Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Artículo en Inglés | MEDLINE | ID: mdl-39320553

RESUMEN

PURPOSE: Fragile X syndrome (FXS) is a neurodevelopmental disorder, caused by an CGG repeat expansion (FM, > 200 CGG) in the fragile X messenger ribonucleoprotein 1 (FMR1) gene. Female carriers of a premutation (PM; 55-200 CGG) can transmit the PM allele, which, depending on the CGG allele size, can expand to an allele in the FM range in the offspring. METHODS: Carrier screening for FMR1 PM is not available in Thailand. This study aimed to investigate the prevalence of PM carriers among Thai reproductive women at the tertiary hospital. A total of 1250 females participated in this study; ages ranged from 20 to 45 years, mean of 30 years (S.D. = 6.27). RESULTS: Two carriers of a premutation allele, with 32,62 and 32,69 CGG repeats respectively, were identified. This corresponds to 1 in 600 women or 0.17% of the population. Further, three women carrying a gray zone allele (45-54 CGG repeats) were identified (29,51; 29,49; and 30,47 CGG repeats) which equals to 1:400 women or 0.25% of the population. No FM case was detected. CONCLUSIONS: This study heightens the importance of PM carrier screening of women of reproductive age, particularly for the higher risk of developing fragile X-associated primary ovarian insufficiency (FXPOI). Early identification of PM carrier status enhances family planning and fecundity alternatives and improves reproductive health outcomes leading to a better life.

2.
Int J Mol Sci ; 25(15)2024 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-39125677

RESUMEN

In this study, the potential role and interaction of the APOε and KLOTHO genes on the penetrance of fragile X-associated tremor/ataxia syndrome (FXTAS) and on the IQ trajectory were investigated. FXTAS was diagnosed based on molecular, clinical and radiological criteria. Males with the premutation (PM) over 50 years, 165 with and 34 without an FXTAS diagnosis, were included in this study and were compared based on their APO (ε2-ε3-ε4) and KLOTHO variant (KL-VS) genotypes. The effect of APOε4 on FXTAS stage and on diagnosis did not differ significantly by KL-VS genotype with interaction effect p = 0.662 and p = 0.91, respectively. In the FXTAS individuals with an APOε2 allele, a marginal significance was observed towards a larger decline in verbal IQ (VIQ) in individuals with an APOε4 allele compared to those without an APOε4 allele (p = 0.071). In conclusion, our findings suggest that the APOε4 and KL-VS genotypes alone or through their interaction effect do not appear to predispose to either FXTAS diagnosis or stage in male carriers of the PM allele. A further study is needed to establish the trend of IQ decline in the FXTAS individuals who carry APOε4 with APOε2 compared to those without APOε4.


Asunto(s)
Ataxia , Síndrome del Cromosoma X Frágil , Glucuronidasa , Proteínas Klotho , Temblor , Anciano , Anciano de 80 o más Años , Humanos , Masculino , Persona de Mediana Edad , Alelos , Apolipoproteínas E/genética , Ataxia/genética , Síndrome del Cromosoma X Frágil/genética , Predisposición Genética a la Enfermedad , Genotipo , Glucuronidasa/genética , Penetrancia , Temblor/genética
3.
Cells ; 12(13)2023 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-37443745

RESUMEN

Carriers of the FMR1 premutation (PM) allele are at risk of one or more clinical conditions referred to as FX premutation-associated conditions (FXPAC). Since the FMR1 gene is on the X chromosome, the activation ratio (AR) may impact the risk, age of onset, progression, and severity of these conditions. The aim of this study was to evaluate the reliability of AR measured using different approaches and to investigate potential correlations with clinical outcomes. Molecular and clinical assessments were obtained for 30 PM female participants, and AR was assessed using both Southern blot analysis (AR-Sb) and methylation PCR (AR-mPCR). Higher ARs were associated with lower FMR1 transcript levels for any given repeat length. The higher AR-Sb was significantly associated with performance, verbal, and full-scale IQ scores, confirming previous reports. However, the AR-mPCR was not significantly associated (p > 0.05) with these measures. Similarly, the odds of depression and the number of medical conditions were correlated with higher AR-Sb but not correlated with a higher AR-mPCR. This study suggests that AR-Sb may be a more reliable measure of the AR in female carriers of PM alleles. However, further studies are warranted in a larger sample size to fully evaluate the methylation status in these participants and how it may affect the clinical phenotype.


Asunto(s)
Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil , Femenino , Animales , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Reproducibilidad de los Resultados , Heterocigoto , Metilación , Alelos
4.
Sci Rep ; 13(1): 7050, 2023 04 29.
Artículo en Inglés | MEDLINE | ID: mdl-37120588

RESUMEN

Carriers of a premutation allele (PM) in the FMR1 gene are at risk of developing a number of Fragile X premutation asssociated disorders (FXPAC), including Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-associated neuropsychiatric disorders (FXAND). We have recently reported somatic CGG allele expansion in female PM; however, its clinical significance remains unclear. The aim of this study was to examine the potential clinical association between somatic FMR1 allele instability and PM associated disorders. Participants comprised of 424 female PM carriers age 0.3- 90 years. FMR1 molecular measures and clinical information on the presence of medical conditions, were determined for all subjects for primary analysis. Two sub-groups of participants (age ≥ 25, N = 377 and age ≥ 50, N = 134) were used in the analysis related to presence of FXPOI and FXTAS, respectively. Among all participants (N = 424), the degree of instability (expansion) was significantly higher (median 2.5 vs 2.0, P = 0.026) in participants with a diagnosis of attention deficit hyperactivity disorder (ADHD) compared to those without. FMR1 mRNA expression was significantly higher in subjects with any psychiatric disorder diagnosis (P = 0.0017); specifically, in those with ADHD (P = 0.009), and with depression (P = 0.025). Somatic FMR1 expansion was associated with the presence of ADHD in female PM and FMR1 mRNA levels were associated with the presence of mental health disorders. The findings of our research are innovative as they suggest a potential role of the CGG expansion in the clinical phenotype of PM and may potentially guide clinical prognosis and management.


Asunto(s)
Síndrome del Cromosoma X Frágil , Expansión de Repetición de Trinucleótido , Femenino , Humanos , Alelos , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Síndrome del Cromosoma X Frágil/genética , ARN Mensajero , Lactante , Preescolar , Niño , Adolescente , Adulto Joven , Adulto , Persona de Mediana Edad , Anciano , Anciano de 80 o más Años
5.
Cells ; 12(17)2023 08 23.
Artículo en Inglés | MEDLINE | ID: mdl-37681866

RESUMEN

The course of pathophysiological mechanisms involved in fragile X-associated tremor/ataxia syndrome (FXTAS) remains largely unknown. Previous proteomics and metabolomics studies conducted in blood samples collected from FMR1 premutation carriers with FXTAS reported abnormalities in energy metabolism, and precursors of gluconeogenesis showed significant changes in plasma expression levels in FMR1 premutation carriers who developed FXTAS. We conducted an analysis of postmortem human brain tissues from 44 donors, 25 brains with FXTAS, and 19 matched controls. We quantified the metabolite relative abundance in the inferior temporal gyrus and the cerebellum using untargeted mass spectrometry (MS)-based metabolomics. We investigated how the metabolite type and abundance relate to the number of cytosine-guanine-guanine (CGG) repeats, to markers of neurodegeneration, and to the symptoms of FXTAS. A metabolomic analysis identified 191 primary metabolites, the data were log-transformed and normalized prior to the analysis, and the relative abundance was compared between the groups. The changes in the relative abundance of a set of metabolites were region-specific with some overlapping results; 22 metabolites showed alterations in the inferior temporal gyrus, while 21 showed differences in the cerebellum. The relative abundance of cytidine was decreased in the inferior temporal gyrus, and a lower abundance was found in the cases with larger CGG expansions; oleamide was significantly decreased in the cerebellum. The abundance of 11 metabolites was influenced by changes in the CGG repeat number. A histological evaluation found an association between the presence of microhemorrhages in the inferior temporal gyrus and a lower abundance of 2,5-dihydroxypyrazine. Our study identified alterations in the metabolites involved in the oxidative-stress response and bioenergetics in the brains of individuals with FXTAS. Significant changes in the abundance of cytidine and oleamide suggest their potential as biomarkers and therapeutic targets for FXTAS.


Asunto(s)
Encéfalo , Temblor , Humanos , Citidina , Citosina , Guanina , Metabolómica , Ataxia/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética
6.
Cells ; 12(24)2023 12 05.
Artículo en Inglés | MEDLINE | ID: mdl-38132093

RESUMEN

Fragile X (FMR1) premutation is a common mutation that affects about 1 in 200 females and 1 in 450 males and can lead to the development of fragile-X-associated tremor/ataxia syndrome (FXTAS). Although there is no targeted, proven treatment for FXTAS, research suggests that sulforaphane, an antioxidant present in cruciferous vegetables, can enhance mitochondrial function and maintain redox balance in the dermal fibroblasts of individuals with FXTAS, potentially leading to improved cognitive function. In a 24-week open-label trial involving 15 adults aged 60-88 with FXTAS, 11 participants successfully completed the study, demonstrating the safety and tolerability of sulforaphane. Clinical outcomes and biomarkers were measured to elucidate the effects of sulforaphane. While there were nominal improvements in multiple clinical measures, they were not significantly different after correction for multiple comparisons. PBMC energetic measures showed that the level of citrate synthase was higher after sulforaphane treatment, resulting in lower ATP production. The ratio of complex I to complex II showed positive correlations with the MoCA and BDS scores. Several mitochondrial biomarkers showed increased activity and quantity and were correlated with clinical improvements.


Asunto(s)
Leucocitos Mononucleares , Temblor , Adulto , Masculino , Femenino , Humanos , Temblor/tratamiento farmacológico , Temblor/genética , Temblor/complicaciones , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Ataxia/tratamiento farmacológico , Ataxia/genética , Biomarcadores
7.
Sci Rep ; 12(1): 10419, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35729184

RESUMEN

The fragile X mental retardation (FMR1) gene contains an expansion-prone CGG repeat within its 5' UTR. Alleles with 55-200 repeats are known as premutation (PM) alleles and confer risk for one or more of the FMR1 premutation (PM) disorders that include Fragile X-associated Tremor/Ataxia Syndrome (FXTAS), Fragile X-associated Primary Ovarian Insufficiency (FXPOI), and Fragile X-Associated Neuropsychiatric Disorders (FXAND). PM alleles expand on intergenerational transmission, with the children of PM mothers being at risk of inheriting alleles with > 200 CGG repeats (full mutation FM) alleles) and thus developing Fragile X Syndrome (FXS). PM alleles can be somatically unstable. This can lead to individuals being mosaic for multiple size alleles. Here, we describe a detailed evaluation of somatic mosaicism in a large cohort of female PM carriers and show that 94% display some evidence of somatic instability with the presence of a series of expanded alleles that differ from the next allele by a single repeat unit. Using two different metrics for instability that we have developed, we show that, as with intergenerational instability, there is a direct relationship between the extent of somatic expansion and the number of CGG repeats in the originally inherited allele and an inverse relationship with the number of AGG interruptions. Expansions are progressive as evidenced by a positive correlation with age and by examination of blood samples from the same individual taken at different time points. Our data also suggests the existence of other genetic or environmental factors that affect the extent of somatic expansion. Importantly, the analysis of candidate single nucleotide polymorphisms (SNPs) suggests that two DNA repair factors, FAN1 and MSH3, may be modifiers of somatic expansion risk in the PM population as observed in other repeat expansion disorders.


Asunto(s)
Síndrome del Cromosoma X Frágil , Discapacidad Intelectual , Regiones no Traducidas 5' , Alelos , Ataxia , Niño , Femenino , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/genética , Proteína de la Discapacidad Intelectual del Síndrome del Cromosoma X Frágil/metabolismo , Síndrome del Cromosoma X Frágil/genética , Humanos , Discapacidad Intelectual/genética , Mutación , Transactivadores/genética , Temblor , Expansión de Repetición de Trinucleótido
8.
Brain Sci ; 9(3)2019 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-30832215

RESUMEN

The fragile X-related disorders (FXDs) are a group of clinical conditions that result primarily from an unusual mutation, the expansion of a CGG-repeat tract in exon 1 of the FMR1 gene. Mouse models are proving useful for understanding many aspects of disease pathology in these disorders. There is also reason to think that such models may be useful for understanding the molecular basis of the unusual mutation responsible for these disorders. This review will discuss what has been learnt to date about mechanisms of repeat instability from a knock-in FXD mouse model and what the implications of these findings may be for humans carrying expansion-prone FMR1 alleles.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA