Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Emerg Infect Dis ; 29(12): 2451-2460, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37987580

RESUMEN

We describe the pathology of natural infection with highly pathogenic avian influenza A(H5N1) virus of Eurasian lineage Goose/Guangdong clade 2.3.4.4b in 67 wild terrestrial mammals throughout the United States during April 1‒July 21, 2022. Affected mammals include 50 red foxes (Vulpes vulpes), 6 striped skunks (Mephitis mephitis), 4 raccoons (Procyon lotor), 2 bobcats (Lynx rufus), 2 Virginia opossums (Didelphis virginiana), 1 coyote (Canis latrans), 1 fisher (Pekania pennanti), and 1 gray fox (Urocyon cinereoargenteus). Infected mammals showed primarily neurologic signs. Necrotizing meningoencephalitis, interstitial pneumonia, and myocardial necrosis were the most common lesions; however, species variations in lesion distribution were observed. Genotype analysis of sequences from 48 animals indicates that these cases represent spillover infections from wild birds.


Asunto(s)
Subtipo H5N1 del Virus de la Influenza A , Gripe Aviar , Animales , Estados Unidos/epidemiología , Subtipo H5N1 del Virus de la Influenza A/genética , Mephitidae , Gripe Aviar/epidemiología , Mamíferos , Animales Salvajes , Zorros
2.
PLoS Pathog ; 16(9): e1008758, 2020 09.
Artículo en Inglés | MEDLINE | ID: mdl-32881980

RESUMEN

The COVID-19 pandemic highlights the substantial public health, economic, and societal consequences of virus spillover from a wildlife reservoir. Widespread human transmission of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) also presents a new set of challenges when considering viral spillover from people to naïve wildlife and other animal populations. The establishment of new wildlife reservoirs for SARS-CoV-2 would further complicate public health control measures and could lead to wildlife health and conservation impacts. Given the likely bat origin of SARS-CoV-2 and related beta-coronaviruses (ß-CoVs), free-ranging bats are a key group of concern for spillover from humans back to wildlife. Here, we review the diversity and natural host range of ß-CoVs in bats and examine the risk of humans inadvertently infecting free-ranging bats with SARS-CoV-2. Our review of the global distribution and host range of ß-CoV evolutionary lineages suggests that 40+ species of temperate-zone North American bats could be immunologically naïve and susceptible to infection by SARS-CoV-2. We highlight an urgent need to proactively connect the wellbeing of human and wildlife health during the current pandemic and to implement new tools to continue wildlife research while avoiding potentially severe health and conservation impacts of SARS-CoV-2 "spilling back" into free-ranging bat populations.


Asunto(s)
Animales Salvajes/virología , Betacoronavirus/patogenicidad , Infecciones por Coronavirus/virología , Neumonía Viral/virología , Animales , COVID-19 , Quirópteros/virología , Genoma Viral/genética , Especificidad del Huésped/fisiología , Humanos , Pandemias , SARS-CoV-2
3.
Emerg Infect Dis ; 27(3): 988-990, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33622465

RESUMEN

In August 2020, outbreaks of coronavirus disease were confirmed on mink farms in Utah, USA. We surveyed mammals captured on and around farms for evidence of infection or exposure. Free-ranging mink, presumed domestic escapees, exhibited high antibody titers, suggesting a potential severe acute respiratory syndrome coronavirus 2 transmission pathway to native wildlife.


Asunto(s)
Animales Salvajes/virología , Visón/virología , SARS-CoV-2/aislamiento & purificación , Animales , COVID-19/diagnóstico , COVID-19/epidemiología , COVID-19/transmisión , COVID-19/veterinaria , Granjas , Mamíferos/virología , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Utah/epidemiología , Zoonosis/diagnóstico , Zoonosis/epidemiología , Zoonosis/transmisión
4.
Arch Virol ; 165(10): 2373-2377, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32761270
5.
Artículo en Inglés | MEDLINE | ID: mdl-33716412

RESUMEN

Die-offs of seabirds in Alaska have occurred with increased frequency since 2015. In 2018, on St. Lawrence Island, seabirds were reported washing up dead on beaches starting in late May, peaking in June, and continuing until early August. The cause of death was documented to be starvation, leading to the conclusion that a severe food shortage was to blame. We use physiology and colony-based observations to examine whether food shortage is a sufficient explanation for the die-off, or if evidence indicates an alternative cause of starvation such as disease. Specifically, we address what species were most affected, the timing of possible food shortages, and food shortage severity in a historical context. We found that thick-billed murres (Uria lomvia) were most affected by the die-off, making up 61% of all bird carcasses encountered during beach surveys. Thick-billed murre carcasses were proportionately more numerous (26:1) than would be expected based on ratios of thick-billed murres to co-occurring common murres (U. aalge) observed on breeding study plots (7:1). Concentrations of the stress hormone corticosterone, a reliable physiological indicator of nutritional stress, in thick-billed murre feathers grown in the fall indicate that foraging conditions in the northern Bering Sea were poor in the fall of 2017 and comparable in severity to those experienced by murres during the 1976-1977 Bering Sea regime shift. Concentrations of corticosterone in feathers grown during the pre-breeding molt indicate that foraging conditions in late winter 2018 were similar to previous years. The 2018 murre egg harvest in the village of Savoonga (on St. Lawrence Is.) was one-fifth the 1993-2012 average, and residents observed that fewer birds laid eggs in 2018. Exposure of thick-billed murres to nutritional stress in August, however, was no different in 2018 compared to 2016, 2017, and 2019, and was comparable to levels observed on St. George Island in 2003-2017. Prey abundance, measured by the National Oceanic and Atmospheric Administration in bottom-trawl surveys, was also similar in 2018 to 2017 and 2019, supporting the evidence that food was not scarce in the summer of 2018 in the vicinity of St. Lawrence Island. Of two moribund thick-billed murres collected at the end of the mortality event, one tested positive for a novel re-assortment H10 strain of avian influenza with Eurasian components, likely contracted during the non-breeding season. It is not currently known how widely spread infection of murres with the novel virus was, thus insufficient evidence exists to attribute the die-off to an outbreak of avian influenza. We conclude that food shortage alone is not an adequate explanation for the mortality of thick-billed murres in 2018, and highlight the importance of rapid response to mortality events in order to document alternative or confounding causes of mortality.

6.
Virol J ; 15(1): 9, 2018 01 12.
Artículo en Inglés | MEDLINE | ID: mdl-29329546

RESUMEN

BACKGROUND: Newcastle disease viruses (NDV) are highly contagious and cause disease in both wild birds and poultry. A pigeon-adapted variant of genotype VI NDV, often termed pigeon paramyxovirus 1, is commonly isolated from columbids in the United States and worldwide. Complete genomic characterization of these genotype VI viruses circulating in wild columbids in the United States is limited, and due to the genetic variability of the virus, failure of rapid diagnostic detection has been reported. Therefore, in this study, formalin-fixed paraffin-embedded (FFPE) samples were subjected to next-generation sequencing (NGS) to identify and characterize these circulating viruses, providing valuable genetic information. NGS enables multiple samples to be deep-sequenced in parallel. When used on FFPE samples, this methodology allows for retrospective studies of infectious organisms. METHODS: FFPE wild pigeon tissue samples (kidney, liver and spleen) from 10 mortality events in the U.S. between 2010 and 2016 were analyzed using NGS to detect and sequence NDV genomes from randomly amplified total RNA. Results were compared to the previously published immunohistochemistry (IHC) results conducted on the same samples. Additionally, phylogenetic analyses were conducted on the complete and partial fusion gene and complete genome coding sequences. RESULTS: Twenty-three out of 29 IHC-positive FFPE pigeon samples were identified as positive for NDV by NGS. Positive samples produced an average genome coverage of 99.6% and an average median depth of 199. A previously described sub-genotype (VIa) and a novel sub-genotype (VIn) of NDV were identified as the causative agent of 10 pigeon mortality events in the U.S. from 2010 to 2016. The distribution of these viruses from the North American lineages match the distribution of the Eurasian collared-doves and rock pigeons in the U.S. CONCLUSIONS: This work reports the first successful evolutionary study using deep sequencing of complete NDV genomes from FFPE samples of wild bird origin. There are at least two distinct U.S. lineages of genotype VI NDV maintained in wild pigeons that are continuously evolving independently from each other and have no evident epidemiological connections to viruses circulating abroad. These findings support the hypothesis that columbids are serving as reservoirs of virulent NDV in the U.S.


Asunto(s)
Columbidae/virología , Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/genética , Animales , Virus de la Enfermedad de Newcastle/clasificación , Filogenia , Vigilancia en Salud Pública , Estados Unidos/epidemiología , Secuenciación Completa del Genoma
7.
J Virol ; 90(2): 862-72, 2016 01 15.
Artículo en Inglés | MEDLINE | ID: mdl-26512086

RESUMEN

UNLABELLED: The introduction of West Nile virus (WNV) into North America in 1999 is a classic example of viral emergence in a new environment, with its subsequent dispersion across the continent having a major impact on local bird populations. Despite the importance of this epizootic, the pattern, dynamics, and determinants of WNV spread in its natural hosts remain uncertain. In particular, it is unclear whether the virus encountered major barriers to transmission, or spread in an unconstrained manner, and if specific viral lineages were favored over others indicative of intrinsic differences in fitness. To address these key questions in WNV evolution and ecology, we sequenced the complete genomes of approximately 300 avian isolates sampled across the United States between 2001 and 2012. Phylogenetic analysis revealed a relatively star-like tree structure, indicative of explosive viral spread in the United States, although with some replacement of viral genotypes through time. These data are striking in that viral sequences exhibit relatively limited clustering according to geographic region, particularly for those viruses sampled from birds, and no strong phylogenetic association with well-sampled avian species. The genome sequence data analyzed here also contain relatively little evidence for adaptive evolution, particularly of structural proteins, suggesting that most viral lineages are of similar fitness and that WNV is well adapted to the ecology of mosquito vectors and diverse avian hosts in the United States. In sum, the molecular evolution of WNV in North America depicts a largely unfettered expansion within a permissive host and geographic population with little evidence of major adaptive barriers. IMPORTANCE: How viruses spread in new host and geographic environments is central to understanding the emergence and evolution of novel infectious diseases and for predicting their likely impact. The emergence of the vector-borne West Nile virus (WNV) in North America in 1999 represents a classic example of this process. Using approximately 300 new viral genomes sampled from wild birds, we show that WNV experienced an explosive spread with little geographical or host constraints within birds and relatively low levels of adaptive evolution. From its introduction into the state of New York, WNV spread across the United States, reaching California and Florida within 4 years, a migration that is clearly reflected in our genomic sequence data, and with a general absence of distinct geographical clusters of bird viruses. However, some geographically distinct viral lineages were found to circulate in mosquitoes, likely reflecting their limited long-distance movement compared to avian species.


Asunto(s)
Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/transmisión , Transmisión de Enfermedad Infecciosa , Filogeografía , Fiebre del Nilo Occidental/veterinaria , Animales , Enfermedades de las Aves/virología , Análisis por Conglomerados , Evolución Molecular , Variación Genética , Genoma Viral , Genotipo , Epidemiología Molecular , Datos de Secuencia Molecular , Análisis de Secuencia de ADN , Homología de Secuencia , Estados Unidos/epidemiología , Fiebre del Nilo Occidental/epidemiología , Fiebre del Nilo Occidental/transmisión , Virus del Nilo Occidental/clasificación , Virus del Nilo Occidental/genética , Virus del Nilo Occidental/aislamiento & purificación
8.
Virol J ; 14(1): 60, 2017 03 21.
Artículo en Inglés | MEDLINE | ID: mdl-28327168

RESUMEN

BACKGROUND: On November 20, 2016 two novel strains of H5N6 highly pathogenic avian influenza virus (HPAIVs) were isolated from three whooper swans (Cygnus cygnus) at Gangjin Bay in South Jeolla province, South Korea. Identification of HPAIVs in wild birds is significant as there is a potential risk of transmission of these viruses to poultry and humans. RESULTS: Phylogenetic analysis revealed that Gangjin H5N6 viruses classified into Asian H5 clade 2.3.4.4 lineage and were distinguishable from H5N8 and H5N1 HPAIVs previously isolated in Korea. With the exception of the polymerase acidic (PA) gene, the viruses were most closely related to A/duck/Guangdong/01.01SZSGXJK005-Y/2016 (H5N6) (98.90 ~ 99.74%). The PA genes of the two novel Gangjin H5N6 viruses were most closely related to AIV isolates previously characterized from Korea, A/hooded crane/Korea/1176/2016 (H1N1) (99.16%) and A/environment/Korea/W133/2006 (H7N7) (98.65%). The lack of more recent viruses to A/environment/Korea/W133/2006 (H7N7) indicates the need for analysis of recent wild bird AIVs isolated in Korea because they might provide further clues as to the origin of these novel reassortant H5N6 viruses. CONCLUSIONS: Although research on the origins and epidemiology of these infections is ongoing, the most likely route of infection for the whooper swans was through direct or indirect contact with reassortant viruses shed by migratory wild birds in Korea. As H5N6 HPAIVs can potentially be transmitted to poultry and humans, continuous monitoring of AIVs among wild birds will help to mitigate this risk.


Asunto(s)
Anseriformes/virología , Virus de la Influenza A/genética , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/virología , Virus Reordenados/genética , Virus Reordenados/aislamiento & purificación , Animales , Análisis por Conglomerados , Virus de la Influenza A/clasificación , Filogenia , Virus Reordenados/clasificación , República de Corea
9.
Emerg Infect Dis ; 22(7): 1278-82, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27064759

RESUMEN

In 2015, a major outbreak of highly pathogenic avian influenza virus (HPAIV) infection devastated poultry facilities in Minnesota, USA. To understand the potential role of wild birds, we tested 3,139 waterfowl fecal samples and 104 sick and dead birds during March 9-June 4, 2015. HPAIV was isolated from a Cooper's hawk but not from waterfowl fecal samples.


Asunto(s)
Brotes de Enfermedades/veterinaria , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Enfermedades de las Aves de Corral/virología , Animales , Animales Salvajes , Aves , Heces/virología , Virus de la Influenza A/clasificación , Gripe Aviar/epidemiología , Minnesota/epidemiología , Vigilancia de la Población , Enfermedades de las Aves de Corral/epidemiología
10.
Emerg Infect Dis ; 22(7): 1283-5, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27314845

RESUMEN

Asian highly pathogenic avian influenza A(H5N8) viruses spread into North America in 2014 during autumn bird migration. Complete genome sequencing and phylogenetic analysis of 32 H5 viruses identified novel H5N1, H5N2, and H5N8 viruses that emerged in late 2014 through reassortment with North American low-pathogenicity avian influenza viruses.


Asunto(s)
Virus de la Influenza A/genética , Virus de la Influenza A/patogenicidad , Gripe Aviar/virología , Virus Reordenados/patogenicidad , Animales , Animales Salvajes , Aves , Gripe Aviar/epidemiología , Virus Reordenados/genética , Tropismo Viral
11.
J Virol ; 89(12): 6521-4, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25855748

RESUMEN

Phylogenetic network analysis and understanding of waterfowl migration patterns suggest that the Eurasian H5N8 clade 2.3.4.4 avian influenza virus emerged in late 2013 in China, spread in early 2014 to South Korea and Japan, and reached Siberia and Beringia by summer 2014 via migratory birds. Three genetically distinct subgroups emerged and subsequently spread along different flyways during fall 2014 into Europe, North America, and East Asia, respectively. All three subgroups reappeared in Japan, a wintering site for waterfowl from Eurasia and parts of North America.


Asunto(s)
Migración Animal , Virus de la Influenza A/clasificación , Virus de la Influenza A/aislamiento & purificación , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Asia , Aves , Europa (Continente) , Humanos , Gripe Aviar/transmisión , Epidemiología Molecular , América del Norte , Siberia
12.
J Virol ; 89(2): 1389-403, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25392223

RESUMEN

UNLABELLED: Since 1998, cyclic mortality events in common eiders (Somateria mollissima), numbering in the hundreds to thousands of dead birds, have been documented along the coast of Cape Cod, MA, USA. Although longitudinal disease investigations have uncovered potential contributing factors responsible for these outbreaks, detecting a primary etiological agent has proven enigmatic. Here, we identify a novel orthomyxovirus, tentatively named Wellfleet Bay virus (WFBV), as a potential causative agent of these outbreaks. Genomic analysis of WFBV revealed that it is most closely related to members of the Quaranjavirus genus within the family Orthomyxoviridae. Similar to other members of the genus, WFBV contains an alphabaculovirus gp64-like glycoprotein that was demonstrated to have fusion activity; this also tentatively suggests that ticks (and/or insects) may vector the virus in nature. However, in addition to the six RNA segments encoding the prototypical structural proteins identified in other quaranjaviruses, a previously unknown RNA segment (segment 7) encoding a novel protein designated VP7 was discovered in WFBV. Although WFBV shows low to moderate levels of sequence similarity to Quaranfil virus and Johnston Atoll virus, the original members of the Quaranjavirus genus, additional antigenic and genetic analyses demonstrated that it is closely related to the recently identified Cygnet River virus (CyRV) from South Australia, suggesting that WFBV and CyRV may be geographic variants of the same virus. Although the identification of WFBV in part may resolve the enigma of these mass mortality events, the details of the ecology and epidemiology of the virus remain to be determined. IMPORTANCE: The emergence or reemergence of viral pathogens resulting in large-scale outbreaks of disease in humans and/or animals is one of the most important challenges facing biomedicine. For example, understanding how orthomyxoviruses such as novel influenza A virus reassortants and/or mutants emerge to cause epidemic or pandemic disease is at the forefront of current global health concerns. Here, we describe the emergence of a novel orthomyxovirus, Wellfleet Bay virus (WFBV), which has been associated with cyclic large-scale bird die-offs in the northeastern United States. This initial characterization study provides a foundation for further research into the evolution, epidemiology, and ecology of newly emerging orthomyxoviruses, such as WFBV, and their potential impacts on animal and/or human health.


Asunto(s)
Enfermedades de las Aves/epidemiología , Enfermedades de las Aves/mortalidad , Brotes de Enfermedades , Infecciones por Orthomyxoviridae/epidemiología , Infecciones por Orthomyxoviridae/mortalidad , Orthomyxoviridae/aislamiento & purificación , Animales , Anseriformes , Enfermedades de las Aves/patología , Enfermedades de las Aves/virología , Análisis por Conglomerados , Femenino , Masculino , Modelos Moleculares , Datos de Secuencia Molecular , New England/epidemiología , Orthomyxoviridae/clasificación , Orthomyxoviridae/genética , Infecciones por Orthomyxoviridae/patología , Infecciones por Orthomyxoviridae/virología , Filogenia , Conformación Proteica , ARN Viral/genética , Análisis de Secuencia de ADN , Proteínas Virales/química , Proteínas Virales/genética
13.
Emerg Infect Dis ; 21(5): 886-90, 2015 May.
Artículo en Inglés | MEDLINE | ID: mdl-25898265

RESUMEN

Novel Eurasian lineage avian influenza A(H5N8) virus has spread rapidly and globally since January 2014. In December 2014, H5N8 and reassortant H5N2 viruses were detected in wild birds in Washington, USA, and subsequently in backyard birds. When they infect commercial poultry, these highly pathogenic viruses pose substantial trade issues.


Asunto(s)
Animales Salvajes , Aves , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Aviar/epidemiología , Gripe Aviar/virología , Animales , Brotes de Enfermedades , Genes Virales , Historia del Siglo XXI , Virus de la Influenza A/patogenicidad , Gripe Aviar/historia , Filogenia , Análisis de Secuencia de ADN , Washingtón/epidemiología
14.
J Virol ; 87(9): 4938-51, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23408635

RESUMEN

Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.


Asunto(s)
Avipoxvirus/clasificación , Avipoxvirus/aislamiento & purificación , Enfermedades de las Aves/virología , Filogenia , Infecciones por Poxviridae/veterinaria , Animales , Avipoxvirus/genética , Avipoxvirus/fisiología , Aves , Especificidad del Huésped , Datos de Secuencia Molecular , Infecciones por Poxviridae/virología , Recombinación Genética
15.
Dis Aquat Organ ; 111(2): 93-106, 2014 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-25266897

RESUMEN

The infection status of harbor seals Phoca vitulina in central California, USA, was evaluated through broad surveillance for pathogens in stranded and wild-caught animals from 2001 to 2008, with most samples collected in 2007 and 2008. Stranded animals from Mendocino County to San Luis Obispo County were sampled at a rehabilitation facility: The Marine Mammal Center (TMMC, n = 175); wild-caught animals were sampled at 2 locations: San Francisco Bay (SF, n = 78) and Tomales Bay (TB, n = 97), that differed in degree of urbanization. Low prevalences of Salmonella, Campylobacter, Giardia, and Cryptosporidium were detected in the feces of stranded and wild-caught seals. Clostridium perfringens and Escherichia coli were more prevalent in the feces of stranded (58% [78 out of 135] and 76% [102 out of 135]) than wild-caught (42% [45 out of 106] and 66% [68 out of 106]) seals, whereas Vibrio spp. were 16 times more likely to be cultured from the feces of seals from SF than TB or TMMC (p < 0.005). Brucella DNA was detected in 3.4% of dead stranded harbor seals (2 out of 58). Type A influenza was isolated from feces of 1 out of 96 wild-caught seals. Exposure to Toxoplasma gondii, Sarcocystis neurona, and type A influenza was only detected in the wild-caught harbor seals (post-weaning age classes), whereas antibody titers to Leptospira spp. were detected in stranded and wild-caught seals. No stranded (n = 109) or wild-caught (n = 217) harbor seals had antibodies to phocine distemper virus, although a single low titer to canine distemper virus was detected. These results highlight the role of harbor seals as sentinel species for zoonotic and terrestrial pathogens in the marine environment.


Asunto(s)
Infecciones Bacterianas/veterinaria , Phoca , Infecciones Protozoarias en Animales/parasitología , Virosis/veterinaria , Animales , Infecciones Bacterianas/epidemiología , Infecciones Bacterianas/microbiología , California/epidemiología , Heces/microbiología , Heces/parasitología , Vigilancia de la Población , Infecciones Protozoarias en Animales/epidemiología , Virosis/epidemiología , Virosis/virología , Zoonosis
16.
Appl Environ Microbiol ; 79(4): 1342-52, 2013 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-23263948

RESUMEN

Bacterial indicators are used to indicate increased health risk from pathogens and to make beach closure and advisory decisions; however, beaches are seldom monitored for the pathogens themselves. Studies of sources and types of pathogens at beaches are needed to improve estimates of swimming-associated health risks. It would be advantageous and cost-effective, especially for studies conducted on a regional scale, to use a method that can simultaneously filter and concentrate all classes of pathogens from the large volumes of water needed to detect pathogens. In seven recovery experiments, stock cultures of viruses and protozoa were seeded into 10-liter lake water samples, and concentrations of naturally occurring bacterial indicators were used to determine recoveries. For the five filtration methods tested, the highest median recoveries were as follows: glass wool for adenovirus (4.7%); NanoCeram for enterovirus (14.5%) and MS2 coliphage (84%); continuous-flow centrifugation (CFC) plus Virocap (CFC+ViroCap) for Escherichia coli (68.3%) and Cryptosporidium (54%); automatic ultrafiltration (UF) for norovirus GII (2.4%); and dead-end UF for Enterococcus faecalis (80.5%), avian influenza virus (0.02%), and Giardia (57%). In evaluating filter performance in terms of both recovery and variability, the automatic UF resulted in the highest recovery while maintaining low variability for all nine microorganisms. The automatic UF was used to demonstrate that filtration can be scaled up to field deployment and the collection of 200-liter lake water samples.


Asunto(s)
Bacterias/aislamiento & purificación , Cryptosporidium/aislamiento & purificación , Filtración/métodos , Agua Dulce/microbiología , Giardia/aislamiento & purificación , Virus/aislamiento & purificación , Agua Dulce/parasitología , Agua Dulce/virología , Reproducibilidad de los Resultados
17.
Virol J ; 10: 179, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23742717

RESUMEN

BACKGROUND: The role of gulls in the ecology of avian influenza (AI) is different than that of waterfowl. Different constellations of subtypes circulate within the two groups of birds and AI viruses isolated from North American gulls frequently possess reassortant genomes with genetic elements from both North America and Eurasian lineages. A 2008 isolate from a Newfoundland Great Black-backed Gull contained a mix of North American waterfowl, North American gull and Eurasian lineage genes. METHODS: We isolated, sequenced and phylogenetically compared avian influenza viruses from 2009 Canadian wild birds. RESULTS: We analyzed six 2009 virus isolates from Canada and found the same phylogenetic lineage had persisted over a larger geographic area, with an expanded host range that included dabbling and diving ducks as well as gulls. All of the 2009 virus isolates contained an internal protein coding set of genes of the same Eurasian lineage genes except PB1 that was from a North American lineage, and these genes continued to evolve by genetic drift. We show evidence that the 2008 Great Black-backed Gull virus was derived from this lineage with a reassortment of a North American PA gene into the more stable core set of internal protein coding genes that has circulated in avian populations for at least 2 years. From this core, the surface glycoprotein genes have switched several times creating H13N6, H13N2, and H16N3 subtypes. These gene segments were from North American lineages except for the H16 and N3 vRNAs. CONCLUSIONS: This process appears similar to genetic shifts seen with swine influenza where a stable "triple reassortant internal gene" core has circulated in swine populations with genetic shifts occurring with hemaggluttinin and neuraminidase proteins getting periodically switched. Thus gulls may serve as genetic mixing vessels for different lineages of avian influenza, similar to the role of swine with regards to human influenza. These findings illustrate the need for continued surveillance in gull and waterfowl populations, both on the Pacific and especially Atlantic coasts of North America, to document virus intercontinental movement and the role of gull species in the evolution and epidemiology of AI.


Asunto(s)
Aves/virología , Evolución Molecular , Virus de la Influenza A/clasificación , Virus de la Influenza A/genética , Gripe Aviar/virología , Virus Reordenados/clasificación , Virus Reordenados/genética , Animales , Canadá , Análisis por Conglomerados , Flujo Genético , Inestabilidad Genómica , Genotipo , Virus de la Influenza A/aislamiento & purificación , Filogenia , ARN Viral/genética , Virus Reordenados/aislamiento & purificación , Análisis de Secuencia de ADN
18.
Arch Virol ; 158(12): 2495-503, 2013 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-23807743

RESUMEN

Avian paramyxovirus serotype 1 (APMV-1), or Newcastle disease virus, is the causative agent of Newcastle disease, one of the most economically important diseases for poultry production worldwide and a cause of periodic epizootics in wild birds in North America. In this study, we examined the genetic diversity of APMV-1 isolated from migratory birds sampled in Alaska, Japan, and Russia and assessed the evidence for intercontinental virus spread using phylogenetic methods. Additionally, we predicted viral virulence using deduced amino acid residues for the fusion protein cleavage site and estimated mutation rates for the fusion gene of class I and class II migratory bird isolates. All 73 isolates sequenced as part of this study were most closely related to virus genotypes previously reported for wild birds; however, five class II genotype I isolates formed a monophyletic clade exhibiting previously unreported genetic diversity, which met criteria for the designation of a new sub-genotype. Phylogenetic analysis of wild-bird isolates provided evidence for intercontinental virus spread, specifically viral lineages of APMV-1 class II genotype I sub-genotypes Ib and Ic. This result supports migratory bird movement as a possible mechanism for the redistribution of APMV-1. None of the predicted deduced amino acid motifs for the fusion protein cleavage site of APMV-1 strains isolated from migratory birds in Alaska, Japan, and Russia were consistent with those of previously identified virulent viruses. These data therefore provide no support for these strains contributing to the emergence of avian pathogens. The estimated mutation rates for fusion genes of class I and class II wild-bird isolates were faster than those reported previously for non-virulent APMV-1 strains. Collectively, these findings provide new insight into the diversity, spread, and evolution of APMV-1 in wild birds.


Asunto(s)
Variación Genética , Enfermedad de Newcastle/epidemiología , Enfermedad de Newcastle/virología , Virus de la Enfermedad de Newcastle/clasificación , Virus de la Enfermedad de Newcastle/genética , ARN Viral/genética , Proteínas Virales de Fusión/genética , Alaska/epidemiología , Sustitución de Aminoácidos , Animales , Aves , Análisis por Conglomerados , Genotipo , Japón/epidemiología , Epidemiología Molecular , Datos de Secuencia Molecular , Mutación , Tasa de Mutación , Virus de la Enfermedad de Newcastle/aislamiento & purificación , Filogenia , Federación de Rusia/epidemiología , Análisis de Secuencia de ADN , Homología de Secuencia , Factores de Virulencia/genética
19.
Microorganisms ; 11(2)2023 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-36838494

RESUMEN

As exemplified by the global response to the SARS-CoV-2 pandemic, whole-genome sequencing played an important role in monitoring the evolution of novel viral variants and provided guidance on potential antiviral treatments. The recent rapid and extensive introduction and spread of highly pathogenic avian influenza virus in Europe, North America, and elsewhere raises the need for similarly rapid sequencing to aid in appropriate response and mitigation activities. To facilitate this objective, we investigate a next-generation sequencing platform that uses a portable nanopore sequencing device to generate and present data in real time. This platform offers the potential to extend in-house sequencing capacities to laboratories that may otherwise lack resources to adopt sequencing technologies requiring large benchtop instruments. We evaluate this platform for routine use in a diagnostic laboratory. In this study, we evaluate different primer sets for the whole genome amplification of influenza A virus and evaluate five different library preparation approaches for sequencing on the nanopore platform using the MinION flow cell. A limited amplification procedure and a rapid procedure are found to be best among the approaches taken.

20.
Vet Q ; 43(1): 1-11, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37779468

RESUMEN

From the first cases in 2019, COVID-19 infections caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) have resulted in over 6 million human deaths in a worldwide pandemic. SARS-CoV-2 is commonly spread from human to human through close contact and is capable of infecting both humans and animals. Worldwide, there have been over 675 animal outbreaks reported that resulted in over 2000 animal infections including domestic and wild animals. As the role of animal infections in the transmission, pathogenesis, and evolution of SARS-CoV-2 is still unfolding, accurate and reliable animal diagnostic tests are critical to aid in managing both human and animal health. This review highlights key animal samples and the three main diagnostic approaches used for animal testing: PCR, serology, and Next Generation Sequencing. Diagnostic results help inform (often difficult) clinical decision-making, but also possible ways to mitigate spread among pets, food supplies, or wildlife. A One Health approach has been key to monitoring the SARS-CoV-2 pandemic, as consistent human-animal interactions can lead to novel variants. Having multiple animal diagnostic tests for SARS-CoV-2 available is critical to ensure human, animal, and environmental health.


Asunto(s)
COVID-19 , SARS-CoV-2 , Animales , Humanos , COVID-19/diagnóstico , COVID-19/veterinaria , Animales Salvajes , Técnicas y Procedimientos Diagnósticos , Prueba de COVID-19/veterinaria
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA