Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cell ; 185(14): 2591-2608.e30, 2022 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-35803246

RESUMEN

Melanoma brain metastasis (MBM) frequently occurs in patients with advanced melanoma; yet, our understanding of the underlying salient biology is rudimentary. Here, we performed single-cell/nucleus RNA-seq in 22 treatment-naive MBMs and 10 extracranial melanoma metastases (ECMs) and matched spatial single-cell transcriptomics and T cell receptor (TCR)-seq. Cancer cells from MBM were more chromosomally unstable, adopted a neuronal-like cell state, and enriched for spatially variably expressed metabolic pathways. Key observations were validated in independent patient cohorts, patient-derived MBM/ECM xenograft models, RNA/ATAC-seq, proteomics, and multiplexed imaging. Integrated spatial analyses revealed distinct geography of putative cancer immune evasion and evidence for more abundant intra-tumoral B to plasma cell differentiation in lymphoid aggregates in MBM. MBM harbored larger fractions of monocyte-derived macrophages and dysfunctional TOX+CD8+ T cells with distinct expression of immune checkpoints. This work provides comprehensive insights into MBM biology and serves as a foundational resource for further discovery and therapeutic exploration.


Asunto(s)
Neoplasias Encefálicas , Melanoma , Neoplasias Encefálicas/tratamiento farmacológico , Neoplasias Encefálicas/secundario , Linfocitos T CD8-positivos/patología , Ecosistema , Humanos , RNA-Seq
2.
bioRxiv ; 2024 May 29.
Artículo en Inglés | MEDLINE | ID: mdl-38854106

RESUMEN

Chromosomal instability (CIN) is a hallmark of cancer that drives metastasis, immune evasion and treatment resistance. CIN results from chromosome mis-segregation events during anaphase, as excessive chromatin is packaged in micronuclei (MN), that can be enumerated to quantify CIN. Despite recent advancements in automation through computer vision and machine learning, the assessment of CIN remains a predominantly manual and time-consuming task, thus hampering important work in the field. Here, we present micronuclAI , a novel pipeline for automated and reliable quantification of MN of varying size, morphology and location from DNA-only stained images. In micronucleAI , single-cell crops are extracted from high-resolution microscopy images with the help of segmentation masks, which are then used to train a convolutional neural network (CNN) to output the number of MN associated with each cell. The pipeline was evaluated against manual single-cell level counts by experts and against routinely used MN ratio within the complete image. The classifier was able to achieve a weighted F1 score of 0.937 on the test dataset and the complete pipeline can achieve close to human-level performance on various datasets derived from multiple human and murine cancer cell lines. The pipeline achieved a root-mean-square deviation (RMSE) value of 0.0041, an R 2 of 0.87 and a Pearson's correlation of 0.938 on images obtained at 10X magnification. We tested the approach in otherwise isogenic cell lines in which we genetically dialed up or down CIN rates, and also on a publicly available image data set (obtained at 100X) and achieved an RMSE value of 0.0159, an R 2 of 0.90, and a Pearson's correlation of 0.951. Given the increasing interest in developing therapies for CIN-driven cancers, this method provides an important, scalable, and rapid approach to quantifying CIN on routinely obtained images. We release a GUI-implementation for easy access and utilization of the pipeline.

3.
Artículo en Inglés | MEDLINE | ID: mdl-27242034

RESUMEN

The availability of databases electronically encoding curated regulatory networks and of high-throughput technologies and methods to discover regulatory interactions provides an invaluable source of data to understand the principles underpinning the organization and evolution of these networks responsible for cellular regulation. Nevertheless, data on these sources never goes beyond the regulon level despite the fact that regulatory networks are complex hierarchical-modular structures still challenging our understanding. This brings the necessity for an inventory of systems across a large range of organisms, a key step to rendering feasible comparative systems biology approaches. In this work, we take the first step towards a global understanding of the regulatory networks organization by making a cartography of the functional architectures of diverse bacteria. Abasy ( A: cross- BA: cteria SY: stems) Atlas provides a comprehensive inventory of annotated functional systems, global network properties and systems-level elements (global regulators, modular genes shaping functional systems, basal machinery genes and intermodular genes) predicted by the natural decomposition approach for reconstructed and meta-curated regulatory networks across a large range of bacteria, including pathogenically and biotechnologically relevant organisms. The meta-curation of regulatory datasets provides the most complete and reliable set of regulatory interactions currently available, which can even be projected into subsets by considering the force or weight of evidence supporting them or the systems that they belong to. Besides, Abasy Atlas provides data enabling large-scale comparative systems biology studies aimed at understanding the common principles and particular lifestyle adaptions of systems across bacteria. Abasy Atlas contains systems and system-level elements for 50 regulatory networks comprising 78 649 regulatory interactions covering 42 bacteria in nine taxa, containing 3708 regulons and 1776 systems. All this brings together a large corpus of data that will surely inspire studies to generate hypothesis regarding the principles governing the evolution and organization of systems and the functional architectures controlling them.Database URL: http://abasy.ccg.unam.mx.


Asunto(s)
Bacterias/genética , Biología Computacional/métodos , Sistemas de Administración de Bases de Datos , Bases de Datos Genéticas , Regulación Bacteriana de la Expresión Génica/genética , Genoma Bacteriano/genética , Redes Reguladoras de Genes , Internet
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA