RESUMEN
BACKGROUND: Activation of vascular smooth muscle cell (VSMC) inflammation is vital to initiate vascular disease. The role of human-specific long noncoding RNAs in VSMC inflammation is poorly understood. METHODS: Bulk RNA sequencing in differentiated human VSMCs revealed a novel human-specific long noncoding RNA called inflammatory MKL1 (megakaryoblastic leukemia 1) interacting long noncoding RNA (INKILN). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation as well as human atherosclerosis and abdominal aortic aneurysm. The transcriptional regulation of INKILN was verified through luciferase reporter and chromatin immunoprecipitation assays. Loss-of-function and gain-of-function studies and multiple RNA-protein and protein-protein interaction assays were used to uncover a mechanistic role of INKILN in the VSMC proinflammatory gene program. Bacterial artificial chromosome transgenic mice were used to study INKILN expression and function in ligation injury-induced neointimal formation. RESULTS: INKILN expression is downregulated in contractile VSMCs and induced in human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB (nuclear factor kappa B) site within its proximal promoter. INKILN activates proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks interleukin-1ß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1 and the luciferase activity of an NF-κB reporter. Furthermore, INKILN knockdown enhances MKL1 ubiquitination through reduced physical interaction with the deubiquitinating enzyme USP10 (ubiquitin-specific peptidase 10). INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in bacterial artificial chromosome transgenic mice. CONCLUSIONS: These findings elucidate an important pathway of VSMC inflammation involving an INKILN/MKL1/USP10 regulatory axis. Human bacterial artificial chromosome transgenic mice offer a novel and physiologically relevant approach for investigating human-specific long noncoding RNAs under vascular disease conditions.
Asunto(s)
Aneurisma de la Aorta Abdominal , ARN Largo no Codificante , Animales , Humanos , Ratones , Aneurisma de la Aorta Abdominal/metabolismo , Proliferación Celular , Células Cultivadas , Inflamación/genética , Inflamación/metabolismo , Luciferasas/metabolismo , Ratones Transgénicos , Músculo Liso Vascular/metabolismo , Miocitos del Músculo Liso/metabolismo , FN-kappa B/metabolismo , ARN Largo no Codificante/genética , ARN Largo no Codificante/metabolismo , Ubiquitina Tiolesterasa/metabolismoRESUMEN
Human Immunodeficiency Virus (HIV) is the causative agent of Acquired Immunodeficiency Syndrome (AIDS) with high morbidity and mortality rates. Treatment of AIDS/HIV is being complicated by increasing resistance to currently used antiretroviral (ARV) drugs, mainly in low- and middle-income countries (LMICs) due to drug misuse, poor drug supply and poor treatment monitoring. However, progress has been made in the development of new ARV drugs, targeting different HIV components (Fig. 1). This review aims at presenting and discussing the progress made towards the discovery of new ARVs that are at different stages of clinical trials as of July 2024. For each compound, the mechanism of action, target biomolecule, genes associated with resistance, efficacy and safety, class, and phase of clinical trial are discussed. These compounds include analogues of nucleoside reverse transcriptase inhibitors (NRTIs) - islatravir and censavudine; non-nucleoside reverse transcriptase inhibitors (NNRTIs) - Rilpivirine, elsulfavirine and doravirine; integrase inhibitors namely cabotegravir and dolutegravir and chemokine coreceptors 5 and 2 (CC5/CCR2) antagonists for example cenicriviroc. Also, fostemsavir is being developed as an attachment inhibitor while lenacapavir, VH4004280 and VH4011499 are capsid inhibitors. Others are maturation inhibitors such as GSK-254, GSK3532795, GSK3739937, GSK2838232, and other compounds labelled as miscellaneous (do not belong to the classical groups of anti-HIV drugs or to the newer classes) such as obefazimod and BIT225. There is a considerable progress in the development of new anti-HIV drugs and the effort will continue since HIV infections has no cure or vaccine till now. Efforts are needed to reduce the toxicity of available drugs or discover new drugs with new classes which can delay the development of resistance.
Asunto(s)
Fármacos Anti-VIH , Humanos , Fármacos Anti-VIH/farmacología , Fármacos Anti-VIH/química , Fármacos Anti-VIH/síntesis química , Infecciones por VIH/tratamiento farmacológico , Bibliotecas de Moléculas Pequeñas/química , Bibliotecas de Moléculas Pequeñas/farmacología , VIH-1/efectos de los fármacos , Estructura Molecular , Aprobación de DrogasRESUMEN
As one of the most promising drug-delivery carriers due to its small size, easy surface modifiability, and hydrophobic interior, cationic poly(amidoamine) (PAMAM) per se, demonstrated by previous reports and the authors' present study, indicate potential anticancer capability, however, which are restricted by autophagy elicitation. Besides, its side-toxicity profile, having also been extensively documented, limits its translation into the clinic. Herein, the authors design a photoresponsive PAMAM-assembled nanoparticle loaded with the autophagy inhibitor (chloroquine, CQ), which exhibits light responsiveness for precisely controlling drug release and superior dark biosafety. Upon light irradiation, the nanoparticle can dissociate into charged small PAMAM for a significant antitumor effect. Meanwhile, the released CQ can inhibit pro-survival autophagy induced by PAMAM to achieve an excellent synergistic anticancer efficacy in vitro and in vivo. The authors' study provided a vision of utilizing PAMAM as self-carried anticancer therapeutics in combination with an autophagy inhibitor and proposing a cancer therapy with high antitumor efficacy and low side effects to normal tissues.
Asunto(s)
Dendrímeros , Nanopartículas , Neoplasias , Autofagia , Portadores de Fármacos , Humanos , Neoplasias/tratamiento farmacológicoRESUMEN
Sustaining blood retention for theranostic nanoparticles is a big challenge. Various approaches have been attempted and have demonstrated some success but limitations remain. We hypothesized that peptides capable of increasing blood residence time for M13 bacteriophage, a rod-shaped nanoparticle self-assembled from proteins and nucleic acids, should also prolong blood circulation for engineered nanoparticles. Here we demonstrate the feasibility of this approach by identifying a series of blood circulation-prolonging (BCP) peptides through in vivo screening of an M13 peptide phage display library. Intriguingly, the majority of the identified BCP peptides contained an arginine-glycine-aspartic acid (RGD) motif, which was necessary but insufficient for the circulation-prolonging activity. We further demonstrated that the RGD-mediated specific binding to platelets was primarily responsible for the enhanced blood retention of BCP1. The utility of the BCP1 peptide was demonstrated by fusion of the peptide to human heavy-chain ferritin (HFn), leading to significantly improved pharmacokinetic profile, enhanced tumor cell uptake and optimum anticancer efficacy for doxorubicin encapsulated in the HFn nanocage. Our results provided a proof-of-concept for an innovative yet simple strategy, which utilizes phage display to discover novel peptides with the capability of substantially prolonging blood circulation for engineered theranostic nanoparticles.
Asunto(s)
Doxorrubicina/farmacología , Ferritinas/química , Nanopartículas/química , Péptidos/química , Secuencia de Aminoácidos/genética , Arginina/química , Ácido Aspártico/química , Bacteriófago M13/química , Transporte Biológico/genética , Técnicas de Visualización de Superficie Celular , Doxorrubicina/química , Glicina/química , Humanos , Neoplasias/tratamiento farmacológico , Neoplasias/genética , Neoplasias/patología , Biblioteca de Péptidos , Péptidos/sangreRESUMEN
The presence of mycotoxins in foodstuff causes serious health problems to consumers and economically affects the food industry. Among the mycotoxins, aflatoxins are very toxic and highly carcinogenic contaminants which affect the safety of many foods, and therefore endanger human health. Aflatoxin M1 (AFM1 ) found in milk results from the biotransformation of aflatoxin B1 . Many efforts have been made to control the source of AFM1 from farmers to dairy product companies. However, AFM1 escapes ordinary methods of food treatment such as cooking, sterilization, and freezing, hence it appears in milk and dairy products. The presence of high levels of AFM1 constitutes an alarming threat as milk and dairy products contain essential nutrients for human health, especially for infants and children. For this reason, there is a pressing need for developing a fast and reliable screening method for detecting trace aflatoxins in food. Several analytical methods based on high-performance liquid chromatography (HPLC) and mass spectroscopy have been used for aflatoxin detection; however, they are expensive, time-consuming, and require many skills. Recently, immunoassay methods, including enzyme-linked immunosorbent assay (ELISA), immunosensors, and lateral flow immunoassay (LFIA), have been preferred for food analysis because of their improved qualities such as high sensitivity, simplicity, and capability of onsite monitoring. This paper reviews the new developments and applications of immunoassays for the rapid detection of AFM1 in milk.
RESUMEN
Background: Activation of vascular smooth muscle cells (VSMCs) inflammation is vital to initiate vascular disease. However, the role of human-specific long noncoding RNAs (lncRNAs) in VSMC inflammation is poorly understood. Methods: Bulk RNA-seq in differentiated human VSMCs revealed a novel human-specific lncRNA called IN flammatory M K L1 I nteracting L ong N oncoding RNA ( INKILN ). INKILN expression was assessed in multiple in vitro and ex vivo models of VSMC phenotypic modulation and human atherosclerosis and abdominal aortic aneurysm (AAA) samples. The transcriptional regulation of INKILN was determined through luciferase reporter system and chromatin immunoprecipitation assay. Both loss- and gain-of-function approaches and multiple RNA-protein and protein-protein interaction assays were utilized to uncover the role of INKILN in VSMC proinflammatory gene program and underlying mechanisms. Bacterial Artificial Chromosome (BAC) transgenic (Tg) mice were utilized to study INKLIN expression and function in ligation injury-induced neointimal formation. Results: INKILN expression is downregulated in contractile VSMCs and induced by human atherosclerosis and abdominal aortic aneurysm. INKILN is transcriptionally activated by the p65 pathway, partially through a predicted NF-κB site within its proximal promoter. INKILN activates the proinflammatory gene expression in cultured human VSMCs and ex vivo cultured vessels. Mechanistically, INKILN physically interacts with and stabilizes MKL1, a key activator of VSMC inflammation through the p65/NF-κB pathway. INKILN depletion blocks ILIß-induced nuclear localization of both p65 and MKL1. Knockdown of INKILN abolishes the physical interaction between p65 and MKL1, and the luciferase activity of an NF-κB reporter. Further, INKILN knockdown enhances MKL1 ubiquitination, likely through the reduced physical interaction with the deubiquitinating enzyme, USP10. INKILN is induced in injured carotid arteries and exacerbates ligation injury-induced neointimal formation in BAC Tg mice. Conclusions: These findings elucidate an important pathway of VSMC inflammation involving an INKILN /MKL1/USP10 regulatory axis. Human BAC Tg mice offer a novel and physiologically relevant approach for investigating human-specific lncRNAs under vascular disease conditions.
RESUMEN
Phage therapy holds great promise for resolving the ever-worsening crisis of antibiotic resistance, but it also faces many challenges. One of the issues hampering phage therapy is the short blood residence time of bacteriophages. We have previously identified, through in vivo phage display, a blood circulation-prolonging peptide (BCP1) that was capable of significantly prolonging the blood retention time of a doxorubicin-loaded human ferritin nanocage, leading to enhanced therapeutic efficacy against tumors. Herein, we aimed to extend the application of BCP1 to anti-bacterial phage therapy. Methods: A genetically engineered M13 phage, BCP1-BGL, that displayed the BCP-1 peptide and expressed the restriction endonuclease Bgl II, was constructed. Taking advantage of the fact that BCP1 harbors an RGD motif (a three amino-acid sequence Arg-Gly-Asp with the ability to bind to integrins) and exerts its circulation-prolonging activity primarily through interaction with platelets, we further designed and fabricated a biomimetic phage-platelet hybrid nanoparticle (PPHN) via the physical binding of the BCP1-BGL phage to the platelet membrane nanoparticles derived via a repeated freeze-thaw procedure. A series of experiments in vitro and in vivo were conducted to reveal the long circulation and anti-bacterial capacities of BCP1-BGL phages and PPHNs. Results: The resulting PPHNs possessed a hydrodynamic size of 368 nm in deionized water, with each spherical membranous nanoparticle harboring approximately 12 rod-shaped phage particles stably bound to its surface. PPHNs, which were superior to the BCP1-BGL phages that displayed significantly prolonged anti-bacterial action in vivo against Escherichia coli infection, exhibited further extended blood retention time and optimal anti-bacterial performance in both the prophylactic and treatment approaches. Conclusion: Our work demonstrated a novel strategy in engineering biomimetic phage-based nanoparticles with improved blood retention and anti-bacterial performance and may have implications in phage therapy.
Asunto(s)
Antibacterianos/farmacología , Bacteriófago M13/genética , Plaquetas/metabolismo , Infecciones por Escherichia coli/tratamiento farmacológico , Escherichia coli/efectos de los fármacos , Nanopartículas/administración & dosificación , Fragmentos de Péptidos/farmacología , Animales , Infecciones por Escherichia coli/microbiología , Ingeniería Genética , Masculino , Microorganismos Modificados Genéticamente/genética , Nanopartículas/química , Ratas , Ratas Sprague-DawleyRESUMEN
Autophagy plays a critical role in intracellular metabolism and maintaining cellular homeostasis. Certain tumor cells present a higher basal autophagy rate and autophagy inhibition can lead to impaired metabolic dysfunction in autophagy-dependent tumor cells. Autophagy status in immune cells dictates their fate and response to antigen; however, autophagy in immune cells may be beneficial or detrimental depending on the developmental stage of the cell and more specifically its degree of differentiation. Autophagy-deficient hosts present variations in many metabolites, proteins and enzymes that may have tumor-promoting or -inhibiting effects. The centrality of autophagy in the metabolism of some cancers and immune cells poses as a critical target whose mechanisms must be further unraveled to optimize patient response and prevent tumor recurrence.
Asunto(s)
Autofagia , Inmunoterapia/métodos , Neoplasias/terapia , Microambiente Tumoral/inmunología , Animales , Homeostasis , Humanos , Neoplasias/inmunología , Neoplasias/patologíaRESUMEN
Autophagy is an important tightly controlled cellular process that regulates cellular homeostasis and is involved in deciding cell fate such as cell survival and death. The role of autophagy in many intracellular signaling pathways explains its interaction with other different types of cell death, including apoptosis and immunogenic cell death (ICD). The reports showed the complex and intriguing relationship existing between autophagy and immune system signaling pathways. However, the role of autophagy in ICD remains to be clearly elucidated. In this study, we demonstrated that Brucine, a clinically-used small molecule in traditional Chinese medicine, elicited autophagy inhibition. Brucine also triggered cell stress and induced features of ICD, including calreticulin (CRT) exposure and high-mobility group box 1 (HMGB1) release in MDA-MB-231 and CT26 cancer cells. Brucine impaired autolysosomal degradation and exerted a feedback regulation of ERK1/2-mTOR-p70S6K signaling cascade. Brucine-elicited ICD was confirmed by the rejection of CT26 tumor cells, implanted in the mice after vaccination with Brucine-treated CT26 cells. The impaired autophagy contributed to Brucine-induced ICD, as knock-down of Atg5 significantly reduced Brucine-elicited CRT exposure and HMGB1 release. Our results revealed Brucine as a novel autophagy regulator, ICD inducer and hitherto undocumented role of autophagy in ICD. Thus, these results imply the importance of Brucine in cancer immunotherapy. Therefore, Brucine may be used as an ICD inducer and improve its application in cancer treatment with minimized toxicity.
Asunto(s)
Autofagia/efectos de los fármacos , Muerte Celular/genética , Muerte Celular/inmunología , Medicamentos Herbarios Chinos , Lisosomas/efectos de los fármacos , Estricnina/análogos & derivados , Animales , Autofagia/fisiología , Proteína 5 Relacionada con la Autofagia/genética , Calreticulina , Línea Celular Tumoral , Técnicas de Silenciamiento del Gen , Proteína HMGB1/metabolismo , Humanos , Inmunoterapia , Lisosomas/fisiología , Sistema de Señalización de MAP Quinasas/efectos de los fármacos , Ratones , Neoplasias/tratamiento farmacológico , Fitoterapia , Estricnina/farmacología , Estricnina/uso terapéuticoRESUMEN
The use of probiotics as food components combats not only cardiovascular diseases but also many gastrointestinal tract disorders. Their health benefits along with their increased global market have interested scientists for better formulation and appropriate administration to the consumers. However, the lack of clear elucidation of their cholesterol-lowering mechanisms has complicated their proper dosage and administration to the beneficiaries. In this review, proposed mechanisms of cholesterol reduction such as deconjugation of bile via bile salt hydrolase activity, binding of cholesterol to probiotic cellular surface and incorporation into their cell membrane, production of SCFAs from oligosaccharides, coprecipitation of cholesterol with deconjugated bile, and cholesterol conversion to coprostanol have been discussed. Also, hypocholesterolemic effects on human- and animal-trial results, commonly used probiotics and synbiotics with effect on serum cholesterol regulation, types of bile salt hydrolase genes, and substrate specificities have been discussed.