Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Am Chem Soc ; 145(29): 16160-16165, 2023 07 26.
Artículo en Inglés | MEDLINE | ID: mdl-37435991

RESUMEN

The steric zipper is a common hydrophobic packing structure of peptide side chains that forms between two adjacent ß-sheet layers in amyloid and related fibrils. Although previous studies have revealed that peptide fragments derived from native protein sequences exhibit steric zipper structures, their de novo designs have rarely been studied. Herein, steric zipper structures were artificially constructed in the crystalline state by metal-induced folding and assembly of tetrapeptide fragments Boc-3pa-X1-3pa-X2-OMe (3pa: ß-(3-pyridyl)-l-alanine; X1 and X2: hydrophobic amino acids). Crystallographic studies revealed two types of packing structures, interdigitation and hydrophobic contact, that result in a class 1 steric zipper geometry when the X1 and X2 residues contain alkyl side chains. Furthermore, a class 3 steric zipper geometry was also observed for the first time among any reported steric zippers when using tetrapeptide fragments with (X1, X2) = (Thr, Thr) and (Phe, Leu). The system could also be extended to a knob-hole-type zipper using a pentapeptide sequence.


Asunto(s)
Electrones , Nanoestructuras , Rayos X , Estructura Secundaria de Proteína , Modelos Moleculares , Péptidos/química , Amiloide/química , Difracción de Rayos X
2.
Artículo en Japonés | MEDLINE | ID: mdl-30787222

RESUMEN

Synthetic magnetic resonance imaging (MRI) can create different contrast weighted images by quantifying the T1, T2, and proton density values of the subjects from a single series of scan data. It has not been clarified how the signal to noise ratio (SNR) of the synthesized image varies depending on imaging parameters. We investigated the change of SNR in synthesized MR images by the experiment using self-made phantom. The SNR ratio of synthesized image by synthetic MRI showed the same tendency as the theoretical values due to parameter change in Ny, Nx, slice thickness, number of excitations. However, as for BW, the SNR ratio tended to be different from the theoretical values in some cases. In addition, it was suggested that the SNR of the composite image has relevance to the quantitative accuracy of the T1, T2, and proton density values. We thought that this is due to the image acquisition process by synthetic MRI.


Asunto(s)
Imagen por Resonancia Magnética , Fantasmas de Imagen , Relación Señal-Ruido
3.
Chem Commun (Camb) ; 60(34): 4605-4608, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38586927

RESUMEN

A split-protein system is a simple approach to introduce new termini which are useful as modification sites in protein engineering, but has been adapted mainly for monomeric proteins. Here we demonstrate the design of split subunits of the 60-mer artificial fusion-protein nanocage TIP60. The subunit fragments successfully reformed the cage structure in the same manner as prior to splitting. One of the newly introduced terminals at the interior surface can be modified using a tag peptide and green fluorescent protein. Therefore, the termini could serve as a versatile modification site for incorporating a wide variety of functional peptides and proteins.

4.
Org Lett ; 26(20): 4302-4307, 2024 May 24.
Artículo en Inglés | MEDLINE | ID: mdl-38728049

RESUMEN

A plant used in an Indonesian traditional herbal medicine as a diabetes treatment and known locally as "Jampu Salo" was collected on Sulawesi Island, Indonesia. It was identified as Syzygium oblanceolatum (C. B. Rob.) Merr. (Myrtaceae) and found for the first time in Sulawesi; it was previously reported only in the eastern Philippines and Borneo. A phytochemical study of S. oblanceolatum led to the isolation of three unprecedented meroterpenoids, syzygioblanes A-C (1-3, respectively). These compounds might be biosynthesized through [4+2] cycloaddition of various germacrane-based cyclic sesquiterpenoids with the flavone desmethoxymatteucinol to form a spiro skeleton. The unique and complex structures were elucidated by microcrystal electron diffraction analysis in addition to general analytical techniques such as high-resolution mass spectrometry, various nuclear magnetic resonance methods, and infrared spectroscopy. Synchrotron X-ray diffraction and calculations of electronic circular dichroism spectra helped to determine the absolute configurations. The newly isolated compounds exhibited collateral sensitivity to more strongly inhibit the growth of a multidrug resistant tumor cell line compared to a chemosensitive tumor cell line.


Asunto(s)
Sesquiterpenos , Syzygium , Sesquiterpenos/química , Sesquiterpenos/farmacología , Sesquiterpenos/aislamiento & purificación , Syzygium/química , Estructura Molecular , Indonesia , Humanos , Flavanonas/química , Flavanonas/farmacología , Flavanonas/aislamiento & purificación , Medicina Tradicional , Antineoplásicos Fitogénicos/farmacología , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Ensayos de Selección de Medicamentos Antitumorales , Línea Celular Tumoral
5.
FEBS J ; 290(2): 412-427, 2023 01.
Artículo en Inglés | MEDLINE | ID: mdl-36007953

RESUMEN

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) spike protein (S protein) is highly N-glycosylated, and a "glycan shield" is formed to limit the access of other molecules; however, a small open area coincides with the interface to the host's receptor and also neutralising antibodies. Most of the variants of concern have mutations in this area, which could reduce the efficacy of existing antibodies. In contrast, N-glycosylation sites are relatively invariant, and some are essential for infection. Here, we observed that the S proteins of the ancestral (Wuhan) and Omicron strains bind with Pholiota squarrosa lectin (PhoSL), a 40-amino-acid chemically synthesised peptide specific to core-fucosylated N-glycans. The affinities were at a low nanomolar level, which were ~ 1000-fold stronger than those between PhoSL and the core-fucosylated N-glycans at the micromolar level. We demonstrated that PhoSL inhibited infection by both strains at similar submicromolar levels, suggesting its broad-spectrum effect on SARS-CoV-2 variants. Cryogenic electron microscopy revealed that PhoSL caused an aggregation of the S protein, which was likely due to the multivalence of both the trimeric PhoSL and S protein. This characteristic is likely relevant to the inhibitory mechanism. Structural modelling of the PhoSL-S protein complex indicated that PhoSL was in contact with the amino acids of the S protein, which explains the enhanced affinity with S protein and also indicates the significant potential for developing specific binders by the engineering of PhoSL.


Asunto(s)
Antivirales , Lectinas , SARS-CoV-2 , Humanos , COVID-19 , Fucosa/química , Lectinas/farmacología , Polisacáridos/química , SARS-CoV-2/efectos de los fármacos , Antivirales/farmacología , Pholiota/química
6.
Acta Crystallogr D Struct Biol ; 76(Pt 10): 993-1000, 2020 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-33021501

RESUMEN

Vasohibins regulate angiogenesis, tumor growth, metastasis and neuronal differentiation. They form a complex with small vasohibin-binding protein (SVBP) and show tubulin tyrosine carboxypeptidase activity. Recent crystal structure determinations of vasohibin-SVBP complexes have provided a molecular basis for complex formation, substrate binding and catalytic activity. However, the regulatory mechanism and dynamics of the complex remain elusive. Here, the crystal structure of the VASH1-SVBP complex and a molecular-dynamics simulation study are reported. The overall structure of the complex was similar to previously reported structures. Importantly, however, the structure revealed a domain-swapped heterotetramer that was formed between twofold symmetry-related molecules. This heterotetramerization was stabilized by the mutual exchange of ten conserved N-terminal residues from the VASH1 structural core, which was intramolecular in other structures. Interestingly, a comparison of this region with previously reported structures revealed that the patterns of hydrogen bonding and hydrophobic interactions vary. In the molecular-dynamics simulations, differences were found between the heterotetramer and heterodimer, where the fluctuation of the N-terminal region in the heterotetramer was suppressed. Thus, heterotetramer formation and flexibility of the N-terminal region may be important for enzyme activity and regulation.


Asunto(s)
Proteínas Portadoras/química , Proteínas de Ciclo Celular/química , Cristalografía por Rayos X , Humanos , Modelos Moleculares , Dominios Proteicos , Multimerización de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA