Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 183(3): 666-683.e17, 2020 10 29.
Artículo en Inglés | MEDLINE | ID: mdl-32991841

RESUMEN

A mysterious feature of Crohn's disease (CD) is the extra-intestinal manifestation of "creeping fat" (CrF), defined as expansion of mesenteric adipose tissue around the inflamed and fibrotic intestine. In the current study, we explore whether microbial translocation in CD serves as a central cue for CrF development. We discovered a subset of mucosal-associated gut bacteria that consistently translocated and remained viable in CrF in CD ileal surgical resections, and identified Clostridium innocuum as a signature of this consortium with strain variation between mucosal and adipose isolates, suggesting preference for lipid-rich environments. Single-cell RNA sequencing characterized CrF as both pro-fibrotic and pro-adipogenic with a rich milieu of activated immune cells responding to microbial stimuli, which we confirm in gnotobiotic mice colonized with C. innocuum. Ex vivo validation of expression patterns suggests C. innocuum stimulates tissue remodeling via M2 macrophages, leading to an adipose tissue barrier that serves to prevent systemic dissemination of bacteria.


Asunto(s)
Tejido Adiposo/microbiología , Traslocación Bacteriana , Microbioma Gastrointestinal , Mesenterio/microbiología , Tejido Adiposo/patología , Animales , Biodiversidad , Biomarcadores/metabolismo , Polaridad Celular , Células Cultivadas , Colitis Ulcerosa/patología , Enfermedad de Crohn/microbiología , Enfermedad de Crohn/patología , Microbioma Gastrointestinal/genética , Regulación de la Expresión Génica , Vida Libre de Gérmenes , Humanos , Íleon/microbiología , Íleon/patología , Lipopolisacáridos/metabolismo , Macrófagos/metabolismo , Metagenoma , Metagenómica , Ratones , Ratones Endogámicos C57BL , Fenotipo , ARN Ribosómico 16S/genética , Células Madre/metabolismo
2.
Mov Disord ; 38(3): 399-409, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36691982

RESUMEN

BACKGROUND: The gut microbiome is altered in several neurologic disorders, including Parkinson's disease (PD). OBJECTIVES: The aim is to profile the fecal gut metagenome in PD for alterations in microbial composition, taxon abundance, metabolic pathways, and microbial gene products, and their relationship with disease progression. METHODS: Shotgun metagenomic sequencing was conducted on 244 stool donors from two independent cohorts in the United States, including individuals with PD (n = 48, n = 47, respectively), environmental household controls (HC, n = 29, n = 30), and community population controls (PC, n = 41, n = 49). Microbial features consistently altered in PD compared to HC and PC subjects were identified. Data were cross-referenced to public metagenomic data sets from two previous studies in Germany and China to determine generalizable microbiome features. RESULTS: We find several significantly altered taxa between PD and controls within the two cohorts sequenced in this study. Analysis across global cohorts returns consistent changes only in Intestinimonas butyriciproducens. Pathway enrichment analysis reveals disruptions in microbial carbohydrate and lipid metabolism and increased amino acid and nucleotide metabolism in PD. Global gene-level signatures indicate an increased response to oxidative stress, decreased cellular growth and microbial motility, and disrupted intercommunity signaling. CONCLUSIONS: A metagenomic meta-analysis of PD shows consistent and novel alterations in functional metabolic potential and microbial gene abundance across four independent studies from three continents. These data reveal that stereotypic changes in the functional potential of the gut microbiome are a consistent feature of PD, highlighting potential diagnostic and therapeutic avenues for future research. © 2023 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Microbioma Gastrointestinal , Enfermedad de Parkinson , Humanos , Enfermedad de Parkinson/diagnóstico , Metagenoma/genética , Estudios de Cohortes , Microbioma Gastrointestinal/genética , Heces
3.
Nature ; 551(7681): 457-463, 2017 11 23.
Artículo en Inglés | MEDLINE | ID: mdl-29088705

RESUMEN

Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.


Asunto(s)
Biodiversidad , Planeta Tierra , Microbiota/genética , Animales , Archaea/genética , Archaea/aislamiento & purificación , Bacterias/genética , Bacterias/aislamiento & purificación , Ecología/métodos , Dosificación de Gen , Mapeo Geográfico , Humanos , Plantas/microbiología , ARN Ribosómico 16S/análisis , ARN Ribosómico 16S/genética
4.
Proc Natl Acad Sci U S A ; 117(40): 24998-25007, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32958643

RESUMEN

Infections elicit immune adaptations to enable pathogen resistance and/or tolerance and are associated with compositional shifts of the intestinal microbiome. However, a comprehensive understanding of how infections with pathogens that exhibit distinct capability to spread and/or persist differentially change the microbiome, the underlying mechanisms, and the relative contribution of individual commensal species to immune cell adaptations is still lacking. Here, we discovered that mouse infection with a fast-spreading and persistent (but not a slow-spreading acute) isolate of lymphocytic choriomeningitis virus induced large-scale microbiome shifts characterized by increased Verrucomicrobia and reduced Firmicute/Bacteroidetes ratio. Remarkably, the most profound microbiome changes occurred transiently after infection with the fast-spreading persistent isolate, were uncoupled from sustained viral loads, and were instead largely caused by CD8 T cell responses and/or CD8 T cell-induced anorexia. Among the taxa enriched by infection with the fast-spreading virus, Akkermansia muciniphila, broadly regarded as a beneficial commensal, bloomed upon starvation and in a CD8 T cell-dependent manner. Strikingly, oral administration of A. muciniphila suppressed selected effector features of CD8 T cells in the context of both infections. Our findings define unique microbiome differences after chronic versus acute viral infections and identify CD8 T cell responses and downstream anorexia as driver mechanisms of microbial dysbiosis after infection with a fast-spreading virus. Our data also highlight potential context-dependent effects of probiotics and suggest a model in which changes in host behavior and downstream microbiome dysbiosis may constitute a previously unrecognized negative feedback loop that contributes to CD8 T cell adaptations after infections with fast-spreading and/or persistent pathogens.


Asunto(s)
Anorexia/inmunología , Antígenos CD8/inmunología , Memoria Inmunológica/inmunología , Coriomeningitis Linfocítica/inmunología , Virosis/inmunología , Akkermansia , Animales , Anorexia/microbiología , Anorexia/virología , Antígenos CD8/metabolismo , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/microbiología , Disbiosis/inmunología , Disbiosis/microbiología , Disbiosis/virología , Firmicutes/inmunología , Firmicutes/metabolismo , Microbioma Gastrointestinal/inmunología , Humanos , Coriomeningitis Linfocítica/microbiología , Coriomeningitis Linfocítica/patología , Virus de la Coriomeningitis Linfocítica/patogenicidad , Ratones , Linfocitos T/inmunología , Linfocitos T/microbiología , Verrucomicrobia/inmunología , Verrucomicrobia/patogenicidad , Virosis/microbiología , Virosis/patología
5.
Mar Drugs ; 19(1)2021 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-33418911

RESUMEN

Microbial natural products are important for the understanding of microbial interactions, chemical defense and communication, and have also served as an inspirational source for numerous pharmaceutical drugs. Tropical marine cyanobacteria have been highlighted as a great source of new natural products, however, few reports have appeared wherein a multi-omics approach has been used to study their natural products potential (i.e., reports are often focused on an individual natural product and its biosynthesis). This study focuses on describing the natural product genetic potential as well as the expressed natural product molecules in benthic tropical cyanobacteria. We collected from several sites around the world and sequenced the genomes of 24 tropical filamentous marine cyanobacteria. The informatics program antiSMASH was used to annotate the major classes of gene clusters. BiG-SCAPE phylum-wide analysis revealed the most promising strains for natural product discovery among these cyanobacteria. LCMS/MS-based metabolomics highlighted the most abundant molecules and molecular classes among 10 of these marine cyanobacterial samples. We observed that despite many genes encoding for peptidic natural products, peptides were not as abundant as lipids and lipopeptides in the chemical extracts. Our results highlight a number of highly interesting biosynthetic gene clusters for genome mining among these cyanobacterial samples.


Asunto(s)
Productos Biológicos/farmacología , Cianobacterias/química , Cromatografía Líquida de Alta Presión , Cianobacterias/genética , Genoma Bacteriano , Genómica , Biología Marina , Espectrometría de Masas , Metabolómica , Familia de Multigenes , Filogenia , Clima Tropical
6.
PLoS Comput Biol ; 15(3): e1006213, 2019 03.
Artículo en Inglés | MEDLINE | ID: mdl-30822347

RESUMEN

Understanding the fundamental characteristics of microbial communities could have far reaching implications for human health and applied biotechnology. Despite this, much is still unknown regarding the genetic basis and evolutionary strategies underlying the formation of viable synthetic communities. By pairing auxotrophic mutants in co-culture, it has been demonstrated that viable nascent E. coli communities can be established where the mutant strains are metabolically coupled. A novel algorithm, OptAux, was constructed to design 61 unique multi-knockout E. coli auxotrophic strains that require significant metabolite uptake to grow. These predicted knockouts included a diverse set of novel non-specific auxotrophs that result from inhibition of major biosynthetic subsystems. Three OptAux predicted non-specific auxotrophic strains-with diverse metabolic deficiencies-were co-cultured with an L-histidine auxotroph and optimized via adaptive laboratory evolution (ALE). Time-course sequencing revealed the genetic changes employed by each strain to achieve higher community growth rates and provided insight into mechanisms for adapting to the syntrophic niche. A community model of metabolism and gene expression was utilized to predict the relative community composition and fundamental characteristics of the evolved communities. This work presents new insight into the genetic strategies underlying viable nascent community formation and a cutting-edge computational method to elucidate metabolic changes that empower the creation of cooperative communities.


Asunto(s)
Adaptación Fisiológica , Escherichia coli/fisiología , Modelos Biológicos , Algoritmos , Evolución Biológica , Técnicas de Cocultivo , Escherichia coli/genética , Genes Bacterianos , Mutación
7.
BMC Biol ; 17(1): 47, 2019 06 12.
Artículo en Inglés | MEDLINE | ID: mdl-31189482

RESUMEN

BACKGROUND: Use of skin personal care products on a regular basis is nearly ubiquitous, but their effects on molecular and microbial diversity of the skin are unknown. We evaluated the impact of four beauty products (a facial lotion, a moisturizer, a foot powder, and a deodorant) on 11 volunteers over 9 weeks. RESULTS: Mass spectrometry and 16S rRNA inventories of the skin revealed decreases in chemical as well as in bacterial and archaeal diversity on halting deodorant use. Specific compounds from beauty products used before the study remain detectable with half-lives of 0.5-1.9 weeks. The deodorant and foot powder increased molecular, bacterial, and archaeal diversity, while arm and face lotions had little effect on bacterial and archaeal but increased chemical diversity. Personal care product effects last for weeks and produce highly individualized responses, including alterations in steroid and pheromone levels and in bacterial and archaeal ecosystem structure and dynamics. CONCLUSIONS: These findings may lead to next-generation precision beauty products and therapies for skin disorders.


Asunto(s)
Cosméticos/efectos adversos , Microbiota/efectos de los fármacos , Cuidados de la Piel/efectos adversos , Piel/efectos de los fármacos , Adulto , Cosméticos/clasificación , Femenino , Humanos , Masculino , Piel/química , Piel/microbiología
8.
Cell Rep ; 43(4): 113953, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38517896

RESUMEN

The gastrointestinal (GI) tract is innervated by intrinsic neurons of the enteric nervous system (ENS) and extrinsic neurons of the central nervous system and peripheral ganglia. The GI tract also harbors a diverse microbiome, but interactions between the ENS and the microbiome remain poorly understood. Here, we activate choline acetyltransferase (ChAT)-expressing or tyrosine hydroxylase (TH)-expressing gut-associated neurons in mice to determine effects on intestinal microbial communities and their metabolites as well as on host physiology. The resulting multi-omics datasets support broad roles for discrete peripheral neuronal subtypes in shaping microbiome structure, including modulating bile acid profiles and fungal colonization. Physiologically, activation of either ChAT+ or TH+ neurons increases fecal output, while only ChAT+ activation results in increased colonic contractility and diarrhea-like fluid secretion. These findings suggest that specific subsets of peripherally activated neurons differentially regulate the gut microbiome and GI physiology in mice without involvement of signals from the brain.


Asunto(s)
Microbioma Gastrointestinal , Neuronas , Animales , Microbioma Gastrointestinal/fisiología , Ratones , Neuronas/metabolismo , Colina O-Acetiltransferasa/metabolismo , Sistema Nervioso Entérico/fisiología , Ratones Endogámicos C57BL , Tirosina 3-Monooxigenasa/metabolismo , Masculino , Tracto Gastrointestinal/microbiología
9.
Cancer Epidemiol Biomarkers Prev ; 32(3): 444-451, 2023 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-36649143

RESUMEN

BACKGROUND: In prospective cohorts, biological samples are generally stored over long periods before an adequate number of cases have accrued. We investigated the impact of sample storage at -80°C for 2 years on the stability of the V4 region of the 16S rRNA gene across seven different collection methods (i.e., no additive, 95% ethanol, RNAlater stabilization solution, fecal occult blood test cards, and fecal immunochemical test tubes for feces; OMNIgene ORAL tubes and Scope mouthwash for saliva) among 51 healthy volunteers. METHODS: Intraclass correlation coefficients (ICC) were calculated for the relative abundance of the top three phyla, the 20 most abundant genera, three alpha-diversity metrics, and the first principal coordinates of three beta-diversity matrices. RESULTS: The subject variability was much higher than the variability introduced by the sample collection type, and storage time. For fecal samples, microbial stability over 2 years was high across collection methods (range, ICCs = 0.70-0.99), except for the samples collected with no additive (range, ICCs = 0.23-0.83). For oral samples, most microbiome diversity measures were stable over time with ICCs above 0.74; however, ICCs for the samples collected with Scope mouthwash were lower for two alpha-diversity measures, Faith's phylogenetic diversity (0.23) and the observed number of operational taxonomic units (0.23). CONCLUSIONS: Fecal and oral samples in most used collection methods are stable for microbiome analyses after 2 years at -80°C, except for fecal samples with no additive. IMPACT: This study provides evidence that samples stored for an extended period from prospective studies are useful for microbiome analyses.


Asunto(s)
Microbiota , Humanos , Estudios Prospectivos , ARN Ribosómico 16S/genética , Filogenia , Heces , Manejo de Especímenes/métodos
10.
EBioMedicine ; 91: 104583, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37119735

RESUMEN

BACKGROUND: Atrial fibrillation (AF) is an important heart rhythm disorder in aging populations. The gut microbiome composition has been previously related to cardiovascular disease risk factors. Whether the gut microbial profile is also associated with the risk of AF remains unknown. METHODS: We examined the associations of prevalent and incident AF with gut microbiota in the FINRISK 2002 study, a random population sample of 6763 individuals. We replicated our findings in an independent case-control cohort of 138 individuals in Hamburg, Germany. FINDINGS: Multivariable-adjusted regression models revealed that prevalent AF (N = 116) was associated with nine microbial genera. Incident AF (N = 539) over a median follow-up of 15 years was associated with eight microbial genera with false discovery rate (FDR)-corrected P < 0.05. Both prevalent and incident AF were associated with the genera Enorma and Bifidobacterium (FDR-corrected P < 0.001). AF was not significantly associated with bacterial diversity measures. Seventy-five percent of top genera (Enorma, Paraprevotella, Odoribacter, Collinsella, Barnesiella, Alistipes) in Cox regression analyses showed a consistent direction of shifted abundance in an independent AF case-control cohort that was used for replication. INTERPRETATION: Our findings establish the basis for the use of microbiome profiles in AF risk prediction. However, extensive research is still warranted before microbiome sequencing can be used for prevention and targeted treatment of AF. FUNDING: This study was funded by European Research Council, German Ministry of Research and Education, Academy of Finland, Finnish Medical Foundation, and the Finnish Foundation for Cardiovascular Research, the Emil Aaltonen Foundation, and the Paavo Nurmi Foundation.


Asunto(s)
Fibrilación Atrial , Microbioma Gastrointestinal , Humanos , Fibrilación Atrial/etiología , Fibrilación Atrial/complicaciones , Corazón , Bacterias/genética , Envejecimiento , Incidencia
11.
Biotechniques ; 73(1): 34-46, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35713407

RESUMEN

Microbial communities contain a broad phylogenetic diversity of organisms; however, the majority of methods center on describing bacteria and archaea. Fungi are important symbionts in many ecosystems and are potentially important members of the human microbiome, beyond those that can cause disease. To expand our analysis of microbial communities to include data from the fungal internal transcribed spacer (ITS) region, five candidate DNA extraction kits were compared against our standardized protocol for describing bacteria and archaea using 16S rRNA gene amplicon- and shotgun metagenomics sequencing. The results are presented considering a diverse panel of host-associated and environmental sample types and comparing the cost, processing time, well-to-well contamination, DNA yield, limit of detection and microbial community composition among protocols. Across all criteria, the MagMAX Microbiome kit was found to perform best. The PowerSoil Pro kit performed comparably but with increased cost per sample and overall processing time. The Zymo MagBead, NucleoMag Food and Norgen Stool kits were included.


Asunto(s)
Metagenómica , Microbiota , Bacterias/genética , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Humanos , Metagenómica/métodos , Microbiota/genética , Filogenia , ARN Ribosómico 16S/genética , Análisis de Secuencia de ADN
12.
Cell Mol Gastroenterol Hepatol ; 14(1): 35-53, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35378331

RESUMEN

BACKGROUND & AIMS: Hyperbaric oxygen therapy (HBOT) is a promising treatment for moderate-to-severe ulcerative colitis. However, our current understanding of the host and microbial response to HBOT remains unclear. This study examined the molecular mechanisms underpinning HBOT using a multi-omic strategy. METHODS: Pre- and post-intervention mucosal biopsies, tissue, and fecal samples were collected from HBOT phase 2 clinical trials. Biopsies and fecal samples were subjected to shotgun metaproteomics, metabolomics, 16s rRNA sequencing, and metagenomics. Tissue was subjected to bulk RNA sequencing and digital spatial profiling (DSP) for single-cell RNA and protein analysis, and immunohistochemistry was performed. Fecal samples were also used for colonization experiments in IL10-/- germ-free UC mouse models. RESULTS: Proteomics identified negative associations between HBOT response and neutrophil azurophilic granule abundance. DSP identified an HBOT-specific reduction of neutrophil STAT3, which was confirmed by immunohistochemistry. HBOT decreased microbial diversity with a proportional increase in Firmicutes and a secondary bile acid lithocholic acid. A major source of the reduction in diversity was the loss of mucus-adherent taxa, resulting in increased MUC2 levels post-HBOT. Targeted database searching revealed strain-level associations between Akkermansia muciniphila and HBOT response status. Colonization of IL10-/- with stool obtained from HBOT responders resulted in lower colitis activity compared with non-responders, with no differences in STAT3 expression, suggesting complementary but independent host and microbial responses. CONCLUSIONS: HBOT reduces host neutrophil STAT3 and azurophilic granule activity in UC patients and changes in microbial composition and metabolism in ways that improve colitis activity. Intestinal microbiota, especially strain level variations in A muciniphila, may contribute to HBOT non-response.


Asunto(s)
Colitis Ulcerosa , Oxigenoterapia Hiperbárica , Microbiota , Animales , Colitis Ulcerosa/terapia , Humanos , Interleucina-10 , Ratones , ARN Ribosómico 16S/genética
13.
Nat Biotechnol ; 40(12): 1774-1779, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-35798960

RESUMEN

Human untargeted metabolomics studies annotate only ~10% of molecular features. We introduce reference-data-driven analysis to match metabolomics tandem mass spectrometry (MS/MS) data against metadata-annotated source data as a pseudo-MS/MS reference library. Applying this approach to food source data, we show that it increases MS/MS spectral usage 5.1-fold over conventional structural MS/MS library matches and allows empirical assessment of dietary patterns from untargeted data.


Asunto(s)
Metadatos , Espectrometría de Masas en Tándem , Humanos , Metabolómica/métodos
14.
Microbiome ; 9(1): 92, 2021 04 14.
Artículo en Inglés | MEDLINE | ID: mdl-33853672

RESUMEN

BACKGROUND: Infectious bacterial diseases exhibiting increasing resistance to antibiotics are a serious global health issue. Bacteriophage therapy is an anti-microbial alternative to treat patients with serious bacterial infections. However, the impacts to the host microbiome in response to clinical use of phage therapy are not well understood. RESULTS: Our paper demonstrates a largely unchanged microbiota profile during 4 weeks of phage therapy when added to systemic antibiotics in a single patient with Staphylococcus aureus device infection. Metabolomic analyses suggest potential indirect cascading ecological impacts to the host (skin) microbiome. We did not detect genomes of the three phages used to treat the patient in metagenomic samples taken from saliva, stool, and skin; however, phages were detected using endpoint-PCR in patient serum. CONCLUSION: Results from our proof-of-principal study supports the use of bacteriophages as a microbiome-sparing approach to treat bacterial infections. Video abstract.


Asunto(s)
Bacteriófagos , Microbiota , Terapia de Fagos , Infecciones Estafilocócicas , Antibacterianos/uso terapéutico , Bacteriófagos/genética , Humanos , Infecciones Estafilocócicas/tratamiento farmacológico
15.
Biotechniques ; 70(3): 149-159, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33512248

RESUMEN

One goal of microbial ecology researchers is to capture the maximum amount of information from all organisms in a sample. The recent COVID-19 pandemic, caused by the RNA virus SARS-CoV-2, has highlighted a gap in traditional DNA-based protocols, including the high-throughput methods the authors previously established as field standards. To enable simultaneous SARS-CoV-2 and microbial community profiling, the authors compared the relative performance of two total nucleic acid extraction protocols with the authors' previously benchmarked protocol. The authors included a diverse panel of environmental and host-associated sample types, including body sites commonly swabbed for COVID-19 testing. Here the authors present results comparing the cost, processing time, DNA and RNA yield, microbial community composition, limit of detection and well-to-well contamination between these protocols.


Asunto(s)
ADN Viral/aislamiento & purificación , Secuenciación de Nucleótidos de Alto Rendimiento/métodos , Microbiota/genética , ARN Ribosómico 16S/aislamiento & purificación , SARS-CoV-2/genética , Animales , Biodiversidad , Gatos , Fraccionamiento Químico/métodos , Heces/microbiología , Heces/virología , Femenino , Alimentos Fermentados/microbiología , Humanos , Límite de Detección , Masculino , Metagenómica/métodos , Ratones , Saliva/microbiología , Saliva/virología , Piel/microbiología , Piel/virología
16.
Nat Commun ; 12(1): 2671, 2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-33976176

RESUMEN

The collection of fecal material and developments in sequencing technologies have enabled standardised and non-invasive gut microbiome profiling. Microbiome composition from several large cohorts have been cross-sectionally linked to various lifestyle factors and diseases. In spite of these advances, prospective associations between microbiome composition and health have remained uncharacterised due to the lack of sufficiently large and representative population cohorts with comprehensive follow-up data. Here, we analyse the long-term association between gut microbiome variation and mortality in a well-phenotyped and representative population cohort from Finland (n = 7211). We report robust taxonomic and functional microbiome signatures related to the Enterobacteriaceae family that are associated with mortality risk during a 15-year follow-up. Our results extend previous cross-sectional studies, and help to establish the basis for examining long-term associations between human gut microbiome composition, incident outcomes, and general health status.


Asunto(s)
Causas de Muerte/tendencias , Enterobacteriaceae/genética , Heces/microbiología , Microbioma Gastrointestinal/genética , ARN Ribosómico 16S/genética , Adolescente , Adulto , Anciano , Estudios de Cohortes , Estudios Transversales , Enterobacteriaceae/clasificación , Femenino , Finlandia , Humanos , Masculino , Persona de Mediana Edad , Vigilancia de la Población/métodos , Factores de Riesgo , Adulto Joven
17.
Am J Clin Nutr ; 114(2): 605-616, 2021 08 02.
Artículo en Inglés | MEDLINE | ID: mdl-34020448

RESUMEN

BACKGROUND: Diet has a major influence on the human gut microbiota, which has been linked to health and disease. However, epidemiological studies on associations of a healthy diet with the microbiota utilizing a whole-diet approach are still scant. OBJECTIVES: To assess associations between healthy food choices and human gut microbiota composition, and to determine the strength of association with functional potential. METHODS: This population-based study sample consisted of 4930 participants (ages 25-74; 53% women) in the FINRISK 2002 study. Intakes of recommended foods were assessed using a food propensity questionnaire, and responses were transformed into healthy food choices (HFC) scores. Microbial diversity (alpha diversity) and compositional differences (beta diversity) and their associations with the HFC score and its components were assessed using linear regression. Multiple permutational multivariate ANOVAs were run from whole-metagenome shallow shotgun-sequenced samples. Associations between specific taxa and HFC were analyzed using linear regression. Functional associations were derived from Kyoto Encyclopedia of Genes and Genomes orthologies with linear regression models. RESULTS: Both microbial alpha diversity (ß/SD, 0.044; SE, 6.18 × 10-5; P = 2.21 × 10-3) and beta diversity (R2, 0.12; P ≤ 1.00 × 10-3) were associated with the HFC score. For alpha diversity, the strongest associations were observed for fiber-rich breads, poultry, fruits, and low-fat cheeses (all positive). For beta diversity, the most prominent associations were observed for vegetables, followed by berries and fruits. Genera with fiber-degrading and SCFA-producing capacities were positively associated with the HFC score. The HFC score was associated positively with functions such as SCFA metabolism and synthesis, and inversely with functions such as fatty acid biosynthesis and the sulfur relay system. CONCLUSIONS: Our results from a large, population-based survey confirm and extend findings of other, smaller-scale studies that plant- and fiber-rich dietary choices are associated with a more diverse and compositionally distinct microbiota, and with a greater potential to produce SCFAs.


Asunto(s)
Conducta de Elección , Dieta Saludable , Alimentos , Microbioma Gastrointestinal , Adulto , Anciano , Bacterias/clasificación , Encuestas sobre Dietas , Femenino , Humanos , Masculino , Persona de Mediana Edad
18.
Inflamm Bowel Dis ; 27(5): 603-616, 2021 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-33026068

RESUMEN

BACKGROUND: Many studies have investigated the role of the microbiome in inflammatory bowel disease (IBD), but few have focused on surgery specifically or its consequences on the metabolome that may differ by surgery type and require longitudinal sampling. Our objective was to characterize and contrast microbiome and metabolome changes after different surgeries for IBD, including ileocolonic resection and colectomy. METHODS: The UC San Diego IBD Biobank was used to prospectively collect 332 stool samples from 129 subjects (50 ulcerative colitis; 79 Crohn's disease). Of these, 21 with Crohn's disease had ileocolonic resections, and 17 had colectomies. We used shotgun metagenomics and untargeted liquid chromatography followed by tandem mass spectrometry metabolomics to characterize the microbiomes and metabolomes of these patients up to 24 months after the initial sampling. RESULTS: The species diversity and metabolite diversity both differed significantly among groups (species diversity: Mann-Whitney U test P value = 7.8e-17; metabolomics, P-value = 0.0043). Escherichia coli in particular expanded dramatically in relative abundance in subjects undergoing surgery. The species profile was better able to classify subjects according to surgery status than the metabolite profile (average precision 0.80 vs 0.68). CONCLUSIONS: Intestinal surgeries seem to reduce the diversity of the gut microbiome and metabolome in IBD patients, and these changes may persist. Surgery also further destabilizes the microbiome (but not the metabolome) over time, even relative to the previously established instability in the microbiome of IBD patients. These long-term effects and their consequences for health outcomes need to be studied in prospective longitudinal trials linked to microbiome-involved phenotypes.


Asunto(s)
Enfermedad de Crohn , Procedimientos Quirúrgicos del Sistema Digestivo , Microbioma Gastrointestinal , Enfermedad de Crohn/cirugía , Heces , Humanos , Metaboloma , Estudios Prospectivos
19.
J Exp Med ; 217(12)2020 12 07.
Artículo en Inglés | MEDLINE | ID: mdl-32880630

RESUMEN

Intestinal barrier leakage constitutes a potential therapeutic target for many inflammatory diseases and represents a disease progression marker during chronic viral infections. However, the causes of altered gut barrier remain mostly unknown. Using murine infection with lymphocytic choriomeningitis virus, we demonstrate that, in contrast to an acute viral strain, a persistent viral isolate leads to long-term viral replication in hematopoietic and mesenchymal cells, but not epithelial cells (IECs), in the intestine. Viral persistence drove sustained intestinal epithelial barrier leakage, which was characterized by increased paracellular flux of small molecules and was associated with enhanced colitis susceptibility. Type I IFN signaling caused tight junction dysregulation in IECs, promoted gut microbiome shifts and enhanced intestinal CD8 T cell responses. Notably, both type I IFN receptor blockade and CD8 T cell depletion prevented infection-induced barrier leakage. Our study demonstrates that infection with a virus that persistently replicates in the intestinal mucosa increases epithelial barrier permeability and reveals type I IFNs and CD8 T cells as causative factors of intestinal leakage during chronic infections.


Asunto(s)
Linfocitos T CD8-positivos/inmunología , Interferón Tipo I/metabolismo , Mucosa Intestinal/patología , Mucosa Intestinal/virología , Coriomeningitis Linfocítica/inmunología , Coriomeningitis Linfocítica/virología , Virus de la Coriomeningitis Linfocítica/fisiología , Animales , Anticuerpos/farmacología , Enfermedad Crónica , Clostridiales/fisiología , Colitis/complicaciones , Colitis/inmunología , Colitis/virología , Células Epiteliales/virología , Femenino , Firmicutes , Microbioma Gastrointestinal , Regulación de la Expresión Génica , Células Madre Hematopoyéticas/virología , Mucosa Intestinal/microbiología , Coriomeningitis Linfocítica/genética , Coriomeningitis Linfocítica/microbiología , Mesodermo/virología , Ratones Endogámicos C57BL , Permeabilidad , Transducción de Señal , Proteínas de Uniones Estrechas/genética , Proteínas de Uniones Estrechas/metabolismo
20.
J Am Heart Assoc ; 9(15): e016641, 2020 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-32691653

RESUMEN

Background Several small-scale animal studies have suggested that gut microbiota and blood pressure (BP) are linked. However, results from human studies remain scarce and conflicting. We wanted to elucidate the multivariable-adjusted association between gut metagenome and BP in a large, representative, well-phenotyped population sample. We performed a focused analysis to examine the previously reported inverse associations between sodium intake and Lactobacillus abundance and between Lactobacillus abundance and BP. Methods and Results We studied a population sample of 6953 Finns aged 25 to 74 years (mean age, 49.2±12.9 years; 54.9% women). The participants underwent a health examination, which included BP measurement, stool collection, and 24-hour urine sampling (N=829). Gut microbiota was analyzed using shallow shotgun metagenome sequencing. In age- and sex-adjusted models, the α (within-sample) and ß (between-sample) diversities of taxonomic composition were strongly related to BP indexes (P<0.001 for most). In multivariable-adjusted models, ß diversity was only associated with diastolic BP (P=0.032). However, we observed significant, mainly positive, associations between BP indexes and 45 microbial genera (P<0.05), of which 27 belong to the phylum Firmicutes. Interestingly, we found mostly negative associations between 19 distinct Lactobacillus species and BP indexes (P<0.05). Of these, greater abundance of the known probiotic Lactobacillus paracasei was associated with lower mean arterial pressure and lower dietary sodium intake (P<0.001 for both). Conclusions Although the associations between overall gut taxonomic composition and BP are weak, individuals with hypertension demonstrate changes in several genera. We demonstrate strong negative associations of certain Lactobacillus species with sodium intake and BP, highlighting the need for experimental studies.


Asunto(s)
Presión Sanguínea , Microbioma Gastrointestinal , Hipertensión/microbiología , Lactobacillus , Sodio en la Dieta/orina , Adulto , Anciano , Estudios de Cohortes , Femenino , Humanos , Masculino , Metagenoma , Persona de Mediana Edad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA