Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Am J Physiol Cell Physiol ; 326(1): C229-C251, 2024 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-37899748

RESUMEN

This review summarizes methods to study kidney intercalated cell (IC) function ex vivo. While important for acid-base homeostasis, IC dysfunction is often not recognized clinically until it becomes severe. The advantage of using ex vivo techniques is that they allow for the differential evaluation of IC function in controlled environments. Although in vitro kidney tubular perfusion is a classical ex vivo technique to study IC, here we concentrate on primary cell cultures, immortalized cell lines, and ex vivo kidney slices. Ex vivo techniques are useful in evaluating IC signaling pathways that allow rapid responses to extracellular changes in pH, CO2, and bicarbonate (HCO3-). However, these methods for IC work can also be challenging, as cell lines that recapitulate IC do not proliferate easily in culture. Moreover, a "pure" IC population in culture does not necessarily replicate its collecting duct (CD) environment, where ICs are surrounded by the more abundant principal cells (PCs). It is reassuring that many findings obtained in ex vivo IC systems signaling have been largely confirmed in vivo. Some of these newly identified signaling pathways reveal that ICs are important for regulating NaCl reabsorption, thus suggesting new frontiers to target antihypertensive treatments. Moreover, recent single-cell characterization studies of kidney epithelial cells revealed a dual developmental origin of IC, as well as the presence of novel CD cell types with certain IC characteristics. These exciting findings present new opportunities for the study of IC ex vivo and will likely rediscover the importance of available tools in this field.NEW & NOTEWORTHY The study of kidney intercalated cells has been limited by current cell culture and kidney tissue isolation techniques. This review is to be used as a reference to select ex vivo techniques to study intercalated cells. We focused on the use of cell lines and kidney slices as potential useful models to study membrane transport proteins. We also review how novel collecting duct organoids may help better elucidate the role of these intriguing cells.


Asunto(s)
Túbulos Renales Colectores , Túbulos Renales Colectores/metabolismo , Cultivo Primario de Células , Riñón/metabolismo , Línea Celular , Células Epiteliales/metabolismo , Organoides
2.
Mol Ther Nucleic Acids ; 23: 63-75, 2021 Mar 05.
Artículo en Inglés | MEDLINE | ID: mdl-33335793

RESUMEN

The androgen receptor (AR) plays a critical role in the development of prostate cancer (PCa) through the activation of androgen-induced cellular proliferation genes. Thus, blocking AR-mediated transcriptional activation is expected to inhibit the growth and spread of PCa. Using tailor-made splice-switching locked nucleic acid (LNA) oligonucleotides (SSOs), we successfully redirected splicing of the AR precursor (pre-)mRNA and destabilized the transcripts via the introduction of premature stop codons. Furthermore, the SSOs simultaneously favored production of the AR45 mRNA in lieu of the full-length AR. AR45 is an AR isoform that can attenuate the activity of both full-length and oncogenic forms of AR by binding to their common N-terminal domain (NTD), thereby blocking their transactivation potential. A large screen was subsequently used to identify individual SSOs that could best perform this dual function. The selected SSOs powerfully silence AR expression and modulate the expression of AR-responsive cellular genes. This bi-functional strategy that uses a single therapeutic molecule can be the basis for novel PCa treatments. It might also be customized to other types of therapies that require the silencing of one gene and the simultaneous expression of a different isoform.

3.
Trends Pharmacol Sci ; 41(1): 27-41, 2020 01.
Artículo en Inglés | MEDLINE | ID: mdl-31836192

RESUMEN

Four decades have passed since oligonucleotides were first used to manipulate gene expression. There were few FDA approvals prior to 2016, mostly of drugs that eventually exhibited poor performance in the market. The aura of their younger siRNA relatives had also faded during the past 15 years. However, several FDA approvals have occurred in the past 4 years, restoring hope that a new era has dawned in oligonucleotide/siRNA clinical therapeutics. Here, we review the field of oligonucleotide therapeutics and provide an update on FDA approvals of oligonucleotides from 2017 until the second quarter of 2019. We take into consideration the ethical issues looming over the still somewhat limited efficacy of these molecules, the toxicity of treatment, and the exorbitant cost of these therapeutic agents, which limits accessibility for many.


Asunto(s)
Oligonucleótidos/administración & dosificación , Ensayos Clínicos Fase III como Asunto , Aprobación de Drogas , Costos de los Medicamentos , Humanos , Oligonucleótidos/economía , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Ensayos Clínicos Controlados Aleatorios como Asunto , Estados Unidos , United States Food and Drug Administration
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA