Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 288
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Eur J Immunol ; : e2350848, 2024 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-38794857

RESUMEN

Acute injuries trigger an intense activation of the body's defense mechanisms aiming to limit damage and initiate healing. Among the crucial components of the intravascular immune system, the complement system plays a significant role in traumatic injuries, albeit often negatively. It has been suggested that excessive activation of the complement system, transitioning from a localized and timed response to a systemic one, can lead to a loss of its host-protective characteristics. Complement activation products have been associated with the severity of injuries, which sometimes serve as predictors for the onset of organ dysfunctions. Animal studies utilizing complement-targeting agents have provided the basis for considering complement in the management of traumatic injuries in humans. However, numerous studies suggest that the spatial and temporal aspects of complement inhibition are crucial for its efficacy. Understanding the underlying mechanism of the injury is essential to determine where, when, and whether complement inhibition is warranted. Despite the detrimental effects of uncontrolled complement activation, its regulated activation may contribute to essential aspects of healing, such as waste removal and regeneration. This review focuses on the beneficial roles of complement activation in trauma, which are often overlooked or given less consideration but are of immense importance.

2.
FASEB J ; 38(4): e23489, 2024 Feb 29.
Artículo en Inglés | MEDLINE | ID: mdl-38407813

RESUMEN

Physical activity-induced mechanical stimuli play a crucial role in preserving bone mass and structure by promoting bone formation. While the Wnt pathway is pivotal for mediating the osteoblast response to loading, the exact mechanisms are not fully understood. Here, we found that mechanical stimulation induces osteoblastic Wnt1 expression, resulting in an upregulation of key osteogenic marker genes, including Runx2 and Sp7, while Wnt1 knockdown using siRNA prevented these effects. RNAseq analysis identified Plat as a major target through which Wnt1 exerts its osteogenic influence. This was corroborated by Plat depletion using siRNA, confirming its positive role in osteogenic differentiation. Moreover, we demonstrated that mechanical stimulation enhances Plat expression, which, in turn leads to increased expression of osteogenic markers like Runx2 and Sp7. Notably, Plat depletion by siRNA prevented this effect. We have established that Wnt1 regulates Plat expression by activating ß-Catenin. Silencing Wnt1 impairs mechanically induced ß-Catenin activation, subsequently reducing Plat expression. Furthermore, our findings showed that Wnt1 is essential for osteoblasts to respond to mechanical stimulation and induce Runx2 and Sp7 expression, in part through the Wnt1/ß-Catenin/Plat signaling pathway. Additionally, we observed significantly reduced Wnt1 and Plat expression in bones from ovariectomy (OVX)-induced and age-related osteoporotic mouse models compared with non-OVX and young mice, respectively. Overall, our data suggested that Wnt1 and Plat play significant roles in mechanically induced osteogenesis. Their decreased expression in bones from OVX and aged mice highlights their potential involvement in post-menopausal and age-related osteoporosis, respectively.


Asunto(s)
Subunidad alfa 1 del Factor de Unión al Sitio Principal , Osteogénesis , Animales , Femenino , Ratones , beta Catenina/genética , Subunidad alfa 1 del Factor de Unión al Sitio Principal/genética , Osteoblastos , ARN Interferente Pequeño , Vía de Señalización Wnt , Activador de Tejido Plasminógeno/metabolismo
3.
Cell Mol Biol Lett ; 28(1): 76, 2023 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-37777764

RESUMEN

During aging and after traumatic injuries, cartilage and bone cells are exposed to various pathophysiologic mediators, including reactive oxygen species (ROS), damage-associated molecular patterns, and proinflammatory cytokines. This detrimental environment triggers cellular stress and subsequent dysfunction, which not only contributes to the development of associated diseases, that is, osteoporosis and osteoarthritis, but also impairs regenerative processes. To counter ROS-mediated stress and reduce the overall tissue damage, cells possess diverse defense mechanisms. However, cellular antioxidative capacities are limited and thus ROS accumulation can lead to aberrant cell fate decisions, which have adverse effects on cartilage and bone homeostasis. In this narrative review, we address oxidative stress as a major driver of pathophysiologic processes in cartilage and bone, including senescence, misdirected differentiation, cell death, mitochondrial dysfunction, and impaired mitophagy by illustrating the consequences on tissue homeostasis and regeneration. Moreover, we elaborate cellular defense mechanisms, with a particular focus on oxidative stress response and mitophagy, and briefly discuss respective therapeutic strategies to improve cell and tissue protection.


Asunto(s)
Osteoartritis , Osteoporosis , Humanos , Especies Reactivas de Oxígeno/metabolismo , Estrés Oxidativo/fisiología , Osteoartritis/metabolismo , Diferenciación Celular , Senescencia Celular
4.
Knee Surg Sports Traumatol Arthrosc ; 31(7): 2956-2965, 2023 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-36604322

RESUMEN

PURPOSE: The purpose of this study was to investigate the potential of a doubled semitendinosus (ST) and a single gracilis tendon (GT) lateral meniscus autograft to restore the knee joint kinematics and tibiofemoral contact after total lateral meniscectomy (LMM). METHODS: Fourteen human knee joints were tested intact, after LMM and after ST and GT meniscus autograft treatment under an axial load of 200 N during full range of motion (0°-120°) and four randomised loading situations: without external moments, external rotation, valgus stress and a combination of external rotation and valgus stress using a knee joint simulator. Non-parametric statistical analyses were performed on joint kinematics and on the tibiofemoral contact mechanics. RESULTS: LMM led to significant rotational instability of the knee joints (p < 0.02), which was significantly improved after ST autograft application (p < 0.04), except for knee joint flexions > 60°. The GT autograft failed to restore the joint kinematics. LMM significantly increased the tibiofemoral contact pressure (p < 0.03), while decreasing the contact area (p < 0.05). The ST autograft was able to restore the contact mechanics after LMM (p < 0.02), while the GT replacement displayed only an improvement trend. CONCLUSION: The doubled ST lateral meniscus autograft improved the knee joint kinematics significantly and restored the tibiofemoral contact mechanics almost comparable to the native situation. Thus, from a biomechanical point of view, ST meniscus autografts might be a potential treatment alternative for patients who are indicated for meniscus allograft transplantation.


Asunto(s)
Músculos Isquiosurales , Lesiones de Menisco Tibial , Humanos , Fenómenos Biomecánicos , Cadáver , Articulación de la Rodilla/cirugía , Meniscectomía , Meniscos Tibiales/cirugía , Rango del Movimiento Articular , Tibia/cirugía , Lesiones de Menisco Tibial/cirugía
5.
Knee Surg Sports Traumatol Arthrosc ; 31(12): 5554-5564, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37843587

RESUMEN

PURPOSE: The purpose of this in vitro study was to investigate whether or not hyaluronic acid supplementation improves knee joint friction during osteoarthritis progression under gait-like loading conditions. METHODS: Twelve human cadaveric knee joints were equally divided into mild and moderate osteoarthritic groups. After initial conservative preparation, a passive pendulum setup was used to test the whole joints under gait-like conditions before and after hyaluronic acid supplementation. The friction-related damping properties given by the coefficient of friction µ and the damping coefficient c (in kg m2/s) were calculated from the decaying flexion-extension motion of the knee. Subsequently, tibial and femoral cartilage and meniscus samples were extracted from the joints and tested in an established dynamic pin-on-plate tribometer using synthetic synovial fluid followed by synthetic synovial fluid supplemented with hyaluronic acid as lubricant. Friction was quantified by calculating the coefficient of friction. RESULTS: In the pendulum tests, the moderate OA group indicated significantly lower c0 values (p < 0.05) under stance phase conditions and significantly lower µ0 (p = 0.01) values under swing phase conditions. No degeneration-related statistical differences were found for µend or cend. Friction was not significantly different (p > 0.05) with regard to mild and moderate osteoarthritis in the pin-on-plate tests. Additionally, hyaluronic acid did not affect friction in both, the pendulum (p > 0.05) and pin-on-plate friction tests (p > 0.05). CONCLUSION: The results of this in vitro study suggested that the friction of cadaveric knee joint tissues does not increase with progressing degeneration. Moreover, hyaluronic acid viscosupplementation does not lead to an initial decrease in knee joint friction.


Asunto(s)
Cartílago Articular , Osteoartritis , Humanos , Ácido Hialurónico/uso terapéutico , Fricción , Articulación de la Rodilla , Líquido Sinovial , Cadáver
6.
Int J Mol Sci ; 24(11)2023 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-37298085

RESUMEN

Mast cells may contribute to osteoporosis development, because patients with age-related or post-menopausal osteoporosis exhibit more mast cells in the bone marrow, and mastocytosis patients frequently suffer from osteopenia. We previously showed that mast cells crucially regulated osteoclastogenesis and bone loss in ovariectomized, estrogen-depleted mice in a preclinical model for post-menopausal osteoporosis and found that granular mast cell mediators were responsible for these estrogen-dependent effects. However, the role of the key regulator of osteoclastogenesis, namely, receptor activator of NFκB ligand (RANKL), which is secreted by mast cells, in osteoporosis development has, to date, not been defined. Here, we investigated whether mast-cell-derived RANKL participates in ovariectomy (OVX)-induced bone loss by using female mice with a conditional Rankl deletion. We found that this deletion in mast cells did not influence physiological bone turnover and failed to protect against OVX-induced bone resorption in vivo, although we demonstrated that RANKL secretion was significantly reduced in estrogen-treated mast cell cultures. Furthermore, Rankl deletion in mast cells did not influence the immune phenotype in non-ovariectomized or ovariectomized mice. Therefore, other osteoclastogenic factors released by mast cells might be responsible for the onset of OVX-induced bone loss.


Asunto(s)
Resorción Ósea , Osteoporosis Posmenopáusica , Osteoporosis , Humanos , Ratones , Femenino , Animales , Osteoclastos , Mastocitos , Osteoporosis Posmenopáusica/etiología , Ligandos , Osteogénesis , FN-kappa B/farmacología , Resorción Ósea/etiología , Osteoporosis/etiología , Estrógenos/farmacología , Ovariectomía/efectos adversos , Ligando RANK/genética , Ligando RANK/farmacología
7.
Int J Mol Sci ; 24(7)2023 Mar 24.
Artículo en Inglés | MEDLINE | ID: mdl-37047116

RESUMEN

Postmenopausal women are at an increased risk for intervertebral disc degeneration, possibly due to the decrease in oestrogen levels. Low-magnitude, high-frequency vibration (LMHFV) is applied as a therapeutic approach for postmenopausal osteoporosis; however, less is known regarding possible effects on the intervertebral disc (IVD) and whether these may be oestrogen-dependent. The present study investigated the effect of 17ß-oestradiol (E2) and LMHFV in an IVD organ culture model. Bovine IVDs (n = 6 IVDs/group) were treated with either (i) E2, (ii) LMHFV or (iii) the combination of E2 + LMHFV for 2 or 14 days. Minor changes in gene expression, cellularity and matrix metabolism were observed after E2 treatment, except for a significant increase in matrix metalloproteinase (MMP)-3 and interleukin (IL)-6 production. Interestingly, LMHFV alone induced cell loss and increased IL-6 production compared to the control. The combination of E2 + LMHFV induced a protective effect against cell loss and decreased IL-6 production compared to the LMHFV group. This indicates possible benefits of oestrogen therapy for the IVDs of postmenopausal women undergoing LMHFV exercises.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Animales , Bovinos , Femenino , Humanos , Interleucina-6/metabolismo , Supervivencia Celular , Vibración , Técnicas de Cultivo de Órganos , Disco Intervertebral/metabolismo , Degeneración del Disco Intervertebral/metabolismo , Estrógenos/farmacología , Estrógenos/metabolismo
8.
FASEB J ; 35(12): e22038, 2021 12.
Artículo en Inglés | MEDLINE | ID: mdl-34748229

RESUMEN

Abdominal trauma (AT) is of major global importance, particularly with the increased potential for civil, terroristic, and military trauma. The injury pattern and systemic consequences of blunt abdominal injuries are highly variable and frequently underestimated or even missed, and the pathomechanisms remain still poorly understood. Therefore, we investigated the temporal-spatial organ and immune response after a standardized blast-induced blunt AT. Anesthetized mice were exposed to a single blast wave centered on the epigastrium. At 2, 6, or 24 h after trauma, abdominal organ damage was assessed macroscopically, microscopically, and biochemically. A higher degree of trauma severity, determined by a reduction of the distance between the epigastrium and blast inductor, was reflected by a reduced survival rate. The hemodynamic monitoring during the first 120 min after AT revealed a decline in the mean arterial pressure within the first 80 min, whereas the heart rate remained quite stable. AT induced a systemic damage and inflammatory response, evidenced by elevated HMGB-1 and IL-6 plasma levels. The macroscopic injury pattern of the abdominal organs (while complex) was consistent, with the following frequency: liver > pancreas > spleen > left kidney > intestine > right kidney > others > lungs and was reflected by microscopic liver and pancreas damages. Plasma levels of organ dysfunction markers increased during the first 6 h after AT and subsequently declined, indicating an early, temporal impairment of the function on a multi-organ level. The established highly reproducible murine blunt AT, with time- and trauma-severity-dependent organ injury patterns, systemic inflammatory response, and impairment of various organ functions, reflects characteristics of human AT. In the future, this model may help to study the complex immuno-pathophysiological consequences and innovative therapeutic approaches after blunt AT.


Asunto(s)
Traumatismos Abdominales/complicaciones , Lesión Renal Aguda/patología , Traumatismos por Explosión/complicaciones , Hígado/patología , Traumatismo Múltiple/complicaciones , Páncreas/patología , Lesión Renal Aguda/etiología , Animales , Hígado/lesiones , Hígado/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Páncreas/lesiones , Páncreas/metabolismo
9.
Semin Immunol ; 37: 53-65, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29395681

RESUMEN

An integral part of innate immunity is the complement system, a defence system, consisting of fluid-phase and cell surface-bound proteins. Its role to ensure adequate responses to danger factors and thus promoting host defence against pathogens has been well described already for decades. Recently, numerous further reaching functions of complement have been discovered, among these are tissue homeostasis and regeneration, also with respect to the skeletal system. The influence of complement activation on bone was recognised first in pathological conditions of inflamed bone tissue and surrounding areas, observed, for example, in rheumatoid arthritis and osteoarthritis. Greatly enhanced levels of complement proteins were detected in synovial fluids and sera of arthritic patients compared to healthy individuals. Additionally, complement-mediated signalling was shown to modulate periodontitis disease development and progression. Periodontitis is an infectious condition of the periodontium, which involves severe bone loss. Moreover, the complement system critically modulates bone regeneration and healing outcome after fracture. This is seen in uneventful fracture healing, but particularly under severe inflammatory conditions induced by an additional traumatic injury. Therefore, complement activation plays an important role in both sterile and non-sterile inflammatory conditions of the bone, which will be addressed here in respect of findings in bone fractures, arthritides, periodontitis and osteomyelitis. Importantly, complement proteins are thought to be critical not simply in the states of an activated immune system, but also for bone growth during physiological development and bone homeostasis, given for example their presence in long-bone growth-plate cartilage. Furthermore, bone-cell development from precursor cells and bone-cell metabolism and communication, for example, between bone-forming osteoblasts and bone-resorbing osteoclasts, are dependent on or even critically influenced by the presence of complement proteins and complement-mediated signalling. The present review summarises the current view on the role of the complement cascade on bone, both under homeostatic physiological conditions and under inflammatory and infectious conditions, which strongly affect the bone and skeletal health. Furthermore, this review addresses the potential and the feasibility of therapeutic interventions involving the complement cascade, derived from experimental and clinical data. Modulating the complement system could help in the future to reduce bone infections, ensure a balanced bone turnover and to generally improve skeletal health.


Asunto(s)
Enfermedades Óseas/inmunología , Huesos/fisiología , Proteínas del Sistema Complemento/metabolismo , Animales , Regeneración Ósea , Activación de Complemento , Homeostasis , Humanos , Inmunidad Innata , Cicatrización de Heridas
10.
Clin Orthop Relat Res ; 480(3): 523-535, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34494983

RESUMEN

BACKGROUND: Knotted and knotless single-anchor reconstruction techniques are frequently performed to reconstruct full-thickness tears of the upper portion of subscapularis tendon. However, it is unclear whether one technique is superior to the other. QUESTIONS/PURPOSES: (1) When comparing knotless and knotted single-anchor reconstruction techniques in full-thickness tears of the upper subscapularis tendon, is there a difference in stiffness under cyclic load? (2) Are there differences in cyclic gapping between knotless and knotted reconstructions? (3) Are there differences in the maximal stiffness, yield load, and ultimate load to failure? (4) What are the modes of failure of knotless and knotted reconstruction techniques? METHODS: Eight matched pairs of human cadaveric shoulders were dissected, and a full-thickness tear of the subscapularis tendon (Grade 3 according to the Fox and Romeo classification) was created. The cadavers all were male specimens, with a median (range) age of 69 years (61 to 75). Before biomechanical evaluation, the specimens were randomized into two equal reconstruction groups: knotless single anchor and knotted single anchor. All surgical procedures were performed by a single orthopaedic surgeon who subspecializes in sports orthopedics and shoulder surgery. With a customized set up that was integrated in a dynamic material testing machine, the humeri were consecutively loaded from 10 N to 60 N, from 10 N to 100 N, and from 10 N to 180 N for 50 cycles. Furthermore, the gapping behavior of the tear was analyzed using a video tracking system. Finally, the stiffness, gapping, maximal stiffness, yield loads, and maximum failure loads of both reconstruction groups were statistically analyzed. Failure was defined as retearing of the reconstructed gap threshold due to rupture of the tendon and/or failure of the knots or anchors. After biomechanical testing, bone quality was measured at the footprint of the subscapularis using microCT in all specimens. Bone quality was equal between both groups. To detect a minimum 0.15-mm difference in gap formation between the two repair techniques (with a 5% level of significance; α = 0.05), eight matched pairs (n = 16 in total) were calculated as necessary to achieve a power of at least 90%. RESULTS: The first study question can be answered as follows: for stiffness under cyclic load, there were no differences with the numbers available between the knotted and knotless groups at load stages of 10 N to 60 N (32.7 ± 3.5 N/mm versus 34.2 ± 5.6 N/mm, mean difference 1.5 N/mm [95% CI -6.43 to 3.33]; p = 0.55), 10 N to 100 N (45.0 ± 4.8 N/mm versus 45.2 ± 6.0 N/mm, mean difference 0.2 N/mm [95% CI -5.74 to 6.04]; p = 0.95), and 10 N to 180 N (58.2 ± 10.6 N/mm versus 55.2 ± 4.7 N/mm, mean difference 3 N/mm [95% CI -5.84 to 11.79]; p = 0.48). In relation to the second research question, the following results emerged: For cyclic gapping, there were no differences between the knotted and knotless groups at any load levels. The present study was able to show the following with regard to the third research question: Between knotted and knotless repairs, there were no differences in maximal load stiffness (45.3 ± 8.6 N/mm versus 43.5 ± 10.2 N/mm, mean difference 1.8 [95% CI -11.78 to 8.23]; p = 0.71), yield load (425.1 ± 251.4 N versus 379.0 ± 169.4 N, mean difference 46.1 [95% CI -276.02 to 183.72]; p = 0.67), and failure load (521.1 ± 266.2 N versus 475.8 ± 183.3 N, mean difference 45.3 [95% CI -290.42 to 199.79]; p = 0.69). Regarding the fourth question concerning the failure modes, in the knotted repairs, the anchor tore from the bone in 2 of 8, the suture tore from the tendon in 6 of 8, and no suture slipped from the eyelet; in the knotless repairs, the anchor tore from the bone in 2 of 8, the suture tore from the tendon in 3 of 8, and the threads slipped from the eyelet in 3 of 8. CONCLUSION: With the numbers available, we found no differences between single-anchor knotless and knotted reconstruction techniques used to repair full-thickness tears of the upper portion of subscapularis tendon. CLINICAL RELEVANCE: The reconstruction techniques we analyzed showed no differences in terms of their primary stability and biomechanical properties at the time of initial repair and with the numbers available. In view of these experimental results, it would be useful to conduct a clinical study in the future to verify the translationality of the experimental data of the present study.


Asunto(s)
Procedimientos de Cirugía Plástica/métodos , Lesiones del Manguito de los Rotadores/cirugía , Anclas para Sutura , Técnicas de Sutura , Anciano , Fenómenos Biomecánicos , Cadáver , Humanos , Masculino , Persona de Mediana Edad
11.
Proc Natl Acad Sci U S A ; 116(17): 8615-8622, 2019 04 23.
Artículo en Inglés | MEDLINE | ID: mdl-30948630

RESUMEN

Chronic psychosocial stress/trauma represents an increasing burden in our modern society and a risk factor for the development of mental disorders, including posttraumatic stress disorder (PTSD). PTSD, in turn, is highly comorbid with a plethora of inflammatory disorders and has been associated with increased bone fracture risk. Since a balanced inflammatory response after fracture is crucial for successful bone healing, we hypothesize that stress/trauma alters the inflammatory response after fracture and, consequently, compromises fracture healing. Here we show, employing the chronic subordinate colony housing (CSC) paradigm as a clinically relevant mouse model for PTSD, that mice subjected to CSC displayed increased numbers of neutrophils in the early fracture hematoma, whereas T lymphocytes and markers for cartilage-to-bone transition and angiogenesis were reduced. At late stages of fracture healing, CSC mice were characterized by decreased bending stiffness and bony bridging of the fracture callus. Strikingly, a single systemic administration of the ß-adrenoreceptor (AR) blocker propranolol before femur osteotomy prevented bone marrow mobilization of neutrophils and invasion of neutrophils into the fracture hematoma, both seen in the early phase after fracture, as well as a compromised fracture healing in CSC mice. We conclude that chronic psychosocial stress leads to an imbalanced immune response after fracture via ß-AR signaling, accompanied by disturbed fracture healing. These findings offer possibilities for clinical translation in patients suffering from PTSD and fracture.


Asunto(s)
Curación de Fractura , Inflamación , Osteogénesis , Receptores Adrenérgicos beta , Estrés Psicológico , Animales , Enfermedad Crónica , Modelos Animales de Enfermedad , Curación de Fractura/inmunología , Curación de Fractura/fisiología , Inflamación/inmunología , Inflamación/fisiopatología , Masculino , Ratones , Ratones Endogámicos C57BL , Osteogénesis/inmunología , Osteogénesis/fisiología , Receptores Adrenérgicos beta/inmunología , Receptores Adrenérgicos beta/metabolismo , Transducción de Señal/inmunología , Transducción de Señal/fisiología , Estrés Psicológico/inmunología , Estrés Psicológico/fisiopatología
13.
Int J Mol Sci ; 23(5)2022 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-35270044

RESUMEN

While estrogen receptor alpha (ERα) is known to be important for bone development and homeostasis, its exact function during osteoblast differentiation remains unclear. Conditional deletion of ERα during specific stages of osteoblast differentiation revealed different bone phenotypes, which were also shown to be sex-dependent. Since hypertrophic chondrocytes can transdifferentiate into osteoblasts and substantially contribute to long-bone development, we aimed to investigate the effects of ERα deletion in both osteoblast and chondrocytes on bone development and structure. Therefore, we generated mice in which the ERα gene was inactivated via a Runx2-driven cyclic recombinase (ERαfl/fl; Runx2Cre). We analyzed the bones of 3-month-old ERαfl/fl; Runx2Cre mice by biomechanical testing, micro-computed tomography, and cellular parameters by histology. Male ERαfl/fl; Runx2Cre mice displayed a significantly increased cortical bone mass and flexural rigidity of the femurs compared to age-matched controls with no active Cre-transgene (ERαfl/fl). By contrast, female ERαfl/fl; Runx2Cre mice exhibited significant trabecular bone loss, whereas in cortical bone periosteal and endosteal diameters were reduced. Our results indicate that the ERα in osteoblast progenitors and hypertrophic chondrocytes differentially contributes to bone mass regulation in male and female mice and improves our understanding of ERα signaling in bone cells in vivo.


Asunto(s)
Condrocitos , Receptor alfa de Estrógeno , Animales , Receptor alfa de Estrógeno/genética , Femenino , Masculino , Ratones , Ratones Noqueados , Osteoblastos , Células Madre , Microtomografía por Rayos X
14.
Eur Spine J ; 30(1): 217-226, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32936402

RESUMEN

PURPOSE: The complement system is a crucial part of innate immunity. Recent work demonstrated an unexpected contribution to tissue homeostasis and degeneration. This study investigated for the first time, in human disc tissues, the deposition profile of the complement activation product terminal complement complex (TCC), an inflammatory trigger and inducer of cell lysis, and its inhibitor CD59, and their correlation with the degree of disc degeneration (DD). METHODS: Disc biopsies were collected from patients diagnosed with DD (n = 39, age 63 ± 12) and adolescent idiopathic scoliosis (AIS, n = 10, age 17 ± 4) and compared with discs from healthy Young (n = 11, age 7 ± 7) and Elder (n = 10, age 65 ± 15) donors. Immunohistochemical detection of TCC and CD59 in nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) was correlated with age, Pfirrmann grade and Modic changes. RESULTS: Higher percentage of TCC+ cells was detected in the NP and EP of DD compared to Elder (P < 0.05), and in the EP of Young versus Elder (P < 0.001). In DD, TCC deposition was positively correlated with Pfirrmann grade, but not with Modic changes, whereas for Young donors, a negative correlation was found with age, indicating TCC's involvement not only in DD, but also in early stages of skeletal development. Higher CD59 positivity was found in AIS and DD groups compared to Young (P < 0.05), and it was negatively correlated with the age of the patients. CONCLUSION: TCC deposition positively correlated with the degree of disc degeneration. A functional relevance of TCC may exist in DD, representing a potential target for new therapeutics.


Asunto(s)
Anillo Fibroso , Degeneración del Disco Intervertebral , Disco Intervertebral , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Niño , Preescolar , Activación de Complemento , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Persona de Mediana Edad , Adulto Joven
15.
Eur Spine J ; 30(8): 2247-2256, 2021 08.
Artículo en Inglés | MEDLINE | ID: mdl-34169354

RESUMEN

PURPOSE: Formation of terminal complement complex (TCC), a downstream complement system activation product inducing inflammatory processes and cell lysis, has been identified in degenerated discs. However, it remains unclear which molecular factors regulate complement activation during disc degeneration (DD). This study investigated a possible involvement of the pro-inflammatory cytokine interleukin-1ß (IL-1ß) and the lysosomal protease cathepsin D (CTSD). METHODS: Disc biopsies were collected from patients suffering from DD (n = 43) and adolescent idiopathic scoliosis (AIS, n = 13). Standardized tissue punches and isolated cells from nucleus pulposus (NP), annulus fibrosus (AF) and endplate (EP) were stimulated with 5% human serum (HS) alone or in combination with IL-1ß, CTSD or zymosan. TCC formation and modulation by the complement regulatory proteins CD46, CD55 and CD59 were analysed. RESULTS: In DD tissue cultures, IL-1ß stimulation decreased the percentage of TCC + cells in AF and EP (P < 0.05), whereas CTSD stimulation significantly increased TCC deposition in NP (P < 0.01) and zymosan in EP (P < 0.05). Overall, the expression of CD46, CD55 and CD59 significantly increased in all isolated cells during culture (P < 0.05). Moreover, cellular TCC deposition was HS concentration dependent but unaffected by IL-1ß, CTSD or zymosan. CONCLUSION: These results suggest a functional relevance of IL-1ß and CTSD in modulating TCC formation in DD, with differences between tissue regions. Although strong TCC deposition may represent a degeneration-associated event, IL-1ß may inhibit it. In contrast, TCC formation was shown to be triggered by CTSD, indicating a multifunctional involvement in disc pathophysiology.


Asunto(s)
Degeneración del Disco Intervertebral , Disco Intervertebral , Adolescente , Catepsina D , Células Cultivadas , Complejo de Ataque a Membrana del Sistema Complemento , Humanos , Interleucina-1beta
16.
Int J Mol Sci ; 22(5)2021 Mar 09.
Artículo en Inglés | MEDLINE | ID: mdl-33803323

RESUMEN

Periodontitis is the inflammatory destruction of the tooth-surrounding and -supporting tissue, resulting at worst in tooth loss. Another locally aggressive disease of the oral cavity is tooth resorption (TR). This is associated with the destruction of the dental mineralized tissue. However, the underlying pathomechanisms remain unknown. The complement system, as well as mast cells (MCs), are known to be involved in osteoclastogenesis and bone loss. The complement factors C3 and C5 were previously identified as key players in periodontal disease. Therefore, we hypothesize that complement factors and MCs might play a role in alveolar bone and tooth resorption. To investigate this, we used the cat as a model because of the naturally occurring high prevalence of both these disorders in this species. Teeth, gingiva samples and serum were collected from domestic cats, which had an appointment for dental treatment under anesthesia, as well as from healthy cats. Histological analyses, immunohistochemical staining and the CH-50 and AH-50 assays revealed increased numbers of osteoclasts and MCs, as well as complement activity in cats with TR. Calcifications score in the gingiva was highest in animals that suffer from TR. This indicates that MCs and the complement system are involved in the destruction of the mineralized tissue in this condition.


Asunto(s)
Pérdida de Hueso Alveolar/metabolismo , Complemento C3/metabolismo , Complemento C5/metabolismo , Mastocitos/metabolismo , Periodontitis/metabolismo , Resorción Dentaria/metabolismo , Pérdida de Hueso Alveolar/patología , Animales , Gatos , Mastocitos/patología , Osteoclastos/metabolismo , Osteoclastos/patología , Periodontitis/patología , Resorción Dentaria/patología
17.
Arch Orthop Trauma Surg ; 141(10): 1797-1806, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-33755800

RESUMEN

PURPOSE: In total hip arthroplasty, uncemented short stems have been used more and more frequently in recent years. Especially for short and curved femoral implants, bone-preserving and soft tissue-sparing properties are postulated. However, indication is limited to sufficient bone quality. At present, there are no curved short stems available which are based on cemented fixation. METHODS: In this in vitro study, primary stability and maximum fracture load of a newly developed cemented short-stem implant was evaluated in comparison to an already well-established cemented conventional straight stem using six pairs of human cadaver femurs with minor bone quality. Primary stability, including reversible micromotion and irreversible migration, was assessed in a dynamic material-testing machine. Furthermore, a subsequent load-to-failure test revealed the periprosthetic fracture characteristics. RESULTS: Reversible and irreversible micromotions showed no statistical difference between the two investigated stems. All short stems fractured under maximum load according to Vancouver type B3, whereas 4 out of 6 conventional stems suffered a periprosthetic fracture according to Vancouver type C. Mean fracture load of the short stems was 3062 N versus 3160 N for the conventional stems (p = 0.84). CONCLUSION: Primary stability of the cemented short stem was not negatively influenced compared to the cemented conventional stem and no significant difference in fracture load was observed. However, a clear difference in the fracture pattern has been identified.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Fracturas Periprotésicas , Fenómenos Biomecánicos , Fémur/cirugía , Humanos , Fracturas Periprotésicas/etiología , Fracturas Periprotésicas/cirugía , Diseño de Prótesis
18.
Am J Pathol ; 189(1): 147-161, 2019 01.
Artículo en Inglés | MEDLINE | ID: mdl-30339839

RESUMEN

The terminal complement complex (TCC) is formed on activation of the complement system, a crucial arm of innate immunity. TCC formation on cell membranes results in a transmembrane pore leading to cell lysis. In addition, sublytic TCC concentrations can modulate various cellular functions. TCC-induced effects may play a role in the pathomechanisms of inflammatory disorders of the bone, including rheumatoid arthritis and osteoarthritis. In this study, we investigated the effect of the TCC on bone turnover and repair. Mice deficient for complement component 6 (C6), an essential component for TCC assembly, and mice with a knockout of CD59, which is a negative regulator of TCC formation, were used in this study. The bone phenotype was analyzed in vivo, and bone cell behavior was analyzed ex vivo. In addition, the mice were subjected to a femur osteotomy. Under homeostatic conditions, C6-deficient mice displayed a reduced bone mass, mainly because of increased osteoclast activity. After femur fracture, the inflammatory response was altered and bone formation was disturbed, which negatively affected the healing outcome. By contrast, CD59-knockout mice only displayed minor skeletal alterations and uneventful bone healing, although the early inflammatory reaction to femur fracture was marginally enhanced. These results demonstrate that TCC-mediated effects regulate bone turnover and promote an adequate response to fracture, contributing to an uneventful healing outcome.


Asunto(s)
Regeneración Ósea , Complejo de Ataque a Membrana del Sistema Complemento , Fracturas del Fémur , Curación de Fractura , Osteoclastos , Animales , Regeneración Ósea/genética , Regeneración Ósea/inmunología , Antígenos CD59/deficiencia , Técnicas de Cultivo de Célula , Complemento C6/deficiencia , Complejo de Ataque a Membrana del Sistema Complemento/genética , Complejo de Ataque a Membrana del Sistema Complemento/inmunología , Complejo de Ataque a Membrana del Sistema Complemento/metabolismo , Eritrocitos/inmunología , Eritrocitos/metabolismo , Eritrocitos/patología , Fracturas del Fémur/genética , Fracturas del Fémur/inmunología , Fracturas del Fémur/metabolismo , Fracturas del Fémur/patología , Curación de Fractura/genética , Curación de Fractura/inmunología , Inflamación/genética , Inflamación/inmunología , Inflamación/metabolismo , Inflamación/patología , Masculino , Ratones , Ratones Noqueados , Osteoclastos/inmunología , Osteoclastos/metabolismo , Osteoclastos/patología , Ovinos
19.
Stem Cells ; 37(8): 1057-1074, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31002437

RESUMEN

In this study, we report the beneficial effects of a newly identified dermal cell subpopulation expressing the ATP-binding cassette subfamily B member 5 (ABCB5) for the therapy of nonhealing wounds. Local administration of dermal ABCB5+ -derived mesenchymal stem cells (MSCs) attenuated macrophage-dominated inflammation and thereby accelerated healing of full-thickness excisional wounds in the iron-overload mouse model mimicking the nonhealing state of human venous leg ulcers. The observed beneficial effects were due to interleukin-1 receptor antagonist (IL-1RA) secreted by ABCB5+ -derived MSCs, which dampened inflammation and shifted the prevalence of unrestrained proinflammatory M1 macrophages toward repair promoting anti-inflammatory M2 macrophages at the wound site. The beneficial anti-inflammatory effect of IL-1RA released from ABCB5+ -derived MSCs on human wound macrophages was conserved in humanized NOD-scid IL2rγ null mice. In conclusion, human dermal ABCB5+ cells represent a novel, easily accessible, and marker-enriched source of MSCs, which holds substantial promise to successfully treat chronic nonhealing wounds in humans. Stem Cells 2019;37:1057-1074.


Asunto(s)
Subfamilia B de Transportador de Casetes de Unión a ATP/metabolismo , Dermis/metabolismo , Proteína Antagonista del Receptor de Interleucina 1/metabolismo , Sobrecarga de Hierro/metabolismo , Úlcera de la Pierna/metabolismo , Células Madre Mesenquimatosas/metabolismo , Cicatrización de Heridas , Animales , Línea Celular , Dermis/patología , Modelos Animales de Enfermedad , Femenino , Humanos , Sobrecarga de Hierro/patología , Úlcera de la Pierna/patología , Células Madre Mesenquimatosas/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID
20.
Int J Mol Sci ; 21(21)2020 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-33167497

RESUMEN

In the adult skeleton, bone remodeling is required to replace damaged bone and functionally adapt bone mass and structure according to the mechanical requirements. It is regulated by multiple endocrine and paracrine factors, including hormones and growth factors, which interact in a coordinated manner. Because the response of bone to mechanical signals is dependent on functional estrogen receptor (ER) and Wnt/ß-catenin signaling and is impaired in postmenopausal osteoporosis by estrogen deficiency, it is of paramount importance to elucidate the underlying mechanisms as a basis for the development of new strategies in the treatment of osteoporosis. The present study aimed to investigate the effectiveness of the activation of the ligand-dependent ER and the Wnt/ß-catenin signal transduction pathways on mechanically induced bone formation using ovariectomized mice as a model of postmenopausal bone loss. We demonstrated that both pathways interact in the regulation of bone mass adaption in response to mechanical loading and that the activation of Wnt/ß-catenin signaling considerably increased mechanically induced bone formation, whereas the effects of estrogen treatment strictly depended on the estrogen status in the mice.


Asunto(s)
Osteogénesis/fisiología , Osteoporosis Posmenopáusica/metabolismo , Posmenopausia/fisiología , Animales , Animales no Consanguíneos , Densidad Ósea/fisiología , Remodelación Ósea/fisiología , Huesos/metabolismo , Diferenciación Celular/efectos de los fármacos , Modelos Animales de Enfermedad , Estrógenos/metabolismo , Femenino , Humanos , Ratones , Osteoblastos/metabolismo , Osteoporosis/metabolismo , Osteoporosis Posmenopáusica/fisiopatología , Ovariectomía/efectos adversos , Receptores de Estrógenos/metabolismo , Receptores de Estrógenos/fisiología , Vía de Señalización Wnt/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA