Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 20(10): 7129-7135, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32872789

RESUMEN

2D systems that host 1D helical states are advantageous from the perspective of scalable topological quantum computation when coupled to a superconductor. Graphene is particularly promising for its high electronic quality, its versatility in van der Waals heterostructures, and its electron- and hole-like degenerate 0th Landau level. Here we study a compact double-layer graphene SQUID (superconducting quantum interference device), where the superconducting loop is reduced to the superconducting contacts connecting two parallel graphene Josephson junctions. Despite the small size of the SQUID, it is fully tunable by the independent gate control of the chemical potentials in both layers. Furthermore, both Josephson junctions show a skewed current-phase relationship, indicating the presence of superconducting modes with high transparency. In the quantum Hall regime, we measure a well-defined conductance plateau of 2e2/h indicative of counter-propagating edge channels in the two layers.

2.
Phys Rev Lett ; 124(15): 157701, 2020 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-32357042

RESUMEN

Microscopic corrugations are ubiquitous in graphene even when placed on atomically flat substrates. These result in random local strain fluctuations limiting the carrier mobility of high quality hBN-supported graphene devices. We present transport measurements in hBN-encapsulated devices where such strain fluctuations can be in situ reduced by increasing the average uniaxial strain. When ∼0.2% of uniaxial strain is applied to the graphene, an enhancement of the carrier mobility by ∼35% is observed while the residual doping reduces by ∼39%. We demonstrate a strong correlation between the mobility and the residual doping, from which we conclude that random local strain fluctuations are the dominant source of disorder limiting the mobility in these devices. Our findings are also supported by Raman spectroscopy measurements.

3.
ACS Nano ; 17(19): 18706-18715, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37578964

RESUMEN

Bottom-up-synthesized graphene nanoribbons (GNRs) are an emerging class of designer quantum materials that possess superior properties, including atomically controlled uniformity and chemically tunable electronic properties. GNR-based devices are promising candidates for next-generation electronic, spintronic, and thermoelectric applications. However, due to their extremely small size, making electrical contact with GNRs remains a major challenge. Currently, the most commonly used methods are top metallic electrodes and bottom graphene electrodes, but for both, the contact resistance is expected to scale with overlap area. Here, we develop metallic edge contacts to contact nine-atom-wide armchair GNRs (9-AGNRs) after encapsulation in hexagonal boron-nitride (h-BN), resulting in ultrashort contact lengths. We find that charge transport in our devices occurs via two different mechanisms: at low temperatures (9 K), charges flow through single GNRs, resulting in quantum dot (QD) behavior with well-defined Coulomb diamonds (CDs), with addition energies in the range of 16 to 400 meV. For temperatures above 100 K, a combination of temperature-activated hopping and polaron-assisted tunneling takes over, with charges being able to flow through a network of 9-AGNRs across distances significantly exceeding the length of individual GNRs. At room temperature, our short-channel field-effect transistor devices exhibit on/off ratios as high as 3 × 105 with on-state current up to 50 nA at 0.2 V. Moreover, we find that the contact performance of our edge-contact devices is comparable to that of top/bottom contact geometries but with a significantly reduced footprint. Overall, our work demonstrates that 9-AGNRs can be contacted at their ends in ultra-short-channel FET devices while being encapsulated in h-BN.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA