Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(35): 8823-8828, 2018 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-30104389

RESUMEN

Environmental temperature acclimation is essential to animal survival, yet thermoregulation mechanisms remain poorly understood. We demonstrate cold tolerance in Caenorhabditis elegans as regulated by paired ADL chemosensory neurons via Ca2+-dependent endoribonuclease (EndoU) ENDU-2. Loss of ENDU-2 function results in life span, brood size, and synaptic remodeling abnormalities in addition to enhanced cold tolerance. Enzymatic ENDU-2 defects localized in the ADL and certain muscle cells led to increased cold tolerance in endu-2 mutants. Ca2+ imaging revealed ADL neurons were responsive to temperature stimuli through transient receptor potential (TRP) channels, concluding that ADL function requires ENDU-2 action in both cell-autonomous and cell-nonautonomous mechanisms. ENDU-2 is involved in caspase expression, which is central to cold tolerance and synaptic remodeling in dorsal nerve cord. We therefore conclude that ENDU-2 regulates cell type-dependent, cell-autonomous, and cell-nonautonomous cold tolerance.


Asunto(s)
Aclimatación/fisiología , Caenorhabditis elegans/enzimología , Endorribonucleasas/metabolismo , Carácter Cuantitativo Heredable , Transducción de Señal/fisiología , Sinapsis/metabolismo , Animales , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/biosíntesis , Proteínas de Caenorhabditis elegans/genética , Caspasas/biosíntesis , Caspasas/genética , Endorribonucleasas/genética , Perfilación de la Expresión Génica , Sinapsis/genética , Canales Catiónicos TRPC/genética , Canales Catiónicos TRPC/metabolismo
2.
EMBO J ; 29(18): 3140-55, 2010 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-20711169

RESUMEN

BLM, the helicase defective in Bloom syndrome, is part of a multiprotein complex that protects genome stability. Here, we show that Rif1 is a novel component of the BLM complex and works with BLM to promote recovery of stalled replication forks. First, Rif1 physically interacts with the BLM complex through a conserved C-terminal domain, and the stability of Rif1 depends on the presence of the BLM complex. Second, Rif1 and BLM are recruited with similar kinetics to stalled replication forks, and the Rif1 recruitment is delayed in BLM-deficient cells. Third, genetic analyses in vertebrate DT40 cells suggest that BLM and Rif1 work in a common pathway to resist replication stress and promote recovery of stalled forks. Importantly, vertebrate Rif1 contains a DNA-binding domain that resembles the αCTD domain of bacterial RNA polymerase α; and this domain preferentially binds fork and Holliday junction (HJ) DNA in vitro and is required for Rif1 to resist replication stress in vivo. Our data suggest that Rif1 provides a new DNA-binding interface for the BLM complex to restart stalled replication forks.


Asunto(s)
Proteínas Portadoras/metabolismo , Replicación del ADN , Proteínas de Unión al ADN/metabolismo , ADN/metabolismo , Proteínas Nucleares/metabolismo , RecQ Helicasas/metabolismo , Proteínas de Unión a Telómeros/metabolismo , Secuencia de Aminoácidos , Animales , Western Blotting , Proteínas Portadoras/antagonistas & inhibidores , Proteínas Portadoras/genética , Línea Celular , Pollos , ADN/genética , Proteínas de Unión al ADN/antagonistas & inhibidores , Proteínas de Unión al ADN/genética , Células HeLa , Humanos , Inmunoprecipitación , Riñón/citología , Riñón/metabolismo , Datos de Secuencia Molecular , Proteínas Nucleares/antagonistas & inhibidores , Proteínas Nucleares/genética , ARN Interferente Pequeño/farmacología , RecQ Helicasas/antagonistas & inhibidores , RecQ Helicasas/genética , Homología de Secuencia de Aminoácido , Proteínas de Unión a Telómeros/antagonistas & inhibidores , Proteínas de Unión a Telómeros/genética
3.
J Biol Chem ; 285(29): 21922-33, 2010 Jul 16.
Artículo en Inglés | MEDLINE | ID: mdl-20463023

RESUMEN

Translation re-initiation provides the molecular basis for translational control of mammalian ATF4 and yeast GCN4 mediated by short upstream open reading (uORFs) in response to eIF2 phosphorylation. eIF4G is the major adaptor subunit of eIF4F that binds the cap-binding subunit eIF4E and the mRNA helicase eIF4A and is also required for re-initiation in mammals. Here we show that the yeast eIF4G2 mutations altering eIF4E- and eIF4A-binding sites increase re-initiation at GCN4 and impair recognition of the start codons of uORF1 or uORF4 located after uORF1. The increase in re-initiation at GCN4 was partially suppressed by increasing the distance between uORF1 and GCN4, suggesting that the mutations decrease the migration rate of the scanning ribosome in the GCN4 leader. Interestingly, eIF4E overexpression suppressed both the phenotypes caused by the mutation altering eIF4E-binding site. Thus, eIF4F is required for accurate AUG selection and re-initiation also in yeast, and the eIF4G interaction with the mRNA-cap appears to promote eIF4F re-acquisition by the re-initiating 40 S subunit. However, eIF4A overexpression suppressed the impaired AUG recognition but not the increase in re-initiation caused by the mutations altering eIF4A-binding site. These results not only provide evidence that mRNA unwinding by eIF4A stimulates start codon recognition, but also suggest that the eIF4A-binding site on eIF4G made of the HEAT domain stimulates the ribosomal scanning independent of eIF4A. Based on the RNA-binding activities identified within the unstructured segments flanking the eIF4G2 HEAT domain, we discuss the role of the HEAT domain in scanning beyond loading eIF4A onto the pre-initiation complex.


Asunto(s)
Factor 4A Eucariótico de Iniciación/metabolismo , Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/metabolismo , Iniciación de la Cadena Peptídica Traduccional , Saccharomyces cerevisiae/enzimología , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/genética , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Codón Iniciador/genética , Factor 4E Eucariótico de Iniciación/metabolismo , Regulación Fúngica de la Expresión Génica , Modelos Biológicos , Mutación/genética , Sistemas de Lectura Abierta/genética , Péptidos , Unión Proteica , Estructura Terciaria de Proteína , ARN de Hongos/metabolismo , ARN Mensajero/genética , ARN Mensajero/metabolismo , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Relación Estructura-Actividad
4.
J Biol Chem ; 285(42): 32200-12, 2010 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-20699223

RESUMEN

In eukaryotes, the 40 S ribosomal subunit serves as the platform of initiation factor assembly, to place itself precisely on the AUG start codon. Structural arrangement of the 18 S rRNA determines the overall shape of the 40 S subunit. Here, we present genetic evaluation of yeast 18 S rRNA function using 10 point mutations altering the polysome profile. All the mutants reduce the abundance of the mutant 40 S, making it limiting for translation initiation. Two of the isolated mutations, G875A, altering the core of the platform domain that binds eIF1 and eIF2, and A1193U, changing the h31 loop located below the P-site tRNA(i)(Met), show phenotypes indicating defective regulation of AUG selection. Evidence is provided that these mutations reduce the interaction with the components of the preinitiation complex, thereby inhibiting its function at different steps. These results indicate that the 18 S rRNA mutations impair the integrity of scanning-competent preinitiation complex, thereby altering the 40 S subunit response to stringent AUG selection. Interestingly, nine of the mutations alter the body/platform domains of 18 S rRNA, potentially affecting the bridges to the 60 S subunit, but they do not change the level of 18 S rRNA intermediates. Based on these results, we also discuss the mechanism of the selective degradation of the mutant 40 S subunits.


Asunto(s)
Codón Iniciador/metabolismo , Conformación de Ácido Nucleico , Biosíntesis de Proteínas , Subunidades de Proteína/metabolismo , ARN de Hongos , ARN Ribosómico 18S , Subunidades Ribosómicas Pequeñas de Eucariotas , Secuencia de Aminoácidos , Secuencia de Bases , Datos de Secuencia Molecular , Mutación Puntual , Estructura Terciaria de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , ARN Ribosómico 18S/química , ARN Ribosómico 18S/genética , ARN Ribosómico 18S/metabolismo , Subunidades Ribosómicas Pequeñas de Eucariotas/química , Subunidades Ribosómicas Pequeñas de Eucariotas/genética , Subunidades Ribosómicas Pequeñas de Eucariotas/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo
5.
Mutat Res ; 714(1-2): 33-43, 2011 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-21741981

RESUMEN

The DNA repair genes SGS1 and MUS81 of Saccharomyces cerevisiae are thought to control alternative pathways for the repair of toxic recombination intermediates based on the fact that sgs1Δ mus81Δ synthetic lethality is suppressed in the absence of homologous recombination (HR). Although these genes appear to functionally overlap in yeast and other model systems, the specific pathways controlled by SGS1 and MUS81 are poorly defined. Epistasis analyses based on DNA damage sensitivity previously indicated that SGS1 functioned primarily downstream of RAD51, and that MUS81 was independent of RAD51. To further define these genetic pathways, we carried out a systematic epistasis analysis between the RAD52-epistasis group genes and SGS1, MUS81, and RNH202, which encodes a subunit of RNase H2. Based on synthetic-fitness interactions and DNA damage sensitivities, we find that RAD52 is epistatic to MUS81 but not SGS1. In contrast, RAD54, RAD55 and RAD57 are epistatic to SGS1, MUS81 and RNH202. As expected, SHU2 is epistatic to SGS1, while both SHU1 and SHU2 are epistatic to MUS81. Importantly, loss of any RNase H2 subunit on its own resulted in increased recombination using a simple marker-excision assay. RNase H2 is thus needed to maintain genome stability consistent with the sgs1Δ rnh202Δ synthetic fitness defect. We conclude that SGS1 and MUS81 act in parallel pathways downstream of RAD51 and RAD52, respectively. The data further indicate these pathways share common components and display complex interactions.


Asunto(s)
Reparación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Epistasis Genética , Endonucleasas de ADN Solapado/genética , RecQ Helicasas/genética , Recombinación Genética , Ribonucleasa H/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Daño del ADN , Genes Bacterianos , Proteína Recombinante y Reparadora de ADN Rad52/genética
6.
Mol Biol Cell ; 17(1): 539-48, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16267268

RESUMEN

RTT107 (ESC4, YHR154W) encodes a BRCA1 C-terminal-domain protein that is important for recovery from DNA damage during S phase. Rtt107 is a substrate of the checkpoint protein kinase Mec1, although the mechanism by which Rtt107 is targeted by Mec1 after checkpoint activation is currently unclear. Slx4, a component of the Slx1-Slx4 structure-specific nuclease, formed a complex with Rtt107. Deletion of SLX4 conferred many of the same DNA-repair defects observed in rtt107delta, including DNA damage sensitivity, prolonged DNA damage checkpoint activation, and increased spontaneous DNA damage. These phenotypes were not shared by the Slx4 binding partner Slx1, suggesting that the functions of the Slx4 and Slx1 proteins in the DNA damage response were not identical. Of particular interest, Slx4, but not Slx1, was required for phosphorylation of Rtt107 by Mec1 in vivo, indicating that Slx4 was a mediator of DNA damage-dependent phosphorylation of the checkpoint effector Rtt107. We propose that Slx4 has roles in the DNA damage response that are distinct from the function of Slx1-Slx4 in maintaining rDNA structure and that Slx4-dependent phosphorylation of Rtt107 by Mec1 is critical for replication restart after alkylation damage.


Asunto(s)
Ciclo Celular/fisiología , Daño del ADN , ADN de Hongos/genética , Endodesoxirribonucleasas/metabolismo , Proteínas Nucleares/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Farmacorresistencia Fúngica , Endodesoxirribonucleasas/genética , Péptidos y Proteínas de Señalización Intracelular , Metilmetanosulfonato/farmacología , Proteínas Nucleares/genética , Fosforilación/efectos de los fármacos , Unión Proteica , Proteínas Serina-Treonina Quinasas , Saccharomyces cerevisiae/citología , Saccharomyces cerevisiae/efectos de los fármacos , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética
7.
Mol Cell Biol ; 23(15): 5431-45, 2003 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-12861028

RESUMEN

Eukaryotic initiation factor 4G (eIF4G) promotes mRNA recruitment to the ribosome by binding to the mRNA cap- and poly(A) tail-binding proteins eIF4E and Pap1p. eIF4G also binds eIF4A at a distinct HEAT domain composed of five stacks of antiparallel alpha-helices. The role of eIF4G in the later steps of initiation, such as scanning and AUG recognition, has not been defined. Here we show that the entire HEAT domain and flanking residues of Saccharomyces cerevisiae eIF4G2 are required for the optimal interaction with the AUG recognition factors eIF5 and eIF1. eIF1 binds simultaneously to eIF4G and eIF3c in vitro, as shown previously for the C-terminal domain of eIF5. In vivo, co-overexpression of eIF1 or eIF5 reverses the genetic suppression of an eIF4G HEAT domain Ts(-) mutation by eIF4A overexpression. In addition, excess eIF1 inhibits growth of a second eIF4G mutant defective in eIF4E binding, which was also reversed by co-overexpression of eIF4A. Interestingly, excess eIF1 carrying the sui1-1 mutation, known to relax the accuracy of start site selection, did not inhibit the growth of the eIF4G mutant, and sui1-1 reduced the interaction between eIF4G and eIF1 in vitro. Moreover, a HEAT domain mutation altering eIF4G moderately enhances translation from a non-AUG codon. These results strongly suggest that the binding of the eIF4G HEAT domain to eIF1 and eIF5 is important for maintaining the integrity of the scanning ribosomal preinitiation complex.


Asunto(s)
Factor 4G Eucariótico de Iniciación/química , Factor 4G Eucariótico de Iniciación/fisiología , Factores Eucarióticos de Iniciación/metabolismo , Unión Competitiva , Codón , Eliminación de Gen , Glutatión Transferasa/metabolismo , Cinética , Modelos Biológicos , Mutación , Fenotipo , Plásmidos/metabolismo , Mutación Puntual , Pruebas de Precipitina , Unión Proteica , Biosíntesis de Proteínas , Estructura Terciaria de Proteína , Proteínas Recombinantes de Fusión/metabolismo , Ribosomas/metabolismo , Saccharomyces cerevisiae/metabolismo , Temperatura
8.
Mutat Res ; 625(1-2): 1-19, 2007 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17555773

RESUMEN

Previous studies in yeast have suggested that the SGS1 DNA helicase or the Mus81-Mms4 structure-specific endonuclease is required to suppress the accumulation of lethal recombination intermediates during DNA replication. However, the structure of these intermediates and their mechanism of the suppression are unknown. To examine this reaction, we have isolated and characterized a temperature-sensitive (ts) allele of MUS81. At the non-permissive temperature, sgs1Deltamus81(ts) cells arrest at G(2)/M phase after going through S-phase. Bulk DNA replication appears complete but is defective since the Rad53 checkpoint kinase is strongly phosphorylated under these conditions. In addition, the induction of Rad53 hyper-phosphorylation by MMS was deficient at permissive temperature. Analysis of rDNA replication intermediates at the non-permissive temperature revealed elevated pausing of replication forks at the RFB in the sgs1Deltamus81(ts) mutant and a novel linear structure that was dependent on RAD52. Pulsed-field gel electrophoresis of the mus81Delta mutant revealed an expansion of the rDNA locus depending on RAD52, in addition to fragmentation of Chr XII in the sgs1Deltamus81(ts) mutant at permissive temperature. This is the first evidence that Mus81 functions in quality control of replication forks and that it is involved in the maintenance of rDNA repeats in vivo.


Asunto(s)
Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Endonucleasas/genética , Endonucleasas/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Ciclo Celular , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Quinasa de Punto de Control 2 , Reparación del ADN , Replicación del ADN/genética , ADN de Hongos/genética , ADN Ribosómico/genética , Electroforesis en Gel de Campo Pulsado , Genes Fúngicos , Modelos Genéticos , Mutación , Fosforilación , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Proteína Recombinante y Reparadora de ADN Rad52/genética , Proteína Recombinante y Reparadora de ADN Rad52/metabolismo , RecQ Helicasas/genética , RecQ Helicasas/metabolismo , Recombinación Genética , Secuencias Repetitivas de Ácidos Nucleicos , Saccharomyces cerevisiae/citología , Temperatura
9.
J Biol Chem ; 283(2): 1094-103, 2008 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-17974565

RESUMEN

Eukaryotic initiation factor (eIF) 1 is a small protein (12 kDa) governing fidelity in translation initiation. It is recruited to the 40 S subunit in a multifactor complex with Met-tRNA(i)(Met), eIF2, eIF3, and eIF5 and binds near the P-site. eIF1 release in response to start codon recognition is an important signal to produce an 80 S initiation complex. Although the ribosome-binding face of eIF1 was identified, interfaces to other preinitiation complex components and their relevance to eIF1 function have not been determined. Exploiting the solution structure of yeast eIF1, here we locate the binding site for eIF5 in its N-terminal tail and at a basic/hydrophobic surface area termed KH, distinct from the ribosome-binding face. Genetic and biochemical studies indicate that the eIF1 N-terminal tail plays a stimulatory role in cooperative multifactor assembly. A mutation altering the basic part of eIF1-KH is lethal and shows a dominant phenotype indicating relaxed start codon selection. Cheung et al. recently demonstrated that the alteration of hydrophobic residues of eIF1 disrupts a critical link to the preinitiation complex that suppresses eIF1 release before start codon selection (Cheung, Y.-N., Maag, D., Mitchell, S. F., Fekete, C. A., Algire, M. A., Takacs, J. E., Shirokikh, N., Pestova, T., Lorsch, J. R., and Hinnebusch, A. (2007) Genes Dev. 21, 1217-1230 ). Interestingly, eIF1-KH includes the altered hydrophobic residues. Thus, eIF5 is an excellent candidate for the direct partner of eIF1-KH that mediates the critical link. The direct interaction at eIF1-KH also places eIF5 near the decoding site of the 40 S subunit.


Asunto(s)
Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/química , Factor 5 Eucariótico de Iniciación/metabolismo , Secuencia de Aminoácidos , Sitios de Unión , Secuencia Conservada , Factor 1 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/genética , Proteínas Fúngicas/química , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Humanos , Modelos Moleculares , Datos de Secuencia Molecular , Plásmidos , Conformación Proteica , Saccharomyces cerevisiae/genética , Soluciones
10.
Curr Genet ; 48(4): 213-25, 2005 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-16193328

RESUMEN

Yeast cells lacking the SGS1 DNA helicase and the MUS81 structure-specific endonuclease display a synthetic lethality that is suppressed by loss of the RAD51 recombinase. This epistatic interaction suggests that the primary function of SGS1 or MUS81, or both genes, is downstream of RAD51. To identify RAD51-independent functions of SGS1 and MUS81, a synthetic-lethal screen was performed on the sgs1 mus81 rad51triple mutant. We found that mutation of RNH202, which encodes a subunit of the hetero-trimeric RNase H2, generates a profound synthetic-sickness in this background. RNase H2 is thought to play a non-essential role in Okazaki fragment maturation. Cells lacking RNH202 showed synthetic growth defects when combined with either mus81 or sgs1 alone. But, whereas the loss of RAD51 had little effect on rnh202 sgs1 double mutants, it strongly inhibited the growth of rnh202 mus81 cells. These data indicate that the primary function of SGS1, but not MUS81, is downstream of RAD51. SGS1 must have some RAD51-independent function, however, since the growth of rnh202 mus81 rad51cells was further compromised by the loss of SGS1. Consistent with these results, we show that rnh202 cells display a sensitivity to DNA-damaging agents that is exacerbated in the absence of RAD51 or MUS81. These data support a model in which defects in lagging-strand replication are repaired by the Mus81 endonuclease or through a pathway dependent on Rad51 and Sgs1.


Asunto(s)
ADN Helicasas/genética , Reparación del ADN/genética , Replicación del ADN/genética , Proteínas de Unión al ADN/genética , Endonucleasas/genética , Recombinasa Rad51/genética , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/genética , Inestabilidad Genómica/genética , Modelos Genéticos , Mutágenos/farmacología , Proteínas Mutantes/metabolismo , RecQ Helicasas , Ribonucleasa H/genética , Ribonucleasa H/metabolismo , Telómero/fisiología
11.
J Biol Chem ; 279(30): 31910-20, 2004 Jul 23.
Artículo en Inglés | MEDLINE | ID: mdl-15145951

RESUMEN

Eukaryotic initiation factor 1 (eIF1) is a low molecular weight factor critical for stringent AUG selection in eukaryotic translation. It is recruited to the 43 S complex in the multifactor complex (MFC) with eIF2, eIF3, and eIF5 via multiple interactions with the MFC constituents. Here we show that FLAG epitope tagging of eIF1 at either terminus abolishes its in vitro interactions with eIF5 and eIF2beta but not that with eIF3c. Nevertheless, both forms of FLAG-eIF1 fail to bind eIF3 and are incorporated into the 43 S complex inefficiently in vivo. C-terminal FLAG tagging of eIF1 is lethal; overexpression of C-terminal FLAG-eIF1 severely impedes 43 S complex formation and derepresses GCN4 translation due to limiting of eIF2.GTP.Met-tRNA(i)(Met) ternary complex binding to the ribosome. Furthermore, N-terminal FLAG-eIF1 overexpression reduces eIF2 binding to the ribosome and moderately derepresses GCN4 translation. Our results provide the first in vivo evidence that eIF1 plays an important role in promoting 43 S complex formation as a core of factor interactions. We propose that the coordinated recruitment of eIF1 to the 40 S ribosome in the MFC is critical for the production of functional 40 S preinitiation complex.


Asunto(s)
Factor 1 Eucariótico de Iniciación/metabolismo , Ribosomas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Secuencia de Bases , ADN de Hongos/genética , Factor 1 Eucariótico de Iniciación/química , Factor 1 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/química , Factor 2 Eucariótico de Iniciación/genética , Factor 2 Eucariótico de Iniciación/metabolismo , Factor 5 Eucariótico de Iniciación/química , Factor 5 Eucariótico de Iniciación/genética , Factor 5 Eucariótico de Iniciación/metabolismo , Sustancias Macromoleculares , Iniciación de la Cadena Peptídica Traduccional , Estructura Terciaria de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Ribosomas/química , Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA