Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
J Chem Phys ; 146(8): 084504, 2017 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-28249415

RESUMEN

A combination of theory, X-ray diffraction (XRD) and extended x-ray absorption fine structure (EXAFS) are used to probe the hydration structure of aqueous Na+. The high spatial resolution of the XRD measurements corresponds to Qmax = 24 Å-1 while the first-reported Na K-edge EXAFS measurements have a spatial resolution corresponding to 2k = Qmax = 16 Å-1. Both provide an accurate measure of the shape and position of the first peak in the Na-O pair distribution function, gNaO(r). The measured Na-O distances of 2.384 ± 0.003 Å (XRD) and 2.37 ± 0.024 Å (EXAFS) are in excellent agreement. These measurements show a much shorter Na-O distance than generally reported in the experimental literature (Na-Oavg ∼ 2.44 Å) although the current measurements are in agreement with recent neutron diffraction measurements. The measured Na-O coordination number from XRD is 5.5 ± 0.3. The measured structure is compared with both classical and first-principles density functional theory (DFT) simulations. Both of the DFT-based methods, revPBE and BLYP, predict a Na-O distance that is too long by about 0.05 Å with respect to the experimental data (EXAFS and XRD). The inclusion of dispersion interactions (-D3 and -D2) significantly worsens the agreement with experiment by further increasing the Na-O distance by 0.07 Å. In contrast, the use of a classical Na-O Lennard-Jones potential with SPC/E water accurately predicts the Na-O distance as 2.39 Å although the Na-O peak is over-structured with respect to experiment.

2.
J Synchrotron Radiat ; 23(2): 385-94, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26917124

RESUMEN

JUNGFRAU (adJUstiNg Gain detector FoR the Aramis User station) is a two-dimensional hybrid pixel detector for photon science applications at free-electron lasers and synchrotron light sources. The JUNGFRAU 0.4 prototype presented here is specifically geared towards low-noise performance and hence soft X-ray detection. The design, geometry and readout architecture of JUNGFRAU 0.4 correspond to those of other JUNGFRAU pixel detectors, which are charge-integrating detectors with 75 µm × 75 µm pixels. Main characteristics of JUNGFRAU 0.4 are its fixed gain and r.m.s. noise of as low as 27 e(-) electronic noise charge (<100 eV) with no active cooling. The 48 × 48 pixels JUNGFRAU 0.4 prototype can be combined with a charge-sharing suppression mask directly placed on the sensor, which keeps photons from hitting the charge-sharing regions of the pixels. The mask consists of a 150 µm tungsten sheet, in which 28 µm-diameter holes are laser-drilled. The mask is aligned with the pixels. The noise and gain characterization, and single-photon detection as low as 1.2 keV are shown. The performance of JUNGFRAU 0.4 without the mask and also in the charge-sharing suppression configuration (with the mask, with a `software mask' or a `cluster finding' algorithm) is tested, compared and evaluated, in particular with respect to the removal of the charge-sharing contribution in the spectra, the detection efficiency and the photon rate capability. Energy-dispersive and imaging experiments with fluorescence X-ray irradiation from an X-ray tube and a synchrotron light source are successfully demonstrated with an r.m.s. energy resolution of 20% (no mask) and 14% (with the mask) at 1.2 keV and of 5% at 13.3 keV. The performance evaluation of the JUNGFRAU 0.4 prototype suggests that this detection system could be the starting point for a future detector development effort for either applications in the soft X-ray energy regime or for an energy-dispersive detection system.

3.
Phys Chem Chem Phys ; 17(5): 3326-31, 2015 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-25523824

RESUMEN

Phosphine metal-organic frameworks (P-MOFs) are crystalline porous coordination polymers that contain phosphorus functional groups within their pores. We present the use of X-ray absorption spectroscopy (XAS) at the P K-edge to determine the phosphine to phosphine oxide ratio in two P-MOFs with MIL-101 topology. The phosphorus oxidation state is of particular interest as it strongly influences the coordination affinity of these materials for transition metals. This method can determine the oxidation state of phosphorus even when the material contains paramagnetic nuclei, differently from NMR spectroscopy. We observed that phosphine in LSK-15 accounts for 72 ± 4% of the total phosphorus groups and that LSK-12 contains only phosphine oxide.


Asunto(s)
Compuestos Organometálicos/química , Fosfinas/química , Espectroscopía de Absorción de Rayos X , Espectroscopía de Resonancia Magnética , Óxidos/química , Fósforo/química , Polímeros/química , Porosidad , Difracción de Rayos X
4.
J Phys Chem A ; 117(35): 8368-76, 2013 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-23924171

RESUMEN

Sulfur K-edge X-ray absorption spectroscopy (XAS) has been used to distinguish between aqueous and solid sulfates and to investigate changes in their speciation. Data have been collected for tetrahedrally coordinated S in K2SO4 and KHSO4 solids and aqueous solutions. With a first qualitative analysis of the X-ray absorption near-edge structure (XANES) spectra, it has been observed that those for solids are much more structured and distinguishable from those of aqueous solutions. The protonation state has a strong effect on the white line of sulfates and has been assigned to the different charge delocalization in the samples, the effect of the solvating water molecules and multiple scattering effects. In the extended X-ray absorption fine structure (EXAFS) spectra, the backscattering from the first O shell dominated the EXAFS fine structure function, χ(k), but the nonlinear multiple scattering contributions occurring in the first coordination shell are significant and must be considered in the EXAFS analysis. The intensity of these contributions strongly depend on the symmetry of the system. For a distorted tetrahedron, the intensity of the multiple scattering contributions is less than that found in a regular tetrahedron. The FEFF code has been used to model the contributions of the multiple-scattering processes. The observed experimental evidence in the XAS data can be used to distinguish between sulfates in solids and liquids. This is applicable to many chemical, geochemical, and biological systems.

5.
Rev Sci Instrum ; 84(3): 035101, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23556846

RESUMEN

A Knudsen cell flow reactor was coupled to an online gas phase source of the short-lived radioactive tracer (13)N to study the adsorption of nitrogen oxides on ice at temperatures relevant for the upper troposphere. This novel approach has several benefits over the conventional coupling of a Knudsen cell with a mass spectrometer. Experiments at lower partial pressures close to atmospheric conditions are possible. The uptake to the substrate is a direct observable of the experiment. Operation of the experiment in continuous or pulse mode allows to retrieve steady state uptake kinetics and more details of adsorption and desorption kinetics.


Asunto(s)
Monitoreo del Ambiente/instrumentación , Gases/análisis , Isótopos de Nitrógeno/aislamiento & purificación , Adsorción , Atmósfera , Monitoreo del Ambiente/métodos , Diseño de Equipo , Gases/química , Hielo , Cinética , Isótopos de Nitrógeno/análisis , Óxidos de Nitrógeno/química , Presión , Temperatura , Termodinámica , Factores de Tiempo
6.
Rev Sci Instrum ; 81(11): 113706, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-21133477

RESUMEN

A new in situ cell to study phase transitions and chemical processes on individual aerosol particles in the x-ray transmission microscope at the PolLux beamline of the Swiss light source has been built. The cell is machined from stainless steel and aluminum components and is designed to be used in the standard mount of the microscope without need of complicated rearrangements of the microscope. The cell consists of two parts, a back part which contains connections for the gas supply, heating, cooling devices, and temperature measurement. The second part is a removable clip, which hosts the sample. This clip can be easily exchanged and brought into a sampling unit for aerosol particles. Currently, the cell can be operated at temperatures ranging from -40 to +50 °C. The function of the cell is demonstrated using two systems of submicron size: inorganic sodium bromide aerosols and soot originating from a diesel passenger car. For the sodium bromide we demonstrate how phase transitions can be studied in these systems and that O1s spectra from aqueous sodium bromide solution can be taken from submicron sized particles. For the case of soot, we demonstrate that the uptake of water onto individual soot particles can be studied.

7.
Phys Chem Chem Phys ; 11(36): 7921-30, 2009 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-19727499

RESUMEN

The heterogeneous reaction of HNO3 with mineral dust aerosol (Arizona Test Dust) was studied in an aerosol flow tube at atmospherically relevant conditions (298 K, approximately 1 atm, 6-60% RH) and using radioactively labelled HNO3. The uptake of nitric acid was found to depend on HNO3 and H2O concentrations in the gas phase. A reaction mechanism is suggested to describe the heterogeneous interaction, involving Langmuir type adsorption and surface reaction. This mechanism is incorporated in a flux based aerosol kinetic model framework that is able to reproduce the observations within the range of experimental conditions. The experiments show that the reactive surface sites of the relatively calcium poor, but silicate rich dust surface are efficiently depleted at higher HNO3 concentrations in the gas phase or longer exposure times. A set of kinetic parameters is extracted from the data, which can be used to calculate uptake coefficients as function of time, concentration and humidity for use in atmospheric chemistry models to improve especially the representation of the effects of relative humidity on dust aging and to allow following dust aging with time.


Asunto(s)
Aerosoles/química , Atmósfera/análisis , Atmósfera/química , Polvo/análisis , Minerales/química , Modelos Químicos , Material Particulado/química , Simulación por Computador , Gases/química , Cinética , Tamaño de la Partícula , Reología/métodos
8.
Environ Sci Technol ; 43(14): 5339-44, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19708363

RESUMEN

Diesel and wood combustion are major sources of carbonaceous particles in the atmosphere. It is very hard to distinguish between the two sources by looking at soot particle morphology, but clear differences in the chemical structure of single particles are revealed by C(1s) NEXAFS (near edge X-ray absorption fine structure) microspectroscopy. Soot from diesel combustion has a dominant spectral signature at approximately 285 eV from aromatic pi-bonds, whereas soot from wood combustion has the strongest signature at approximately 287 eV from phenolic carbon bonds. To investigate if it is possible to use these signatures for source apportionment purposes, we collected atmospheric samples with either diesel or wood combustion as a dominant particle source. No spectra obtained from the atmospheric particles completely matched the emission spectra. Especially particles from the wood dominated location underwent large modifications; the phenolic spectral signature at approximately 287 eV is greatly suppressed and surpassed by the peak attributed to the aromatic carbon groups at approximately 285 eV. Comparison with spectra from diesel soot samples experimentally aged with ozone show that very fast modification of the carbon structure of soot particles occurs as soon as they enter the atmosphere. Source attribution of single soot particles with microspectroscopy is thus hardly possible, but NEXAFS remains a powerful tool to study aging effects.


Asunto(s)
Contaminantes Atmosféricos/química , Atmósfera/química , Gasolina , Material Particulado/química , Humo , Hollín/química , Carbono/química , Monitoreo del Ambiente , Humanos , Tamaño de la Partícula , Madera , Rayos X
9.
Rev Sci Instrum ; 79(11): 113704, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19045892

RESUMEN

We report on the successful installation and operation of a scanning transmission x-ray microspectroscope (STXM) at the PolLux facility at the Swiss Light Source. This integration of an advanced STXM with improved sample handling capabilities and a novel beamline provides unique capabilities. PolLux uses linearly or circularly polarized x-rays from a bending magnet with an extended photon energy range (200-1400 eV). It is therefore well suited to determine a sample's quantitative chemical composition, molecular orientation, or thickness of organic as well as condensed matter materials. The local magnetic state of magnetic thin films is accessible through fast helicity switching by steering the electron beam off axis through the bending magnet. Ex vacuo girder movers allow fast and highly reproducible (<1 microm) alignment of the instrument with respect to the photon beam. The present spatial resolution is approximately 20 nm, limited by the zone plates utilized. The instrument has the stability and positional resolution to operate with much higher resolution optics as it becomes available. In addition to characterization experiments, we present several typical examples from materials research and environmental science to exemplify the capabilities.

10.
J Phys Chem A ; 111(20): 4312-21, 2007 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-17461554

RESUMEN

Bromine released from sea-salt aerosols and seawater ice is known for its high chemical reactivity. Previous studies have suggested that its availability to the gas-phase could be enhanced by segregation processes increasing Br concentration on the aerosol surface as compared to the bulk. However, little is known about the composition within the near-surface region, that is, the outermost approximately 100 monolayers. We used Rutherford backscattering spectrometry (RBS) to measure Br concentration profiles to a depth of about 750 nm of Br-doped NaCl single crystals to characterize the thermodynamics and kinetics of Br segregation to the near-surface region in moist air. These experiments were carried out on cleavage planes of melt-grown and of annealed solution-grown crystals at room temperature and relative humidities (RH) too low for formation of a stable liquid phase. Segregation of Br was below the detection limit on melt-grown crystals with Br/Cl = 0.01. In the case of annealed solution-grown crystals with Br/Cl = 0.002, average segregations of (0.24 +/- 0.11) x 10(15) and (0.42 +/- 0.12) x 10(15) Br atoms cm-2 were observed at 50% and 65% RH, respectively. No segregation was found at 20% RH. The observed Br segregation can be explained by the formation of an adsorbed liquid layer (depending on crystal surface properties and relative humidity) and preferential, diffusion-limited dissolution of Br into this layer according to the partition coefficient of Br between aqueous and solid NaCl. The thickness of the adsorbed liquid layer, which depends on crystal surface geometry and on relative humidity, can be estimated to range from 4 to at most 59 nm on the basis of measured Br concentrations and partition coefficients. Applying this concept of partitioning to natural sea salt suggests a Br/Cl molar ratio of up to 0.2 in adsorbed surface water of crystallized natural aerosol particles compared to about 0.0015 in seawater. This would have a major impact on heterogeneous reactions on sea-salt particles under dry conditions such as in the freeze-dried Arctic boundary layer.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA