Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 48
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 199, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38324037

RESUMEN

L-Arabinofuranosides with ß-linkages are present in several plant molecules, such as arabinogalactan proteins (AGPs), extensin, arabinan, and rhamnogalacturonan-II. We previously characterized a ß-L-arabinofuranosidase from Bifidobacterium longum subsp. longum JCM 1217, Bll1HypBA1, which was found to belong to the glycoside hydrolase (GH) family 127. This strain encodes two GH127 genes and two GH146 genes. In the present study, we characterized a GH146 ß-L-arabinofuranosidase, Bll3HypBA1 (BLLJ_1848), which was found to constitute a gene cluster with AGP-degrading enzymes. This recombinant enzyme degraded AGPs and arabinan, which contain Araf-ß1,3-Araf structures. In addition, the recombinant enzyme hydrolyzed oligosaccharides containing Araf-ß1,3-Araf structures but not those containing Araf-ß1,2-Araf and Araf-ß1,5-Araf structures. The crystal structures of Bll3HypBA1 were determined at resolutions up to 1.7 Å. The monomeric structure of Bll3HypBA1 comprised a catalytic (α/α)6 barrel and two ß-sandwich domains. A hairpin structure with two ß-strands was observed in Bll3HypBA1, to extend from a ß-sandwich domain and partially cover the active site. The active site contains a Zn2+ ion coordinated by Cys3-Glu and exhibits structural conservation of the GH127 cysteine glycosidase Bll1HypBA1. This is the first study to report on a ß1,3-specific ß-L-arabinofuranosidase. KEY POINTS: • ß1,3-l-Arabinofuranose residues are present in arabinogalactan proteins and arabinans as a terminal sugar. • ß-l-Arabinofuranosidases are widely present in intestinal bacteria. • Bll3HypBA1 is the first enzyme characterized as a ß1,3-linkage-specific ß-l-arabinofuranosidase.


Asunto(s)
Bifidobacterium , Glicósido Hidrolasas , Catálisis , Cisteína
2.
Molecules ; 29(8)2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38675593

RESUMEN

Rare sugars are known for their ability to suppress postprandial blood glucose levels. Therefore, oligosaccharides and disaccharides derived from rare sugars could potentially serve as functional sweeteners. A disaccharide [α-d-allopyranosyl-(1→2)-ß-d-psicofuranoside] mimicking sucrose was synthesized from rare monosaccharides D-allose and D-psicose. Glycosylation using the intermolecular aglycon delivery (IAD) method was employed to selectively form 1,2-cis α-glycosidic linkages of the allopyranose residues. Moreover, ß-selective psicofuranosylation was performed using a psicofuranosyl acceptor with 1,3,4,6-tetra-O-benzoyl groups. This is the first report on the synthesis of non-reducing disaccharides comprising only rare d-sugars by IAD using protected ketose as a unique acceptor; additionally, this approach is expected to be applicable to the synthesis of functional sweeteners.


Asunto(s)
Disacáridos , Fructosa , Glucosa , Sacarosa , Disacáridos/química , Disacáridos/síntesis química , Sacarosa/química , Glicosilación , Edulcorantes/química
3.
Chembiochem ; 24(5): e202200637, 2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36579407

RESUMEN

In plant cell walls, the hydroxyproline-rich glycoproteins (HRGPs) such as extensin contain oligoarabinofuranoside linked to a hydroxyproline (Hyp) residue. The mature arabinooligosaccharide was revealed to be a tetrasaccharide (α-l-Araf-(1→3)-ß-l-Araf-(1→2)-ß-l-Araf-(1→2)-ß-l-Araf, l-Araf4 ), whose linkages are targets of the bifidobacterial and Xanthomonas arabinooligosaccharide-degrading enzymes. The l-Araf4 motif was cleaved by GH43 α-l-arabinofuranosidase (Arafase) and converted to an l-Araf3 -linked structure. The latter is then cleaved by GH121 ß-l-arabinobiosidase (HypBA2), producing ß-l-Araf-(1→2)-l-Ara (ß-l-arabinobiose) and mono-ß-l-Araf linked to the HRGP backbone. In bifidobacteria, the ß-l-arabinobiose is then hydrolyzed by GH127 ß-l-Arafase (Bll1HypBA1), a mechanistically unique cysteine glycosidase. We recently identified the distantly related homologue from Xanthomonas euvesicatoria as GH146 ß-l-Arafase along with paralogues from Bifidobacterium longum, one of which, Bll4HypBA1 (BLLJ_0089), can degrade l-Araf1 -Hyp in a similar way to that of GH146. As the chemical synthesis of the extensin hydrophilic motif 1 a, which possesses three distinct linkages that connect four oligoAraf residues [Hyp(l-Arafn ) (n=4, 3, 1)], was achieved previously, we precisely monitored the step-wise enzymatic cleavage of 1 a in addition to that of potato lectin. The results unequivocally revealed that this enzyme specifically degrades the Hyp(l-Araf1 ) motif.


Asunto(s)
Bifidobacterium , Glicósido Hidrolasas , Bifidobacterium/metabolismo , Hidroxiprolina , Glicósido Hidrolasas/metabolismo , Glicoproteínas
4.
Molecules ; 28(15)2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37570614

RESUMEN

Controlling the stereoselectivity of 1,2-cis glycosylation is one of the most challenging tasks in the chemical synthesis of glycans. There are various 1,2-cis glycosides in nature, such as α-glucoside and ß-mannoside in glycoproteins, glycolipids, proteoglycans, microbial polysaccharides, and bioactive natural products. In the structure of polysaccharides such as α-glucan, 1,2-cis α-glucosides were found to be the major linkage between the glucopyranosides. Various regioisomeric linkages, 1→3, 1→4, and 1→6 for the backbone structure, and 1→2/3/4/6 for branching in the polysaccharide as well as in the oligosaccharides were identified. To achieve highly stereoselective 1,2-cis glycosylation, including α-glucosylation, a number of strategies using inter- and intra-molecular methodologies have been explored. Recently, Zn salt-mediated cis glycosylation has been developed and applied to the synthesis of various 1,2-cis linkages, such as α-glucoside and ß-mannoside, via the 1,2-cis glycosylation pathway and ß-galactoside 1,4/6-cis induction. Furthermore, the synthesis of various structures of α-glucans has been achieved using the recent progressive stereoselective 1,2-cis glycosylation reactions. In this review, recent advances in stereoselective 1,2-cis glycosylation, particularly focused on α-glucosylation, and their applications in the construction of linear and branched α-glucans are summarized.


Asunto(s)
Glucanos , Polisacáridos , Glicosilación , Glucanos/química , Glucósidos , Manósidos , Estereoisomerismo
5.
J Biol Chem ; 297(5): 101324, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34688653

RESUMEN

Fructooligosaccharides and their anhydrides are widely used as health-promoting foods and prebiotics. Various enzymes acting on ß-D-fructofuranosyl linkages of natural fructan polymers have been used to produce functional compounds. However, enzymes that hydrolyze and form α-D-fructofuranosyl linkages have been less studied. Here, we identified the BBDE_2040 gene product from Bifidobacterium dentium (α-D-fructofuranosidase and difructose dianhydride I synthase/hydrolase from Bifidobacterium dentium [αFFase1]) as an enzyme with α-D-fructofuranosidase and α-D-arabinofuranosidase activities and an anomer-retaining manner. αFFase1 is not homologous with any known enzymes, suggesting that it is a member of a novel glycoside hydrolase family. When caramelized fructose sugar was incubated with αFFase1, conversions of ß-D-Frup-(2→1)-α-D-Fruf to α-D-Fruf-1,2':2,1'-ß-D-Frup (diheterolevulosan II) and ß-D-Fruf-(2→1)-α-D-Fruf (inulobiose) to α-D-Fruf-1,2':2,1'-ß-D-Fruf (difructose dianhydride I [DFA I]) were observed. The reaction equilibrium between inulobiose and DFA I was biased toward the latter (1:9) to promote the intramolecular dehydrating condensation reaction. Thus, we named this enzyme DFA I synthase/hydrolase. The crystal structures of αFFase1 in complex with ß-D-Fruf and ß-D-Araf were determined at the resolutions of up to 1.76 Å. Modeling of a DFA I molecule in the active site and mutational analysis also identified critical residues for catalysis and substrate binding. The hexameric structure of αFFase1 revealed the connection of the catalytic pocket to a large internal cavity via a channel. Molecular dynamics analysis implied stable binding of DFA I and inulobiose to the active site with surrounding water molecules. Taken together, these results establish DFA I synthase/hydrolase as a member of a new glycoside hydrolase family (GH172).


Asunto(s)
Proteínas Bacterianas/química , Bifidobacterium/enzimología , Glicósido Hidrolasas/química , Modelos Moleculares , Oligosacáridos/química , Cristalografía por Rayos X , Glicósido Hidrolasas/clasificación
6.
Glycobiology ; 32(2): 171-180, 2022 03 19.
Artículo en Inglés | MEDLINE | ID: mdl-34735571

RESUMEN

ß-l-Arabinofuranosidase HypBA1 from Bifidobacterium longum belongs to the glycoside hydrolase family 127. At the active site of HypBA1, a cysteine residue (Cys417) coordinates with a Zn2+ atom and functions as the catalytic nucleophile for the anomer-retaining hydrolytic reaction. In this study, the role of Zn2+ ion and cysteine in catalysis as well as the substrate-bound structure were studied based on biochemical and crystallographic approaches. The enzymatic activity of HypBA1 decreased after dialysis in the presence of EDTA and guanidine hydrochloride and was then recovered by the addition of Zn2+. The Michaelis complex structure was determined using a crystal of a mutant at the acid/base catalyst residue (E322Q) soaked in a solution containing the substrate p-nitrophenyl-ß-l-arabinofuranoside. To investigate the covalent thioglycosyl enzyme intermediate structure, synthetic inhibitors of l-arabinofuranosyl haloacetamide derivatives with different anomer configurations were used to target the nucleophilic cysteine. In the crystal structure of HypBA1, ß-configured l-arabinofuranosylamide formed a covalent link with Cys417, whereas α-configured l-arabinofuranosylamide was linked to a noncatalytic residue Cys415. Mass spectrometric analysis indicated that Cys415 was also reactive with the probe molecule. With the ß-configured inhibitor, the arabinofuranoside moiety was correctly positioned at the subsite and the active site integrity was retained to successfully mimic the covalent intermediate state.


Asunto(s)
Cisteína , Zinc , Catálisis , Dominio Catalítico , Cristalografía por Rayos X , Cisteína/química , Glicósido Hidrolasas/química , Especificidad por Sustrato
7.
Appl Environ Microbiol ; 88(6): e0218721, 2022 03 22.
Artículo en Inglés | MEDLINE | ID: mdl-35108084

RESUMEN

Gum arabic is an arabinogalactan protein (AGP) that is effective as a prebiotic for the growth of bifidobacteria in the human intestine. We recently identified a key enzyme in the glycoside hydrolase (GH) family 39, 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase), for the assimilation of gum arabic AGP in Bifidobacterium longum subsp. longum. The enzyme released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and facilitated the action of other enzymes for degrading the AGP backbone and modified sugar. In this study, we identified an α-l-arabinofuranosidase (BlArafE; encoded by BLLJ_1850), a multidomain enzyme with both GH43_22 and GH43_34 catalytic domains, as a critical enzyme for the degradation of modified α-l-arabinofuranosides in gum arabic AGP. Site-directed mutagenesis approaches revealed that the α1,3/α1,4-Araf double-substituted gum arabic AGP side chain was initially degraded by the GH43_22 domain and subsequently cleaved by the GH43_34 domain to release α1,3-Araf and α1,4-Araf residues, respectively. Furthermore, we revealed that a tetrasaccharide, α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal, was a limited degradative oligosaccharide in the gum arabic AGP fermentation of B. longum subsp. longum JCM7052. The oligosaccharide was produced from gum arabic AGP by the cooperative action of the three cell surface-anchoring enzymes, GAfase, exo-ß1,3-galactanase (Bl1,3Gal), and BlArafE, on B. longum subsp. longum JCM7052. Furthermore, the tetrasaccharide was utilized by the commensal bacteria. IMPORTANCE Terminal galactose residues of the side chain of gum arabic arabinogalactan protein (AGP) are mainly substituted by α1,3/α1,4-linked Araf and ß1,6-linked α-l-Rhap-(1→4)-ß-d-GlcpA residues. This study found a multidomain BlArafE with GH43_22 and GH43_34 catalytic domains showing cooperative action for degrading α1,3/α1,4-linked Araf of the side chain of gum arabic AGP. In particular, the GH43_34 domain of BlArafE was a novel α-l-arabinofuranosidase for cleaving the α1,4-Araf linkage of terminal galactose. α-l-Rhap-(1→4)-ß-d-GlcpA-(1→6)-ß-d-Galp-(1→6)-d-Gal tetrasaccharide was released from gum arabic AGP by the cooperative action of GAfase, GH43_24 exo-ß-1,3-galactanase (Bl1,3Gal), and BlArafE and remained after B. longum subsp. longum JCM7052 culture. Furthermore, in vitro assimilation test of the remaining oligosaccharide using Bacteroides species revealed that cross-feeding may occur from bifidobacteria to other taxonomic groups in the gut.


Asunto(s)
Bifidobacterium longum , Bifidobacterium longum/metabolismo , Galactanos/metabolismo , Glicósido Hidrolasas/metabolismo , Goma Arábiga , Humanos , Oligosacáridos/química
8.
Bioorg Med Chem ; 68: 116849, 2022 08 15.
Artículo en Inglés | MEDLINE | ID: mdl-35653870

RESUMEN

Methyl ß-l-arabinofuranosyl-(1 â†’ 2)-, -(1 â†’ 3)-, and -(1 â†’ 5)-α-l-arabinofuranosides have been stereoselectively synthesized through 2-naphthylmethyl ether-mediated intramolecular aglycon delivery (NAP-IAD), whose ß-linkages were confirmed by NMR analysis on the 3JH1-H2 coupling constant and 13C chemical shift of C1. The NAP-IAD approach was simply extended for the synthesis of trisaccharide motifs possessing ß-l-arabinofuranosyl-(1 â†’ 5)-l-arabinofuranosyl non-reducing terminal structure with the branched ß-l-arabinofuranosyl-(1 â†’ 5)-[α-l-arabinofuranosyl-(1 â†’ 3)]-α-l-arabinofuranosyl and the liner ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl-(1 â†’ 5)-ß-l-arabinofuranosyl structures in olive arabinan and dinoflagellate polyethers, respectively. The results on the substrate specificity of a bifidobacterial ß-l-arabinofuranosidase HypBA1 using the regioisomers indicated that HypBA1 could hydrolyze all three linkages however behaved clearly less active to ß-(1 â†’ 5)-linked disaccharide than other two regioisomers including the proposed natural degradation product, ß-(1 â†’ 2)-linked one from plant extracellular matrix such as extensin. On the other hand, Xanthomonas XeHypBA1 was found to hydrolyze all three disaccharides as the substrate with higher specificity to ß-(1 â†’ 2)-linkage than bifidobacterial HypBA1.


Asunto(s)
Disacáridos , Glicósido Hidrolasas , Glicósido Hidrolasas/metabolismo , Especificidad por Sustrato
9.
Bioorg Med Chem ; 75: 117054, 2022 Oct 22.
Artículo en Inglés | MEDLINE | ID: mdl-36334492

RESUMEN

To understand the precise mechanism of the glycoside hydrolase (GH) family 127, a cysteine ß-l-arabinofuranosidase (Arafase) - HypBA1 - has been isolated from Bifidobacterium longum in the human Gut microbiota, and the design and synthesis of the mechanism-based inhibitors such as l-Araf-haloacetamides have been carried out. The α-l-Araf-azide derivative was used as the monoglycosylamine equivalent to afford the l-Araf-chloroacetamides (α/ß-1-Cl) as well as bromoacetamides (α/ß-1-Br) in highly stereoselective manner through Staudinger reaction followed by amide formation with/without anomerization. Against HypBA1, the probes 1, especially in the case of α/ß-1-Br inhibited the hydrolysis. Conformational implications of these observations are discussed in this manuscript. Additional examinations using l-Araf-azides (α/ß-5) resulted in further mechanistic observations of the GH127/146 cysteine glycosidases, including the hydrolysis of ß-5 as the substrate and oxidative inhibition by α-5 using the GH127 homologue.

10.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artículo en Inglés | MEDLINE | ID: mdl-33674431

RESUMEN

Gum arabic arabinogalactan (AG) protein (AGP) is a unique dietary fiber that is degraded and assimilated by only specific strains of Bifidobacterium longum subsp. longum Here, we identified a novel 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052 and classified it into glycoside hydrolase family 39 (GH39). GAfase released α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP and ß-l-Arap-(1→3)-l-Ara from larch AGP, and the α-d-Galp-(1→3)-l-Ara release activity was found to be 594-fold higher than that of ß-l-Arap-(1→3)-l-Ara. The GAfase gene was part of a gene cluster that included genes encoding a GH36 α-galactosidase candidate and ABC transporters for the assimilation of the released α-d-Galp-(1→3)-l-Ara in B. longum Notably, when α-d-Galp-(1→3)-l-Ara was removed from gum arabic AGP, it was assimilated by both B. longum JCM7052 and the nonassimilative B. longum JCM1217, suggesting that the removal of α-d-Galp-(1→3)-l-Ara from gum arabic AGP by GAfase permitted the cooperative action with type II AG degradative enzymes in B. longum The present study provides new insight into the mechanism of gum arabic AGP degradation in B. longumIMPORTANCE Bifidobacteria harbor numerous carbohydrate-active enzymes that degrade several dietary fibers in the gastrointestinal tract. B. longum JCM7052 is known to exhibit the ability to assimilate gum arabic AGP, but the key enzyme involved in the degradation of gum arabic AGP remains unidentified. Here, we cloned and characterized a GH39 3-O-α-d-galactosyl-α-l-arabinofuranosidase (GAfase) from B. longum JCM7052. The enzyme was responsible for the release of α-d-Galp-(1→3)-l-Ara and ß-l-Arap-(1→3)-l-Ara from gum arabic AGP. The presence of a gene cluster including the GAfase gene is specifically observed in gum arabic AGP assimilative strains. However, GAfase carrier strains may affect GAfase noncarrier strains that express other type II AG degradative enzymes. These findings provide insights into the bifidogenic effect of gum arabic AGP.


Asunto(s)
Proteínas Bacterianas/genética , Bifidobacterium/enzimología , Glicósido Hidrolasas/genética , Proteínas Bacterianas/metabolismo , Bifidobacterium/genética , Galactanos/metabolismo , Glicósido Hidrolasas/metabolismo , Goma Arábiga
11.
J Org Chem ; 86(23): 16901-16915, 2021 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-34797079

RESUMEN

A direct, efficient, and versatile glycosylation methodology promises the systematic synthesis of oligosaccharides and glycoconjugates in a streamlined fashion like the synthesis of medium to long-chain nucleotides and peptides. The development of a generally applicable approach for the construction of 1,2-cis-glycosidic bond with controlled stereoselectivity remains a major challenge, especially for the synthesis of ß-mannosides. Here, we report a direct mannosylation strategy mediated by ZnI2, a mild Lewis acid, for the highly stereoselective construction of 1,2-cis-ß linkages employing easily accessible 4,6-O-tethered mannosyl trichloroacetimidate donors. The versatility and effectiveness of this strategy were demonstrated with successful ß-mannosylation of a wide variety of alcohol acceptors, including complex natural products, amino acids, and glycosides. Through iteratively performing ZnI2-mediated mannosylation with the chitobiosyl azide acceptor followed by site-selective deprotection of the mannosylation product, the novel methodology enables the modular synthesis of the key intermediate trisaccharide with Man-ß-(1 → 4)-GlcNAc-ß-(1 → 4)-GlcNAc linkage for N-glycan synthesis. Theoretical investigations with density functional theory calculations delved into the mechanistic details of this ß-selective mannosylation and elucidated two zinc cations' essential roles as the activating agent of the donor and the principal mediator of the cis-directing intermolecular interaction.


Asunto(s)
Yoduros , Zinc , Glicosilación , Humanos , Manósidos , Oligosacáridos
12.
Angew Chem Int Ed Engl ; 60(11): 5754-5758, 2021 03 08.
Artículo en Inglés | MEDLINE | ID: mdl-33528085

RESUMEN

The recent discovery of zinc-dependent retaining glycoside hydrolases (GHs), with active sites built around a Zn(Cys)3 (Glu) coordination complex, has presented unresolved mechanistic questions. In particular, the proposed mechanism, depending on a Zn-coordinated cysteine nucleophile and passing through a thioglycosyl enzyme intermediate, remains controversial. This is primarily due to the expected stability of the intermediate C-S bond. To facilitate the study of this atypical mechanism, we report the synthesis of a cyclophellitol-derived ß-l-arabinofuranosidase inhibitor, hypothesised to react with the catalytic nucleophile to form a non-hydrolysable adduct analogous to the mechanistic covalent intermediate. This ß-l-arabinofuranosidase inhibitor reacts exclusively with the proposed cysteine thiol catalytic nucleophiles of representatives of GH families 127 and 146. X-ray crystal structures determined for the resulting adducts enable MD and QM/MM simulations, which provide insight into the mechanism of thioglycosyl enzyme intermediate breakdown. Leveraging the unique chemistry of cyclophellitol derivatives, the structures and simulations presented here support the assignment of a zinc-coordinated cysteine as the catalytic nucleophile and illuminate the finely tuned energetics of this remarkable metalloenzyme clan.


Asunto(s)
Ciclohexanoles/metabolismo , Cisteína/metabolismo , Inhibidores Enzimáticos/metabolismo , Glicósido Hidrolasas/metabolismo , Biocatálisis , Cristalografía por Rayos X , Ciclohexanoles/química , Ciclohexanoles/farmacología , Cisteína/química , Teoría Funcional de la Densidad , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Glicósido Hidrolasas/antagonistas & inhibidores , Glicósido Hidrolasas/química , Simulación de Dinámica Molecular , Estructura Molecular
13.
J Org Chem ; 85(8): 5536-5558, 2020 04 17.
Artículo en Inglés | MEDLINE | ID: mdl-32212661

RESUMEN

Polymers of glucose, the most abundant and one of the biologically important natural products, named glucans are widely present in fungi, bacteria, mammals, and plants with various anomeric configurations and glycosidic linkages. Because of their structural diversity, the unified strategy for the assembly of pure glucans is yet to be developed. Herein, we describe a general strategy that is applicable to construction of all types of glucans by exploiting a bimodal glycosyl donor equipped with C2-o-TsNHbenzyl ether (TAB), which enables stereocontrolled synthesis of both α- and ß-glycosides by switching reaction conditions.


Asunto(s)
Productos Biológicos , Glucanos , Glucosa , Glicósidos , Glicosilación
14.
Chembiochem ; 16(5): 731-7, 2015 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-25688550

RESUMEN

The oligosaccharyltransferase PglB from Campylobacter jejuni catalyses the N-glycosylation reaction with undecaprenyl-pyrophosphate-linked Glc1 GalNAc5 Bac1 (Und-PP-Glc1 GalNAc5 Bac1 ). Experiments using chemically synthesized donors coupled to fluorescently tagged peptides confirmed that biosynthetic intermediate Und-PP-Bac1 and Und-PP-GalNAc2 Bac1 are transferred efficiently to the Asn residue in the consensus sequence (D/E-X'-N-X-T/S, X',X≠P). The products were analyzed in detail by tandem MS to confirm their chemical structures.


Asunto(s)
Campylobacter jejuni/enzimología , Hexosiltransferasas/metabolismo , Proteínas de la Membrana/metabolismo , Oligopéptidos/metabolismo , Oligosacáridos/metabolismo , Fosfatos de Poliisoprenilo/metabolismo , Glicosilación , Hexosiltransferasas/química , Proteínas de la Membrana/química , Conformación Molecular , Oligopéptidos/química , Oligosacáridos/química , Fosfatos de Poliisoprenilo/química
15.
Biochem Biophys Res Commun ; 447(1): 32-7, 2014 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-24680821

RESUMEN

Enzymes acting on ß-linked arabinofuranosides have been unknown until recently, in spite of wide distribution of ß-l-arabinofuranosyl oligosaccharides in plant cells. Recently, a ß-l-arabinofuranosidase from the glycoside hydrolase family 127 (HypBA1) was discovered in the newly characterized degradation system of hydroxyproline-linked ß-l-arabinooligosaccharides in the bacterium Bifidobacterium longum. Here, we report the crystal structure of HypBA1 in the ligand-free and ß-l-arabinofuranose complex forms. The structure of HypBA1 consists of a catalytic barrel domain and two additional ß-sandwich domains, with one ß-sandwich domain involved in the formation of a dimer. Interestingly, there is an unprecedented metal-binding motif with Zn(2+) coordinated by glutamate and three cysteines in the active site. The glutamate residue is located far from the anomeric carbon of the ß-l-arabinofuranose ligand, but one cysteine residue is appropriately located for nucleophilic attack for glycosidic bond cleavage. The residues around the active site are highly conserved among GH127 members. Based on biochemical experiments and quantum mechanical calculations, a possible reaction mechanism involving cysteine as the nucleophile is proposed.


Asunto(s)
Dominio Catalítico , Glicósido Hidrolasas/química , Secuencia de Aminoácidos , Arabinosa/análogos & derivados , Arabinosa/metabolismo , Bifidobacterium/enzimología , Cisteína/química , Ácido Glutámico/química , Glicósido Hidrolasas/metabolismo , Modelos Moleculares , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Teoría Cuántica , Alineación de Secuencia , Especificidad por Sustrato , Zinc/química
16.
Angew Chem Int Ed Engl ; 53(37): 9812-6, 2014 Sep 08.
Artículo en Inglés | MEDLINE | ID: mdl-25044558

RESUMEN

Extensin, the structural motif of plant extracellular matrix proteins, possesses a unique highly glycosylated, hydrophilic, and repeating Ser1Hyp4 pentapeptide unit, and has been proposed to include post-translational hydroxylation at proline residue and subsequent oligo-L-arabinosylations at all of the resultant hydroxyprolines as well as galactosylation at serine residue. Reported herein is the stereoselective synthesis of one of the highly glycosylated motifs, Ser(Galp1)-Hyp(Araf4)-Hyp(Araf4)-Hyp(Araf3)-Hyp(Araf1). The synthesis has been completed by the application of 2-(naphthyl)methylether-mediated intramolecular aglycon delivery to the stereoselective construction of the Ser(Galp1) and Hyp(Araf(n)) fragments as the key step, as well as Fmoc solid-phase peptide synthesis for the backbone pentapeptide.


Asunto(s)
Glicoproteínas/metabolismo , Proteínas de Plantas/metabolismo , Genes de Plantas , Glicopéptidos , Glicoproteínas/genética , Glicosilación , Modelos Moleculares , Proteínas de Plantas/genética , Estructura Terciaria de Proteína , Técnicas de Síntesis en Fase Sólida
17.
Chem Commun (Camb) ; 60(24): 3291-3294, 2024 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-38421438

RESUMEN

This study proposes a new method for radionuclide therapy that involves the use of oligomeric 2,6-diisopropylphenyl azides and a chelator to form stable complexes with metallic radionuclides. The technique works by taking advantage of the endogenous acrolein produced by cancer cells. The azides react with the acrolein to give a diazo derivative that immediately attaches to the nearest organelle, effectively anchoring the radionuclide within the tumor. Preliminary in vivo experiments were conducted on a human lung carcinoma xenograft model, demonstrating the feasibility of this approach for cancer treatment.


Asunto(s)
Azidas , Neoplasias , Humanos , Acroleína , Radioisótopos
18.
ACS Omega ; 9(10): 11969-11975, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38497025

RESUMEN

Compared with stereoselective glycosylation methods mainly addressed on the preparation of pyranose glycosides, the furanosylation has been more limited, especially for the 1,2-cis arabinofuranosylation. Herein, we report a novel stereoselective 1,2-cis-arabinofuranosylation strategy using a conformationally restricted 3,5-O-xylylene-protected arabinofuranosyl donor on activation with B(C6F5)3 for desired targets in moderate to excellent yields and ß-stereoselectivity. The effectiveness of the 1,2-cis-arabinofuranosylation strategy was demonstrated successfully with various acceptors, including carbohydrate alcohols.

19.
Nat Commun ; 15(1): 3543, 2024 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-38730244

RESUMEN

ß-N-Acetylgalactosamine-containing glycans play essential roles in several biological processes, including cell adhesion, signal transduction, and immune responses. ß-N-Acetylgalactosaminidases hydrolyze ß-N-acetylgalactosamine linkages of various glycoconjugates. However, their biological significance remains ambiguous, primarily because only one type of enzyme, exo-ß-N-acetylgalactosaminidases that specifically act on ß-N-acetylgalactosamine residues, has been documented to date. In this study, we identify four groups distributed among all three domains of life and characterize eight ß-N-acetylgalactosaminidases and ß-N-acetylhexosaminidase through sequence-based screening of deep-sea metagenomes and subsequent searching of public protein databases. Despite low sequence similarity, the crystal structures of these enzymes demonstrate that all enzymes share a prototype structure and have diversified their substrate specificities (oligosaccharide-releasing, oligosaccharide/monosaccharide-releasing, and monosaccharide-releasing) through the accumulation of mutations and insertional amino acid sequences. The diverse ß-N-acetylgalactosaminidases reported in this study could facilitate the comprehension of their structures and functions and present evolutionary pathways for expanding their substrate specificity.


Asunto(s)
Acetilgalactosamina , Glicósido Hidrolasas , Metagenoma , Metagenoma/genética , Especificidad por Sustrato , Acetilgalactosamina/metabolismo , Acetilgalactosamina/química , Glicósido Hidrolasas/metabolismo , Glicósido Hidrolasas/genética , Glicósido Hidrolasas/química , beta-N-Acetilhexosaminidasas/metabolismo , beta-N-Acetilhexosaminidasas/genética , beta-N-Acetilhexosaminidasas/química , Filogenia , Cristalografía por Rayos X , Secuencia de Aminoácidos , Animales
20.
Org Biomol Chem ; 11(35): 5892-907, 2013 Sep 21.
Artículo en Inglés | MEDLINE | ID: mdl-23912193

RESUMEN

The unique hydroxylproline (Hyp)-linked O-glycan modification is a common process in hydroxyproline-rich glycoproteins (HRGPs). The modification occurs through post-translational hydroxylation at 4-position of proline residues some of which are followed by O-glycosylation at the resulting Hyp which is also found in some secreted peptide hormones such as CLAVATA3 (CLV3) of Arabidopsis thaliana plants. An active mature CLV3 is a tridecapeptide linked to ß-L-Araf-(1→2)-ß-L-Araf-(1→2)-ß-L-Araf at a Hyp residue in the center of the peptide sequence such as Arg-Thr-Val-Hyp-Ser-Gly-Hyp(L-Arafn)-Asp-Pro-Leu-His-His-His (n = 3). We report here the synthesis of the secreted and modified CLV3 glycopeptide with all glycoforms (Araf0-3CLV3) of A. thaliana plants. A highly stereoselective ß-arabinofuranosylation of Hyp derivatives as the key step of the synthesis of CLV3 glycopeptide was achieved by NAP ether-mediated IAD, which was effectively applied to the synthesis of oligoarabinosylated hydroxylproline [Hyp(L-Araf1-3)] derivatives. Fmoc-solid phase peptide synthesis was carried out using COMU as the coupling reagent for the introduction of [Hyp(L-Araf0-3)] derivatives as well as further elongation to the CLV3 glycopeptides.


Asunto(s)
Proteínas de Arabidopsis/síntesis química , Arabidopsis/química , Péptidos/síntesis química , Secuencia de Aminoácidos , Proteínas de Arabidopsis/química , Glicosilación , Datos de Secuencia Molecular , Péptidos/química , Técnicas de Síntesis en Fase Sólida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA