Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(12): 7822-7831, 2018 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-30383965

RESUMEN

Fully inorganic cesium lead halide perovskite (CsPbX3) nanocrystals (NCs) have been extensively studied due to their excellent optical properties, especially their high photoluminescence quantum yield (PLQY) and the ease with which the PL can be tuned across the visible spectrum. So far, most strategies for synthesizing CsPbX3 NCs are highly sensitive to the processing conditions and ligand combinations. For example, in the synthesis of nanocubes of different sizes, it is not uncommon to have samples that contain various other shapes, such as nanoplatelets and nanosheets. Here, we report a new colloidal synthesis method for preparing shape-pure and nearly monodispersed CsPbBr3 nanocubes using secondary amines. Regardless of the length of the alkyl chains, the oleic acid concentration, and the reaction temperature, only cube-shaped NCs were obtained. The shape purity and narrow size distribution of the nanocubes are evident from their sharp excitonic features and their ease of self-assembly in superlattices, reaching lateral dimensions of up to 50 µm. We attribute this excellent shape and phase purity to the inability of secondary amines to find the right steric conditions at the surface of the NCs, which consequently limits the formation of low-dimensional structures. Furthermore, no contamination from other phases was observed, not even from Cs4PbBr6, presumably due to the poor ability of secondary aliphatic amines to coordinate to PbBr2 and, hence, to provide a reaction environment that is depleted in Pb.

2.
Adv Mater ; 35(45): e2303528, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37450343

RESUMEN

Addition of aqueous hydrohalic acids during the synthesis of colloidal quantum dots (QDs) is widely employed to achieve high-quality QDs. However, this reliance on the use of aqueous solutions is incompatible with oxygen- and water-sensitive precursors such as those used in the synthesis of Te-alloyed ZnSe QDs. Herein, it is shown that this incompatibility leads to phase segregation into Te-rich and Te-poor regions, causing spectral broadening and luminescence peak shifting under high laser irradiation and applied electrical bias. Here, a synthetic strategy to produce anhydrous-HF in situ by using benzenecarbonyl fluoride (BF) as a chemical additive is reported. Through in situ 19 F NMR spectroscopy, it is found that BF reacts with surfactants in tandem, ultimately producing intermediary F···H···trioctylamine adducts. These act as a pseudo-HF source that releases anhydrous HF. The controlled release of HF during nucleation and growth steps homogenizes Te distribution in ZnSeTe lattice, leading to spectrally stable blue-emitting QDs under increasing laser flux from ≈3 µW to ≈12 mW and applied bias from 2.6 to 10 V. Single-dot photoluminescence (PL) spectroscopy and analyses of the absorption, PL and transient absorption spectra together with density functional theory point to the role of anhydrous HF as a Te homogenizer.

3.
J Phys Chem Lett ; 11(6): 2079-2085, 2020 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-32090576

RESUMEN

The photoluminescence (PL), color purity, and stability of lead halide perovskite nanocrystals depend critically on surface passivation. We present a study on the temperature-dependent PL and PL decay dynamics of lead bromide perovskite nanocrystals characterized by different types of A cations, surface ligands, and nanocrystal sizes. Throughout, we observe a single emission peak from cryogenic to ambient temperature. The PL decay dynamics are dominated by surface passivation, and a postsynthesis ligand exchange with a quaternary ammonium bromide (QAB) results in more stable passivation over a larger temperature range. The PL intensity is highest from 50 to 250 K, which indicates that ligand binding competes with the thermal energy at ambient temperature. Despite the favorable PL dynamics of nanocrystals passivated with QAB ligands (monoexponential PL decay over a large temperature range, increased PL intensity and stability), surface passivation still needs to be improved to achieve maximum emission intensity in nanocrystal films.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA