Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Neuroimage ; 253: 119120, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35331867

RESUMEN

Emotional memories are preferentially consolidated during sleep, through the process of memory reactivation. Targeted memory reactivation (TMR) has been shown to boost memory consolidation during sleep, but its neural correlates remain unclear, particularly for emotional memories. Here, we aimed to examine how TMR of emotional material during slow wave sleep (SWS) impacts upon neural processing during a subsequent arousal rating task. Participants were trained on a spatial memory task including negative and neutral pictures paired with semantically matching sounds. The picture-sound pairs were rated for emotional arousal before and after the spatial memory task. Then, half of the sounds from each emotional category (negative and neutral) were cued during SWS. The next day, participants were retested on both the arousal rating and the spatial memory task inside an MRI scanner, followed by another retest session a week later. Memory consolidation and arousal processing did not differ between cued and non-cued items of either emotional category. We found increased responses to emotional stimuli in the amygdala and orbitofrontal cortex (OFC), and a cueing versus emotion interaction in the OFC, whereby cueing neutral stimuli led to an increase in OFC activity, while cueing negative stimuli led to decreased OFC activation. Interestingly, the effect of cueing on amygdala activation was modulated by time spent in REM sleep. We conclude that SWS TMR impacts OFC activity, while REM sleep plays a role in mediating the effect of such cueing on amygdala.


Asunto(s)
Consolidación de la Memoria , Sueño de Onda Lenta , Amígdala del Cerebelo/diagnóstico por imagen , Emociones/fisiología , Humanos , Memoria/fisiología , Consolidación de la Memoria/fisiología , Corteza Prefrontal , Sueño/fisiología , Sueño de Onda Lenta/fisiología
2.
Commun Biol ; 4(1): 404, 2021 03 25.
Artículo en Inglés | MEDLINE | ID: mdl-33767319

RESUMEN

A growing body of evidence suggests that sleep can help to decouple the memory of emotional experiences from their associated affective charge. This process is thought to rely on the spontaneous reactivation of emotional memories during sleep, though it is still unclear which sleep stage is optimal for such reactivation. We examined this question by explicitly manipulating memory reactivation in both rapid-eye movement sleep (REM) and slow-wave sleep (SWS) using targeted memory reactivation (TMR) and testing the impact of this manipulation on habituation of subjective arousal responses across a night. Our results show that TMR during REM, but not SWS significantly decreased subjective arousal, and this effect is driven by the more negative stimuli. These results support one aspect of the sleep to forget, sleep to remember (SFSR) hypothesis which proposes that emotional memory reactivation during REM sleep underlies sleep-dependent habituation.


Asunto(s)
Nivel de Alerta/fisiología , Recuerdo Mental/fisiología , Sueño REM/fisiología , Sueño de Onda Lenta/fisiología , Adulto , Emociones , Femenino , Humanos , Memoria , Adulto Joven
4.
Front Psychol ; 6: 1439, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26483709

RESUMEN

While non-REM (NREM) sleep has been strongly implicated in the reactivation and consolidation of memory traces, the role of rapid-eye movement (REM) sleep remains unclear. A growing body of research on humans and animals provide behavioral evidence for a role of REM sleep in the strengthening and modulation of emotional memories. Theta activity-which describes low frequency oscillations in the local field potential within the hippocampus, amygdala and neocortex-is a prominent feature of both wake and REM sleep in humans and rodents. Theta coherence between the hippocampus and amygdala drives large-scale pontine-geniculo-occipital (PGO) waves, the density of which predicts increases in plasticity-related gene expression. This could potentially facilitate the processing of emotional memory traces within the hippocampus during REM sleep. Further, the timing of hippocampal activity in relation to theta phase is vital in determining subsequent potentiation of neuronal activity. This could allow the emotionally modulated strengthening of novel and gradual weakening of consolidated hippocampal memory traces during REM sleep. Hippocampal theta activity is also correlated with REM sleep levels of achetylcholine - which is thought to reduce hippocampal inputs in the neocortex. The additional low levels of noradrenaline during REM sleep, which facilitate feedback within the neocortex, could allow the integration of novel memory traces previously consolidated during NREM sleep. We therefore propose that REM sleep mediates the prioritized processing of emotional memories within the hippocampus, the integration of previously consolidated memory traces within the neocortex, as well as the disengagement of consolidated neocortical memory traces from the hippocampus.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA