste of Z. armatum. The assembled transcriptome profiles expand the available genetic information on this species and will contribute to gene functional studies, which will aid in the engineering of high-quality cultivars of Z. armatum.


Asunto(s)
Ácidos Grasos/metabolismo , Regulación de la Expresión Génica de las Plantas , Metabolismo de los Lípidos , Terpenos/metabolismo , Transcriptoma , Zanthoxylum/genética , Zanthoxylum/metabolismo , Vías Biosintéticas , Biología Computacional/métodos , Repeticiones de Microsatélite , Anotación de Secuencia Molecular , Especificidad de Órganos
2.
Int J Mol Sci ; 19(2)2018 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389867

RESUMEN

Jatropha curcas L. seeds an oilseed plant with great potential for biodiesel production. However, low seed yield, which was limited by its lower female flowers, was a major drawback for its utilization. Our previous study found that the flower number and female-to-male ratio were increased by gibberellin treatment. Here, we compared the transcriptomic profiles of inflorescence meristem at different time points after gibberellic acid A3 (GA3) treatment. The present study showed that 951 differentially expressed genes were obtained in response to gibberellin treatment, compared with control samples. The 6-h time point was an important phase in the response to exogenous gibberellin. Furthermore, the plant endogenous gibberellin, auxin, ethylene, abscisic acid, and brassinolide-signaling transduction pathways were repressed, whereas the genes associated with cytokinin and jasmonic acid signaling were upregulated for 24-h time point following GA3 treatment. In addition, the floral meristem determinacy genes (JcLFY, JcSOC1) and floral organ identity genes (JcAP3, JcPI, JcSEP1-3) were significantly upregulated, but their negative regulator (JcSVP) was downregulated after GA3 treatment. Moreover, the effects of phytohormone, which was induced by exogenous plant growth regulator, mainly acted on the female floral differentiation process. To the best of our knowledge, this data is the first comprehensive analysis of the underlying transcriptional response mechanism of floral differentiation following GA3 treatment in J. curcas, which helps in engineering high-yielding varieties of Jatropha.


Asunto(s)
Flores/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Giberelinas/farmacología , Jatropha/genética , Meristema/genética , Transcriptoma/efectos de los fármacos , Perfilación de la Expresión Génica/métodos , Genes de Plantas/genética , Giberelinas/metabolismo , Reguladores del Crecimiento de las Plantas/metabolismo , Reguladores del Crecimiento de las Plantas/farmacología , Proteínas de Plantas/genética
3.
Gene ; 766: 145141, 2021 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-32911031

RESUMEN

Jatropha curcasseeds are abundant in biodiesel, and low seed yields are linked to poor quality female flowers, which creates a bottleneck for Jatropha seed utilization. Therefore, identifying the genes associated with flowering is crucial for the genetic enrichment of seed yields. Here, we identified an AGAMOUS homologue gene (JcAG) from J. curcas. We found that reproductive organs had higher JcAG expression than vegetative organs, particularly the carpel. Rosette leaves were small and misshapen in 35S:JcAG transgenic lines in comparison with those in wild-type plants. JcAG overexpression caused an extremely early flowering, delayed perianth and stamen filament development, small flowers, and significantly shorter Arabidopsis plants with little fruit. In the JcAG-overexpressing line, the homeotic transformation of sepals into pistillate organs was observed, and floral meristem and organ identity genes were regulated. This study provides insights into the JcAG's function and benefits to our knowledge of the underlying the genetic mechanisms related to floral sex differentiation in Jatropha.


Asunto(s)
Expresión Génica Ectópica/genética , Flores/genética , Regulación de la Expresión Génica de las Plantas/genética , Genes de Plantas/genética , Jatropha/genética , Proteínas de Plantas/genética , Arabidopsis/genética , Meristema/genética , Fenotipo , Plantas Modificadas Genéticamente/genética , Semillas/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA