RESUMEN
The etiology of colorectal cancer (CRC) has been linked to deficiencies in mismatch repair and adenomatous polyposis coli (APC) proteins, diet, inflammatory processes, and gut microbiota. However, the mechanism through which the microbiota synergizes with these etiologic factors to promote CRC is not clear. We report that altering the microbiota composition reduces CRC in APC(Min/+)MSH2(-/-) mice, and that a diet reduced in carbohydrates phenocopies this effect. Gut microbes did not induce CRC in these mice through an inflammatory response or the production of DNA mutagens but rather by providing carbohydrate-derived metabolites such as butyrate that fuel hyperproliferation of MSH2(-/-) colon epithelial cells. Further, we provide evidence that the mismatch repair pathway has a role in regulating ß-catenin activity and modulating the differentiation of transit-amplifying cells in the colon. These data thereby provide an explanation for the interaction between microbiota, diet, and mismatch repair deficiency in CRC induction. PAPERCLIP:
Asunto(s)
Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Carbohidratos de la Dieta/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteína de la Poliposis Adenomatosa del Colon/genética , Proteína de la Poliposis Adenomatosa del Colon/metabolismo , Animales , Butiratos/metabolismo , Proliferación Celular , Transformación Celular Neoplásica , Pólipos del Colon/metabolismo , Pólipos del Colon/microbiología , Pólipos del Colon/patología , Neoplasias Colorrectales/genética , Neoplasias Colorrectales/microbiología , Reparación de la Incompatibilidad de ADN , Células Epiteliales/metabolismo , Células Epiteliales/microbiología , Inflamación/genética , Inflamación/metabolismo , Inflamación/microbiología , Ratones , Ratones Endogámicos C57BL , Homólogo 1 de la Proteína MutL , Proteína 2 Homóloga a MutS/genética , Proteínas Nucleares/metabolismo , Organismos Libres de Patógenos Específicos , beta Catenina/metabolismoRESUMEN
In recent years, our understanding of the mechanisms underlying colorectal carcinogenesis has vastly expanded. Underlying inflammation within the intestine, diet, and most recently, the gut microbiota, have been demonstrated to influence the development of colorectal cancer. However, since cancer is ultimately a genetic disease, these factors are thought to create genotoxic stress within the intestinal environment to promote genetic and epigenetic alterations leading to cancer. In this review, we will focus on how gut microbes intersect with inflammation, diet, and host genetics to influence the development of colon cancer.
Asunto(s)
Neoplasias del Colon/microbiología , Intestinos/microbiología , Microbiota/inmunología , Carcinogénesis , Colitis/microbiología , Colitis/patología , Neoplasias del Colon/genética , Neoplasias del Colon/patología , Daño del ADN , Progresión de la Enfermedad , Humanos , Inmunidad Innata , InflamaciónRESUMEN
Disturbance of endoplasmic reticulum (ER) proteostasis is a common feature of amyotrophic lateral sclerosis (ALS). Protein disulfide isomerases (PDIs) areERfoldases identified as possibleALSbiomarkers, as well as neuroprotective factors. However, no functional studies have addressed their impact on the disease process. Here, we functionally characterized fourALS-linked mutations recently identified in two majorPDIgenes,PDIA1 andPDIA3/ERp57. Phenotypic screening in zebrafish revealed that the expression of thesePDIvariants induce motor defects associated with a disruption of motoneuron connectivity. Similarly, the expression of mutantPDIs impaired dendritic outgrowth in motoneuron cell culture models. Cellular and biochemical studies identified distinct molecular defects underlying the pathogenicity of thesePDImutants. Finally, targetingERp57 in the nervous system led to severe motor dysfunction in mice associated with a loss of neuromuscular synapses. This study identifiesERproteostasis imbalance as a risk factor forALS, driving initial stages of the disease.
Asunto(s)
Esclerosis Amiotrófica Lateral/genética , Neuronas Motoras/patología , Procolágeno-Prolina Dioxigenasa/genética , Proteína Disulfuro Isomerasas/genética , Esclerosis Amiotrófica Lateral/patología , Animales , Animales Modificados Genéticamente , Electromiografía , Embrión no Mamífero , Estrés del Retículo Endoplásmico/genética , Humanos , Ratones Noqueados , Mutación , Neuritas/patología , Procolágeno-Prolina Dioxigenasa/metabolismo , Proteína Disulfuro Isomerasas/metabolismo , Pez Cebra/embriología , Pez Cebra/genéticaRESUMEN
The gut microbiota is an important component of the human body and its immune-modulating and metabolic activities are critical to maintain good health. Gut microbes, however, are sensitive to changes in diet, exposure to antibiotics, or infections, all of which cause transient disruptions in the microbial composition, a phenomenon known as dysbiosis. It is now recognized that microbial dysbiosis is at the root of many gastrointestinal disorders. However, the mechanisms through which bacterial dysbiosis initiates disease are not fully understood. Microbially-derived metabolites and their role in disease have also attracted significant attention. Identification of cancer-associated bacteria and understanding the contributions of microbial metabolism in health and disease are exciting but challenging areas that will allow defining microbial biomarkers for predicting gastrointestinal disorders. Understanding the complex interactions between gut microbiota, diet, host immune system and host genetics will be critical to developing more personalized therapies and approaches to treat disease.
Asunto(s)
Neoplasias del Colon/microbiología , Enfermedades Gastrointestinales , Tracto Gastrointestinal/microbiología , Microbiota/fisiología , Animales , Neoplasias del Colon/prevención & control , Disbiosis/microbiología , Disbiosis/fisiopatología , Enfermedades Gastrointestinales/microbiología , Enfermedades Gastrointestinales/prevención & control , Tracto Gastrointestinal/patología , Tracto Gastrointestinal/fisiología , Humanos , ProbióticosRESUMEN
Adaptation to endoplasmic reticulum (ER) stress depends on the activation of the unfolded protein response (UPR) stress sensor inositol-requiring enzyme 1α (IRE1α), which functions as an endoribonuclease that splices the mRNA of the transcription factor XBP-1 (X-box-binding protein-1). Through a global proteomic approach we identified the BCL-2 family member PUMA as a novel IRE1α interactor. Immun oprecipitation experiments confirmed this interaction and further detected the association of IRE1α with BIM, another BH3-only protein. BIM and PUMA double-knockout cells failed to maintain sustained XBP-1 mRNA splicing after prolonged ER stress, resulting in early inactivation. Mutation in the BH3 domain of BIM abrogated the physical interaction with IRE1α, inhibiting its effects on XBP-1 mRNA splicing. Unexpectedly, this regulation required BCL-2 and was antagonized by BAD or the BH3 domain mimetic ABT-737. The modulation of IRE1α RNAse activity by BH3-only proteins was recapitulated in a cell-free system suggesting a direct regulation. Moreover, BH3-only proteins controlled XBP-1 mRNA splicing in vivo and affected the ER stress-regulated secretion of antibodies by primary B cells. We conclude that a subset of BCL-2 family members participates in a new UPR-regulatory network, thus assuming apoptosis-unrelated functions.
Asunto(s)
Proteínas Reguladoras de la Apoptosis/metabolismo , Endorribonucleasas/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas/metabolismo , Transducción de Señal , Proteínas Supresoras de Tumor/metabolismo , Respuesta de Proteína Desplegada , Animales , Proteínas Reguladoras de la Apoptosis/genética , Proteína 11 Similar a Bcl2 , Técnicas de Inactivación de Genes , Inmunoprecipitación , Proteínas de la Membrana/genética , Ratones , Unión Proteica , Mapeo de Interacción de Proteínas , Proteoma/análisis , Proteínas Proto-Oncogénicas/genética , Proteínas Supresoras de Tumor/genéticaRESUMEN
BACKGROUND: Few studies have focused on the ability of prebiotics to prevent pathogen-induced cellular changes or alter the composition of the intestinal microbiota in complimentary relevant cell and animal models of inflammatory bowel disease. OBJECTIVE: The objective of this study was to determine if pretreatment with inulin and a short-chain fructo-oligosaccharide (sc-FOS) prevents enterohemorrhagic Escherichia coli (EHEC) O157:H7 infection in Caco2-bbe epithelial cells and what effect 10% wt:v sc-FOS or inulin has on C57BL/6 mice under sham conditions or pretreatment with prebiotics before Citrobacter rodentium infection (10(8) colony-forming units). METHODS: Actin rearrangement and tight junction protein (zona occludin-1) were examined with immunofluorescence. Barrier function was assessed by a fluorescent probe and by measuring transepithelial electrical resistance (TER). Alterations in cytokine gene expression and microbiome were assessed with quantitative reverse transcriptase-polymerase chain reaction and fluorescence in situ hybridization. Short-chain fatty acids (SCFAs) were measured by GC. RESULTS: sc-FOS added to monolayers altered actin polymerization without affecting TER or permeability to a fluorescein isothiocyanate (FITC) probe, whereas inulin increased TER (P < 0.005) and altered actin arrangement without affecting FITC permeability. Neither prebiotic attenuated EHEC-induced decreases in barrier function. Prebiotics increased interleukin 10 (Il10) and transforming growth factor-ß (Tgfß) cytokine responses alone (P < 0.05) or with EHEC O157:H7 infection (P < 0.05) in vitro. Increases in tumor necrosis factor-α (Tnfα) (P < 0.05) and decreases in chemokine CXC motif ligand 8 (Cxcl8) (P < 0.05) expression were observed with prebiotic treatment prior to EHEC infection. No differences were noted in barrier function or cytokine responses in the absence or presence of C. rodentium in vivo. Alterations in microbiome were evident at 6 d and 10 d postinfection in treatment groups, but a change in C. rodentium load was not observed. Inulin and sc-FOS (P < 0.05) increased fecal SCFAs in the absence of infection. CONCLUSION: This study provides new insights as to how prebiotics act in complementary in vitro and in vivo models of intestinal injury.
Asunto(s)
Infecciones por Enterobacteriaceae/complicaciones , Escherichia coli O157 , Inflamación/tratamiento farmacológico , Inulina/farmacología , Oligosacáridos/farmacología , Animales , Antiinflamatorios/química , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Células CACO-2 , Citrobacter rodentium , Colitis/tratamiento farmacológico , Colitis/microbiología , Heces/microbiología , Femenino , Humanos , Inulina/química , Ratones , Ratones Endogámicos C57BL , Oligosacáridos/química , PrebióticosRESUMEN
Inflammatory bowel disease (IBD) patients have an increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Several studies have shown that IBD patients have signs of increased oxidative damage, which could be a result of genetic and environmental factors such as an excess in oxidant molecules released during chronic inflammation, mitochondrial dysfunction, a failure in antioxidant capacity, or oxidant promoting diets. It has been suggested that chronic oxidative environment in the intestine leads to the DNA lesions that precipitate colon carcinogenesis in IBD patients. Indeed, several preclinical and clinical studies show that different endogenous and exogenous antioxidant molecules are effective at reducing oxidation in the intestine. However, most clinical studies have focused on the short-term effects of antioxidants in IBD patients but not in CAC. This review article examines the role of oxidative DNA damage as a possible precipitating event in CAC in the context of chronic intestinal inflammation and the potential role of exogenous antioxidants to prevent these cancers.
Asunto(s)
Antioxidantes/farmacología , Neoplasias Asociadas a Colitis/prevención & control , Colitis/complicaciones , Animales , Neoplasias Asociadas a Colitis/etiología , Neoplasias Asociadas a Colitis/patología , HumanosRESUMEN
Inflammatory bowel disease patients have a greatly increased risk of developing colitis-associated colon cancer (CAC); however, the basis for inflammation-induced genetic damage requisite for neoplasia is unclear. Using three models of CAC, we find that sustained inflammation triggers 8-oxoguanine DNA lesions. Strikingly, antioxidants or iNOS inhibitors reduce 8-oxoguanine and polyps in CAC models. Because the mismatch repair (MMR) system repairs 8-oxoguanine and is frequently defective in colorectal cancer (CRC), we test whether 8-oxoguanine mediates oncogenesis in a Lynch syndrome (MMR-deficient) model. We show that microbiota generates an accumulation of 8-oxoguanine lesions in MMR-deficient colons. Accordingly, we find that 8-oxoguanine is elevated in neoplastic tissue of Lynch syndrome patients compared to matched untransformed tissue or non-Lynch syndrome neoplastic tissue. While antioxidants reduce 8-oxoguanine, they do not reduce CRC in Lynch syndrome models. Hence, microbe-induced oxidative/nitrosative DNA damage play causative roles in inflammatory CRC models, but not in Lynch syndrome models.
Asunto(s)
Colitis/complicaciones , Colitis/patología , Neoplasias Colorrectales/complicaciones , Neoplasias Colorrectales/patología , Daño del ADN , Helicobacter pylori/fisiología , Estrés Oxidativo , Poliposis Adenomatosa del Colon/complicaciones , Poliposis Adenomatosa del Colon/patología , Adulto , Anciano , Anciano de 80 o más Años , Animales , Antioxidantes/farmacología , Carcinogénesis/efectos de los fármacos , Carcinogénesis/patología , Colitis/inducido químicamente , Colitis/microbiología , Colon/efectos de los fármacos , Colon/patología , Neoplasias Colorrectales/microbiología , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación del ADN/efectos de los fármacos , Sulfato de Dextran , Modelos Animales de Enfermedad , Disbiosis/complicaciones , Disbiosis/patología , Escherichia coli/metabolismo , Femenino , Guanosina/análogos & derivados , Guanosina/metabolismo , Infecciones por Helicobacter/complicaciones , Helicobacter pylori/efectos de los fármacos , Humanos , Inflamación/complicaciones , Inflamación/patología , Interleucina-10/deficiencia , Interleucina-10/metabolismo , Masculino , Ratones Endogámicos C57BL , Persona de Mediana Edad , Mutación/genética , Estrés Oxidativo/efectos de los fármacosRESUMEN
Class switch recombination (CSR) has a fundamental function during humoral immune response and involves the induction and subsequent repair of DNA breaks in the immunoglobulin (Ig) switch regions. Here we show the role of Usp22, the SAGA complex deubiquitinase that removes ubiquitin from H2B-K120, in the repair of programmed DNA breaks in vivo. Ablation of Usp22 in primary B cells results in defects in γH2AX and impairs the classical non-homologous end joining (c-NHEJ), affecting both V(D)J recombination and CSR. Surprisingly, Usp22 depletion causes defects in CSR to various Ig isotypes, but not IgA. We further demonstrate that IgG CSR primarily relies on c-NHEJ, whereas CSR to IgA is more reliant on the alternative end joining pathway, indicating that CSR to different isotypes involves distinct DNA repair pathways. Hence, Usp22 is the first deubiquitinase reported to regulate both V(D)J recombination and CSR in vivo by facilitating c-NHEJ.
Asunto(s)
Reparación del ADN por Unión de Extremidades , Enzimas Desubicuitinizantes/metabolismo , Endopeptidasas/metabolismo , Inmunidad Humoral/genética , Cambio de Clase de Inmunoglobulina , Recombinación V(D)J , Animales , Linfocitos B , Enzimas Desubicuitinizantes/genética , Endopeptidasas/genética , Femenino , Histonas/genética , Histonas/metabolismo , Isotipos de Inmunoglobulinas/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Cultivo Primario de Células , Ubiquitina/metabolismo , Ubiquitina TiolesterasaRESUMEN
Ribozyme genes were designed to reduce voluntary alcohol drinking in a rat model of alcohol dependence. Acetaldehyde generated from alcohol in the liver is metabolized by the mitochondrial aldehyde dehydrogenase (ALDH2) such that diminishing ALDH2 activity leads to the aversive effects of blood acetaldehyde upon alcohol intake. A stepwise approach was followed to design genes encoding ribozymes targeted to the rat ALDH2 mRNA. In vitro studies of accessibility to oligonucleotides identified suitable target sites in the mRNA, one of which fulfilled hammerhead and hairpin ribozyme requirements (CGGUC). Ribozyme genes delivered in plasmid constructs were tested in rat cells in culture. While the hairpin ribozyme reduced ALDH2 activity 56% by cleavage and blockade (P < 0.0001), the hammerhead ribozyme elicited minor effects by blockade. The hairpin ribozyme was tested in vivo by adenoviral gene delivery to UChB alcohol drinker rats. Ethanol intake was curtailed 47% for 34 days (P < 0.0001), while blood acetaldehyde more than doubled upon ethanol administration and ALDH2 activity dropped 25% in liver homogenates, not affecting other ALDH isoforms. Thus, hairpin ribozymes targeted to 16 nt in the ALDH2 mRNA provide durable and specific effects in vivo, representing an improvement on previous work and encouraging development of gene therapy for alcoholism.
RESUMEN
T regulatory cells trigger an oncogenic immune response against enterotoxigenic B. fragilis infection. The implications of an overall shift in the colonic homeostasis are discussed.