Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo de estudio
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Parasit Vectors ; 10(Suppl 2): 485, 2017 Nov 09.
Artículo en Inglés | MEDLINE | ID: mdl-29143650

RESUMEN

BACKGROUND: Emerging resistance of heartworms (Dirofilaria immitis) to macrocyclic lactone (ML) preventives is an increasing concern for veterinarians, pet owners and animal health companies that supply heartworm preventives, with recent reports of resistant isolates identified from the Mississippi Delta region of the United States. Products that are effective in eliminating microfilariae (MF) in dogs harboring resistant heartworm infections could be important in reducing the spread of heartworm resistance. The current study was conducted to investigate the potential for ProHeart® 6 (PH 6; Zoetis) and ProHeart® SR-12 (PH 12; Zoetis) to reduce MF in dogs experimentally inoculated with an isolate of D. immitis (ZoeMo-2012) confirmed to be resistant to MLs. METHODS: Twenty-three dogs with preexisting heartworm infections (via surgical transplantation) were randomly allocated to four groups based on pretreatment (Day -14) MF counts. On Day 0, dogs received a subcutaneous injection of either saline (placebo-treated control, 6 dogs), PH 6 (0.17 mg/kg, 6 dogs), PH 12 (0.5 mg/kg, 5 dogs) or a single oral dose of moxidectin powder in a gelatin capsule (0.25 mg/kg, 6 dogs). All dogs were bled for MF counts (modified Knott's test) on Days 0 (pretreatment), 1, 3, 7, 14, 21, 28, 42, 56, and 84. Dogs in control and PH 6 groups were also bled for MF counts on Days 112, 140, and 168. No adverse events associated with treatment were observed for any dog. RESULTS: Average reductions in MF counts compared with controls for PH 6 were 9.7% on Day 1, increasing to 75.0% on Day 7, and further to 86.5% on Day 28. On Day 42, average MF reduction increased to 90.3%. Reductions increased further over the next several months with reductions of 91.3, 96.8, 96.6, and 98.9% on Days 56, 84, 112, and 140, respectively. On Day 168, the reduction was 99.3% (P < 0.0001). Average reductions in MF counts compared with controls for PH 12 were 20.9% on Day 1, increasing to 78.9% on Day 7, and further to 91.2% on Day 28. On Day 84, the reduction was 96.9%. For dogs receiving a single oral moxidectin (0.25 mg/kg) on Day 0, reductions in MF were 86.3% on Day 1 and fluctuated between 74.4 and 83.6% through Day 28. On Days 42 and 56, percentage reductions were 87.1 and 81.8%, respectively, and 92.6% at the final time point (Day 84). CONCLUSION: Both PH 6 and PH 12 were highly effective in reducing the MF levels of a confirmed ML-resistant heartworm isolate following a single dose.


Asunto(s)
Dirofilaria immitis/efectos de los fármacos , Dirofilariasis/tratamiento farmacológico , Enfermedades de los Perros/tratamiento farmacológico , Filaricidas/administración & dosificación , Lactonas/administración & dosificación , Microfilarias/efectos de los fármacos , Animales , Dirofilaria immitis/fisiología , Dirofilariasis/parasitología , Enfermedades de los Perros/parasitología , Perros , Evaluación de Medicamentos , Femenino , Masculino , Microfilarias/fisiología , Mississippi
2.
Vet Parasitol ; 222: 3-11, 2016 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-26961590

RESUMEN

The novel isoxazoline ectoparasiticide, sarolaner, was identified during a lead optimization program for an orally-active compound with efficacy against fleas and ticks on dogs. The aim of the discovery program was to identify a novel isoxazoline specifically for use in companion animals, beginning with de novo synthesis in the Zoetis research laboratories. The sarolaner molecule has unique structural features important for its potency and pharmacokinetic (PK) properties, including spiroazetidine and sulfone moieties. The flea and tick activity resides in the chirally pure S-enantiomer, which was purified to alleviate potential off-target effects from the inactive enantiomer. The mechanism of action was established in electrophysiology assays using CHO-K1 cell lines stably expressing cat flea (Ctenocephalides felis) RDL (resistance-to-dieldrin) genes for assessment of GABA-gated chloride channel (GABACls) pharmacology. As expected, sarolaner inhibited GABA-elicited currents at both susceptible (CfRDL-A285) and resistant (CfRDL-S285) flea GABACls with similar potency. Initial whole organism screening was conducted in vitro using a blood feeding assay against C. felis. Compounds which demonstrated robust activity in the flea feed assay were subsequently tested in an in vitro ingestion assay against the soft tick, Ornithodoros turicata. Efficacious compounds which were confirmed safe in rodents at doses up to 30mg/kg were progressed to safety, PK and efficacy studies in dogs. In vitro sarolaner demonstrated an LC80 of 0.3µg/mL against C. felis and an LC100 of 0.003µg/mL against O. turicata. In a head-to-head comparative in vitro assay with both afoxolaner and fluralaner, sarolaner demonstrated superior flea and tick potency. In exploratory safety studies in dogs, sarolaner demonstrated safety in dogs≥8 weeks of age upon repeated monthly dosing at up to 20mg/kg. Sarolaner was rapidly and well absorbed following oral dosing. Time to maximum plasma concentration occurred within the first day post-dose. Bioavailability for sarolaner was calculated at >85% and the compound was highly protein bound (>99.9%). The half-life for sarolaner was calculated at 11-12 days. Sarolaner plasma concentrations indicated dose proportionality over the range 1.25-5mg/kg, and these same doses provided robust efficacy (>99%) for ≥35days against both fleas (C. felis) and multiple species of ticks (Rhipicephalus sanguineus, Ixodes ricinus and Dermacentor reticulatus) after oral administration to dogs. As a result of these exploratory investigations, sarolaner was progressed for development as an oral monthly dose for treatment and control of fleas and ticks on dogs.


Asunto(s)
Enfermedades de los Perros/prevención & control , Infestaciones Ectoparasitarias/veterinaria , Isoxazoles , Administración Oral , Animales , Perros , Infestaciones Ectoparasitarias/prevención & control , Semivida , Insecticidas/farmacocinética , Insecticidas/farmacología , Insecticidas/normas , Isoxazoles/farmacocinética , Isoxazoles/farmacología , Isoxazoles/normas , Siphonaptera/efectos de los fármacos , Garrapatas/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA