Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(42): 17083-17092, 2023 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-37820058

RESUMEN

A highly conductive and rationally constructed metal-organic framework (MOF)-derived metal phosphide with a carbonaceous nanostructure is a meticulous architecture toward the development of electrode materials for energy storage devices. Herein, we report a facile strategy to design and construct a new three-dimensional (3D) Cu-MOF via a solvent diffusion method at ambient temperature, which was authenticated by a single-crystal X-ray diffraction study, revealing a novel topology of (2,4,7)-connected three-nodal net named smm4. Nevertheless, the poor conductivity of pristine MOFs is a major bottleneck hindering their capacitance. To overcome this, we demonstrated an MOF-derived Cu3P/Cu@NC heterostructure via low-temperature phosphorization of Cu-MOF. The electronic and ionic diffusion kinetics in Cu3P/Cu@NC were improved due to the synergistic effects of the heterostructure. The as-prepared Cu3P/Cu@NC heterostructure electrode delivers a specific capacity of 540 C g-1 at 1 A g-1 with outstanding rate performance (190 C g-1 at 20 A g-1) and cycle stability (91% capacity retention after 10,000 cycles). Moreover, the assembled asymmetric solid-state supercapacitor (ASC) achieved a high energy density/power density of 45.5 Wh kg-1/7.98 kW kg-1 with a wide operating voltage (1.6 V). Long-term stable capacity retention (87.2%) was accomplished after 5000 cycles. These robust electrochemical performances suggest that the Cu3P/Cu@NC heterostructure is a suitable electrode material for supercapacitor applications.

2.
Inorg Chem ; 62(23): 8835-8845, 2023 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-37227374

RESUMEN

The development of a MOFs-derived multilevel hierarchy in a single step still remains a challenging task. Herein, we have synthesized novel Cu-MOF via a slow diffusion method at ambient temperature and further utilized it as a precursor source for MOF-derived multilevel hierarchy (Cu/CuxO@NC, x = 1 and 2). This studies suggest that the organic ligands served as a source of an N-doped carbon matrix encapsulated with metal oxide nanoparticles which were confirmed by various characterization techniques; further BET analysis reveals a surface area of 178.46 m2/g. The synthesized multilevel hierarchy was utilized as an electro-active material in a supercapacitor that achieved a specific capacitance of 546.6 F g-1 at a current density of 1 A g-1 with a higher cyclic retention of 91.81% after 10 000 GCD cycles. Furthermore, the ASC device was fabricated using Cu/CuxO@NC as the positive electrode and carbon black as the negative electrode and utilized to enlighten the commercially available LED bulb. The fabricated ASC device was further employed for a two-electrode study which achieved a specific capacitance of 68 F g-1 along with a comparable energy density of 13.6 Wh kg-1. Furthermore, the electrode material was also explored for the oxygen evolution reaction (OER) in an alkaline medium with a low overpotential of 170 mV along with a Tafel slope of 95 mV dec-1 having long-term stability. The MOF-derived material has high durability, chemical stability, and efficient electrochemical performance. This work provides some new thoughts for the design and preparation of a multilevel hierarchy (Cu/CuxO@NC) via a single precursor source in a single step and explored multifunctional applications in energy storage and an energy conversion system.

3.
Nanoscale ; 16(2): 868-878, 2024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38099850

RESUMEN

The rational construction of free-standing and flexible electrodes for application in electrochemical energy storage devices and next-generation supercapacitors is an emerging research focus. Herein, we prepared a redox-active ferrocene dicarboxylic acid (Fc)-based nickel metal-organic framework (MOF) on electrospun carbon nanofibers (NiFc-MOF@CNFs) via an in situ approach. This in situ approach avoided the aggregation of the MOF. The NiFc-MOF@CNF flexible electrode showed a high redox-active behavior owing to the presence of ferrocene and flexible carbon nanofibers, which led to unique properties, including high flexibility and lightweight. Furthermore, the prepared electrode was utilized in a supercapacitors (SC) without the use of any binder, which achieved a specific capacity of 460 C g-1 at 1 A g-1 with an excellent cyclic retention of 82.2% after 25 000 cycles and a good rate capability. A flexible asymmetric supercapacitor device was assembled, which delivered a high energy density of 56.25 W h kg-1 and a long-lasting cycling performance. Also, the prepared electrode could be used as a freestanding electrode in flexible devices at different bending angles. The obtained cyclic voltammetry curves showed negligible changes, indicating the high stability and good flexibility of the electrode. Thus, the use of the in situ strategy can lead to the uniform growth of redox-active MOFs or other porous materials on CNFs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA