Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Immunol ; 210(11): 1717-1727, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37058116

RESUMEN

IL-6 plays a fundamental role in T cell differentiation and is strictly controlled by surface expression and shedding of IL-6R. IL-6 also acts on other cells that might affect T cell maturation. To study the impact of cell-autonomous and uncontrolled IL-6 signaling in T cells, we generated mice with a constitutively active IL-6R gp130 chain (Lgp130) expressed either in all T cells (Lgp130 × CD4Cre mice) or inducible in CD4+ T cells (Lgp130 × CD4CreERT2 mice). Lgp130 × CD4Cre mice accumulated activated T cells, including TH17 cells, in the lung, resulting in severe inflammation. Tamoxifen treatment of Lgp130 × CD4CreERT2 mice caused Lgp130 expression in 40-50% of CD4+ T cells, but mice developed lung disease only after several months. Lgp130+ CD4+ T cells were also enriched for TH17 cells; however, there was concomitant expansion of Lgp130- regulatory T cells, which likely restricted pathologic Lgp130+ T cells. In vitro, constitutive gp130 signaling in T cells enhanced but was not sufficient for TH17 cell differentiation. Augmented TH17 cell development of Lgp130+ T cells was also observed in Lgp130 × CD4CreERT2 mice infected with Staphylococcus aureus, but gp130 activation did not interfere with formation of TH1 cells against Listeria monocytogenes. Lgp130+ CD4+ T cells acquired a memory T cell phenotype and persisted in high numbers as a polyclonal T cell population in lymphoid and peripheral tissues, but we did not observe T cell lymphoma formation. In conclusion, cell-autonomous gp130 signaling alters T cell differentiation. Although gp130 signaling is not sufficient for TH17 cell differentiation, it still promotes accumulation of activated T cells in the lung that cause tissue inflammation.


Asunto(s)
Neumonía , Células Th17 , Animales , Ratones , Diferenciación Celular , Receptor gp130 de Citocinas/metabolismo , Inflamación , Interleucina-6/metabolismo , Pulmón/metabolismo , Células TH1/metabolismo , Células Th17/metabolismo
2.
Nature ; 559(7713): 259-263, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29973719

RESUMEN

The spread of antimicrobial resistance has become a serious public health concern, making once-treatable diseases deadly again and undermining the achievements of modern medicine1,2. Drug combinations can help to fight multi-drug-resistant bacterial infections, yet they are largely unexplored and rarely used in clinics. Here we profile almost 3,000 dose-resolved combinations of antibiotics, human-targeted drugs and food additives in six strains from three Gram-negative pathogens-Escherichia coli, Salmonella enterica serovar Typhimurium and Pseudomonas aeruginosa-to identify general principles for antibacterial drug combinations and understand their potential. Despite the phylogenetic relatedness of the three species, more than 70% of the drug-drug interactions that we detected are species-specific and 20% display strain specificity, revealing a large potential for narrow-spectrum therapies. Overall, antagonisms are more common than synergies and occur almost exclusively between drugs that target different cellular processes, whereas synergies are more conserved and are enriched in drugs that target the same process. We provide mechanistic insights into this dichotomy and further dissect the interactions of the food additive vanillin. Finally, we demonstrate that several synergies are effective against multi-drug-resistant clinical isolates in vitro and during infections of the larvae of the greater wax moth Galleria mellonella, with one reverting resistance to the last-resort antibiotic colistin.


Asunto(s)
Antibacterianos/farmacología , Bacterias Gramnegativas/clasificación , Bacterias Gramnegativas/efectos de los fármacos , Animales , Benzaldehídos/farmacología , Colistina/farmacología , Combinación de Medicamentos , Interacciones Farmacológicas , Farmacorresistencia Microbiana/efectos de los fármacos , Farmacorresistencia Bacteriana Múltiple/efectos de los fármacos , Sinergismo Farmacológico , Escherichia coli/clasificación , Escherichia coli/efectos de los fármacos , Aditivos Alimentarios/farmacología , Larva/efectos de los fármacos , Larva/microbiología , Pruebas de Sensibilidad Microbiana , Mariposas Nocturnas/crecimiento & desarrollo , Mariposas Nocturnas/microbiología , Filogenia , Pseudomonas aeruginosa/clasificación , Pseudomonas aeruginosa/efectos de los fármacos , Salmonella typhimurium/clasificación , Salmonella typhimurium/efectos de los fármacos , Especificidad de la Especie
3.
Environ Technol ; 34(9-12): 1329-39, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24191465

RESUMEN

The performance of a hydrophilic polyester tubular pervaporative membrane in treating high-salinity water for irrigation was investigated. The membrane was filled with contaminated water and placed in air, soil or sand media. When this occurs water diffuses through the tube, trapping salts within the tube. Sorption and permeation tests and scanning electron microscopy (SEM) were used to assess salt rejection and permeate flux through the tubular membrane when surrounded by deionized water, air, top soil or silver sand. Mean water uptake by the membrane was 0.5 L x m(-2) at room temperature and the water diffusion coefficient was 3.8 x 10(-4) cm2 x s(-1). The permeate flux across the membrane was 7.9 x 10(-3) L(m(-2) x h(-1)) in sand and 5.6 x 10(-2) in air. The rejection of sodium chloride by the tubular membrane in sand was 99.8% or above under all tested conditions. However, when the tube was filled with sodium chloride solution and placed in deionized water, salt was observed to permeate the membrane. SEM images confirmed that variable amounts of sodium chloride crystals were retained inside the membrane walls. These results support the potential application of such a tubular pervaporative membrane for irrigation applications using saline waters; however there may be reduced salt rejection under waterlogged soil conditions.


Asunto(s)
Fraccionamiento Químico/métodos , Poliésteres/química , Sales (Química)/química , Purificación del Agua/métodos , Agua/química , Adsorción , Fraccionamiento Químico/instrumentación , Difusión , Membranas Artificiales , Sales (Química)/aislamiento & purificación , Dióxido de Silicio , Suelo , Purificación del Agua/instrumentación
4.
Eur J Hum Genet ; 31(12): 1430-1439, 2023 12.
Artículo en Inglés | MEDLINE | ID: mdl-37673932

RESUMEN

Anomalous pulmonary venous return (APVR) frequently occurs with other congenital heart defects (CHDs) or extra-cardiac anomalies. While some genetic causes have been identified, the optimal approach to genetic testing in individuals with APVR remains uncertain, and the etiology of most cases of APVR is unclear. Here, we analyzed molecular data from 49 individuals to determine the diagnostic yield of clinical exome sequencing (ES) for non-isolated APVR. A definitive or probable diagnosis was made for 8 of those individuals yielding a diagnostic efficacy rate of 16.3%. We then analyzed molecular data from 62 individuals with APVR accrued from three databases to identify novel APVR genes. Based on data from this analysis, published case reports, mouse models, and/or similarity to known APVR genes as revealed by a machine learning algorithm, we identified 3 genes-EFTUD2, NAA15, and NKX2-1-for which there is sufficient evidence to support phenotypic expansion to include APVR. We also provide evidence that 3 recurrent copy number variants contribute to the development of APVR: proximal 1q21.1 microdeletions involving RBM8A and PDZK1, recurrent BP1-BP2 15q11.2 deletions, and central 22q11.2 deletions involving CRKL. Our results suggest that ES and chromosomal microarray analysis (or genome sequencing) should be considered for individuals with non-isolated APVR for whom a genetic etiology has not been identified, and that genetic testing to identify an independent genetic etiology of APVR is not warranted in individuals with EFTUD2-, NAA15-, and NKX2-1-related disorders.


Asunto(s)
Anomalías Múltiples , Cardiopatías Congénitas , Síndrome de Cimitarra , Animales , Ratones , Síndrome de Cimitarra/genética , Secuenciación del Exoma , Anomalías Múltiples/genética , Deleción Cromosómica , Pruebas Genéticas , Cardiopatías Congénitas/diagnóstico , Cardiopatías Congénitas/genética , Proteínas de Unión al ARN/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA