Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | WPRIM | ID: wpr-1045515

RESUMEN

BACKGROUND@#Bioglasses are used in applications related to bone rehabilitation and repair. The mechanical and bioactive properties of polysaccharides like alginate and agarose can be modulated or improved using bioglass nanoparticles. Further essential metal ions used as crosslinker have the potential to supplement cultured cells for better growth and proliferation.METHOD: In this study, the alginate bioink is modulated for fabrication of tissue engineering scaffolds by extrusionbased 3D bioprinting using agarose, bioglass nanoparticles and combination of essential trace elements such as iron, zinc, and copper. Homogeneous bioink was obtained by in situ mixing and bioprinting of its components with twin screw extruder (TSE) based 3D bioprinting, and then distribution of metal ions was induced through post-printing diffusion of metal ions in the printed scaffolds. The mechanical and 3d bioprinting properties, microscopic structure, biocompatibility of the crosslinked alginate/agarose hydrogels were analyzed for different concentrations of bioglass. The adipose derived mesenchymal stem cells (ADMSC) and osteoblast cells (MC3T3) were used to evaluate this hydrogel’s biological performances. @*RESULTS@#The porosity of hydrogels significantly improves with the incorporation of the bioglass. More bioglass concentration results in improved mechanical (compressive, dynamic, and cyclic) and 3D bioprinting properties. Cell growth and extracellular matrix are also enhanced with bioglass concentration. @*CONCLUSION@#For bioprinting of the bioinks, the advanced TSE head was attached to 3D bioprinter and in situ fabrication of cell encapsulated scaffold was obtained with optimized composition considering minimal effects on cell damage. Fabricated bioinks demonstrate a biocompatible and noncytotoxic scaffold for culturing MC3T3 and ADMSC, while bioglass controls the cellular behaviors such as cell growth and extracellular matrix formation.

2.
Artículo en Inglés | WPRIM | ID: wpr-742388

RESUMEN

BACKGROUND: Tissue engineering is a multidisciplinary field which attracted much attention in recent years. One of the most important issue in tissue engineering is how to obtain high cell numbers and tissue regeneration while maintaining appropriate cellular characteristics in vitro for restoring damaged or dysfunctional body tissues and organs. These demands can be achieved by the use of three dimensional (3D) dynamic cultures of cells combined with cell-adhesive micro-carriers. METHODS: In this study, human mesenchymal stem cells (hMSCs) were cultured in a wave-bioreactor system for up to 100 days, after seeding on Cultisphere-S porous gelatin micro-carriers. Cell counting was performed at the time points of 7, 12, 17, 31 days and compared to those of hMSCs cultured under static condition. Higher growth and proliferation rates was achieved in wave-type dynamic culture, when cell culture continued to day 31. A scanning electron microscope (SEM) photographs, both live and dead and MTT assays were taken to confirm the survival and distribution of cells on porous gelatin micro-carrier surfaces. The results of histological stains such as hematoxylin and eosin, Masson’s trichrome, Alcian blue and Alizarin red S also showed improved proliferation and tissue regeneration of hMSCs on porous gelatin micro-carriers. CONCLUSION: The experimental results demonstrated the effect and importance of both micro-carriers and bioreactor in hMSC expansion on cell proliferation and migration as well as extracellular matrix formation on the superficial and pore surfaces of the porous gelatin micro-carriers, and then their inter-connections, leading to tissue regeneration.


Asunto(s)
Humanos , Azul Alcián , Reactores Biológicos , Recuento de Células , Técnicas de Cultivo de Célula , Proliferación Celular , Colorantes , Eosina Amarillenta-(YS) , Matriz Extracelular , Gelatina , Hematoxilina , Técnicas In Vitro , Células Madre Mesenquimatosas , Regeneración , Ingeniería de Tejidos
3.
Artículo en Inglés | WPRIM | ID: wpr-717547

RESUMEN

BACKGROUND: The tissue engineering and regenerative medicine approach require biomaterials which are biocompatible, easily reproducible in less time, biodegradable and should be able to generate complex three-dimensional (3D) structures to mimic the native tissue structures. Click chemistry offers the much-needed multifunctional hydrogel materials which are interesting biomaterials for the tissue engineering and bioprinting inks applications owing to their excellent ability to form hydrogels with printability instantly and to retain the live cells in their 3D network without losing the mechanical integrity even under swollen state. METHODS: In this review, we present the recent developments of in situ hydrogel in the field of click chemistry reported for the tissue engineering and 3D bioinks applications, by mainly covering the diverse types of click chemistry methods such as Diels–Alder reaction, strain-promoted azide-alkyne cycloaddition reactions, thiol-ene reactions, oxime reactions and other interrelated reactions, excluding enzyme-based reactions. RESULTS: The click chemistry-based hydrogels are formed spontaneously on mixing of reactive compounds and can encapsulate live cells with high viability for a long time. The recent works reported by combining the advantages of click chemistry and 3D bioprinting technology have shown to produce 3D tissue constructs with high resolution using biocompatible hydrogels as bioinks and in situ injectable forms. CONCLUSION: Interestingly, the emergence of click chemistry reactions in bioink synthesis for 3D bioprinting have shown the massive potential of these reaction methods in creating 3D tissue constructs. However, the limitations and challenges involved in the click chemistry reactions should be analyzed and bettered to be applied to tissue engineering and 3D bioinks. The future scope of these materials is promising, including their applications in in situ 3D bioprinting for tissue or organ regeneration.


Asunto(s)
Materiales Biocompatibles , Bioimpresión , Química Clic , Reacción de Cicloadición , Hidrogeles , Hidrogeles , Tinta , Regeneración , Medicina Regenerativa , Ingeniería de Tejidos
4.
Artículo en Inglés | WPRIM | ID: wpr-742377

RESUMEN

Novel hydrogel composed of both chondroitin sulfate (CS) and gelatin was developed for better cellular interaction through two step double crosslinking of N-(3-diethylpropyl)-N-ethylcarbodiimide hydrochloride (EDC) chemistries and then click chemistry. EDC chemistry was proceeded during grafting of amino acid dihydrazide (ADH) to carboxylic groups in CS and gelatin network in separate reactions, thus obtaining CS–ADH and gelatin–ADH, respectively. CS–acrylate and gelatin–TCEP was obtained through a second EDC chemistry of the unreacted free amines of CS–ADH and gelatin–ADH with acrylic acid and tri(carboxyethyl)phosphine (TCEP), respectively. In situ CS–gelatin hydrogel was obtained via click chemistry by simple mixing of aqueous solutions of both CS–acrylate and gelatin–TCEP. ATR-FTIR spectroscopy showed formation of the new chemical bonds between CS and gelatin in CS–gelatin hydrogel network. SEM demonstrated microporous structure of the hydrogel. Within serial precursor concentrations of the CS–gelatin hydrogels studied, they showed trends of the reaction rates of gelation, where the higher concentration, the quicker the gelation occurred. In vitro studies, including assessment of cell viability (live and dead assay), cytotoxicity, biocompatibility via direct contacts of the hydrogels with cells, as well as measurement of inflammatory responses, showed their excellent biocompatibility. Eventually, the test results verified a promising potency for further application of CS–gelatin hydrogel in many biomedical fields, including drug delivery and tissue engineering by mimicking extracellular matrix components of tissues such as collagen and CS in cartilage.


Asunto(s)
Aminas , Cartílago , Supervivencia Celular , Química , Sulfatos de Condroitina , Condroitín , Química Clic , Colágeno , Matriz Extracelular , Gelatina , Hidrogeles , Hidrogeles , Técnicas In Vitro , Análisis Espectral , Ingeniería de Tejidos , Trasplantes
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA