Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Dev Biol ; 390(2): 181-90, 2014 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-24680895

RESUMEN

Lgr4 and Lgr5 are known markers of adult and embryonic tissue stem cells in various organs. However, whether Lgr4 and Lgr5 are important for embryonic development remains unclear. To study their functions during intestinal crypt, skin and kidney development we now generated mice lacking either Lgr4 (Lgr4KO), Lgr5 (Lgr5KO) or both receptors (Lgr4/5dKO). E16.5 Lgr4KO mice displayed complete loss of Lgr5+/Olfm4+intestinal stem cells, compromised Wnt signaling and impaired proliferation and differentiation of gut epithelium. Similarly, E16.5 Lgr4KO mice showed reduced basal cell proliferation and hair follicle numbers in the developing skin, as well as dilated kidney tubules and ectatic Bowman׳s spaces. Although Lgr4KO and Lgr5KO mice both died perinatally, Lgr5 deletion did not compromise embryonic development of gut, kidney or skin. Concomitant deletion of Lgr4 and Lgr5 did not prevent perinatal lethality, in contrast to a previous report that suggested rescue of Lgr5 KO perinatal lethality by a hypomorphic Lgr4 mutant. While the double deletion did not further promote the phenotypes observed in Lgr4KO intestines, impaired kidney cell proliferation, reduced epidermal thickness, loss of Lgr5+follicular epithelium and impaired hair follicle development were only observed in Lgr4/5dKO mice. This supports complementary functions of both receptors. Our findings clearly establish the importance of Lgr4 and Lgr5 during embryonic gut, skin and kidney development, with a dominant role of Lgr4.


Asunto(s)
Intestinos/embriología , Riñón/embriología , Receptores Acoplados a Proteínas G/fisiología , Piel/embriología , Vía de Señalización Wnt/fisiología , Animales , Southern Blotting , Cartilla de ADN/genética , Componentes del Gen , Genotipo , Proteínas Fluorescentes Verdes , Inmunohistoquímica , Ratones , Ratones Endogámicos BALB C , Ratones Noqueados , Reacción en Cadena de la Polimerasa , Receptores Acoplados a Proteínas G/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Células Madre/fisiología , Vía de Señalización Wnt/genética
2.
Development ; 139(16): 2966-77, 2012 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-22764054

RESUMEN

Carotenoids and their metabolites are widespread and exert key biological functions in living organisms. In vertebrates, the carotenoid oxygenase BCMO1 converts carotenoids such as ß,ß-carotene to retinoids, which are required for embryonic pattern formation and cell differentiation. Vertebrate genomes encode a structurally related protein named BCDO2 but its physiological function remains undefined. Here, we show that BCDO2 is expressed as an oxidative stress-regulated protein during zebrafish development. Targeted knockdown of this mitochondrial enzyme resulted in anemia at larval stages. Marker gene analysis and staining for hemoglobin revealed that erythropoiesis was not impaired but that erythrocytes underwent apoptosis in BCDO2-deficient larvae. To define the mechanism of this defect, we have analyzed the role of BCDO2 in human cell lines. We found that carotenoids caused oxidative stress in mitochondria that eventually led to cytochrome c release, proteolytic activation of caspase 3 and PARP1, and execution of the apoptotic pathway. Moreover, BCDO2 prevented this induction of the apoptotic pathway by carotenoids. Thus, our study identifying BCDO2 as a crucial protective component against oxidative stress establishes this enzyme as mitochondrial carotenoid scavenger and a gatekeeper of the intrinsic apoptotic pathway.


Asunto(s)
Apoptosis/fisiología , Carotenoides/metabolismo , Mitocondrias/metabolismo , Oxigenasas/metabolismo , Proteínas de Pez Cebra/metabolismo , Acetilcisteína/farmacología , Anemia/enzimología , Anemia/genética , Animales , Apoptosis/efectos de los fármacos , Secuencia de Bases , Carotenoides/farmacología , Línea Celular , Dioxigenasas , Eritropoyesis/genética , Eritropoyesis/fisiología , Ácido Graso Desaturasas/genética , Ácido Graso Desaturasas/metabolismo , Fenretinida/farmacología , Regulación del Desarrollo de la Expresión Génica , Regulación Enzimológica de la Expresión Génica , Técnicas de Silenciamiento del Gen , Humanos , Modelos Biológicos , Estrés Oxidativo , Oxigenasas/antagonistas & inhibidores , Oxigenasas/genética , ARN Interferente Pequeño/genética , Pez Cebra/genética , Pez Cebra/crecimiento & desarrollo , Pez Cebra/metabolismo , Proteínas de Pez Cebra/antagonistas & inhibidores , Proteínas de Pez Cebra/genética
3.
Cell Metab ; 7(3): 258-68, 2008 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-18316031

RESUMEN

The cellular uptake of vitamin A from its RBP4-bound circulating form (holo-RBP4) is a homeostatic process that evidently depends on the multidomain membrane protein STRA6. In humans, mutations in STRA6 are associated with Matthew-Wood syndrome, manifested by multisystem developmental malformations. Here we addressed the metabolic basis of this inherited disease. STRA6-dependent transfer of retinol from RBP4 into cultured NIH 3T3 fibroblasts was enhanced by lecithin:retinol acyltransferase (LRAT). The retinol transfer was bidirectional, strongly suggesting that STRA6 acts as a retinol channel/transporter. Loss-of-function analysis in zebrafish embryos revealed that Stra6 deficiency caused vitamin A deprivation of the developing eyes. We provide evidence that, in the absence of Stra6, holo-Rbp4 provokes nonspecific vitamin A excess in several embryonic tissues, impairing retinoic acid receptor signaling and gene regulation. These fatal consequences of Stra6 deficiency, including craniofacial and cardiac defects and microphthalmia, were largely alleviated by reducing embryonic Rbp4 levels by morpholino oligonucleotide or pharmacological treatments.


Asunto(s)
Anomalías Múltiples/metabolismo , Proteínas de la Membrana/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Proteínas Plasmáticas de Unión al Retinol/metabolismo , Vitamina A/metabolismo , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Anomalías Múltiples/genética , Aciltransferasas/metabolismo , Animales , Anomalías Cardiovasculares/embriología , Anomalías Cardiovasculares/metabolismo , Anomalías Craneofaciales/embriología , Anomalías Craneofaciales/metabolismo , Modelos Animales de Enfermedad , Ojo/embriología , Ojo/enzimología , Ojo/metabolismo , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Homeostasis , Humanos , Proteínas de la Membrana/genética , Proteínas de Transporte de Membrana/genética , Ratones , Morfolinas/metabolismo , Células 3T3 NIH , Oligonucleótidos Antisentido/metabolismo , Proteínas Plasmáticas de Unión al Retinol/genética , Síndrome , Factores de Tiempo , Transducción Genética , Tretinoina/metabolismo , Pez Cebra/embriología , Pez Cebra/genética , Proteínas de Pez Cebra/genética
4.
Biochim Biophys Acta ; 1740(2): 122-31, 2005 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-15949678

RESUMEN

Vitamin A derivatives (retinoids) are essential components in vision; they contribute to pattern formation during development and exert multiple effects on cell differentiation with important clinical implications. All naturally occurring vitamin A derives by enzymatic oxidative cleavage from carotenoids with pro-vitamin A activity. To become biologically active, these plant-derived compounds must first be absorbed, then delivered to the site of action in the body, and metabolically converted to the real vitamin. Recently, molecular players of this pathway were identified by the analysis of blind Drosophila mutants. Similar genome sequences were found in vertebrates. Subsequently, these homologous genes were cloned and their gene products were functionally characterized. This review will summarize the advanced state of knowledge about the vitamin A biosynthetic pathway and will discuss biochemical, physiological, developmental and medical aspects of carotenoids and their numerous derivatives.


Asunto(s)
Carotenoides/metabolismo , Oxigenasas/metabolismo , Vitamina A/biosíntesis , Animales , Proteínas Portadoras , Dioxigenasas , Proteínas del Ojo/metabolismo , Humanos , Mucosa Intestinal/metabolismo , Oxigenasas/genética , Receptores Inmunológicos/metabolismo , Receptores Depuradores , Tretinoina/metabolismo , Vitamina A/metabolismo , beta-Caroteno 15,15'-Monooxigenasa , cis-trans-Isomerasas
5.
Nat Cell Biol ; 18(5): 467-79, 2016 05.
Artículo en Inglés | MEDLINE | ID: mdl-27088858

RESUMEN

LGR4/5 receptors and their cognate RSPO ligands potentiate Wnt/ß-catenin signalling and promote proliferation and tissue homeostasis in epithelial stem cell compartments. In the liver, metabolic zonation requires a Wnt/ß-catenin signalling gradient, but the instructive mechanism controlling its spatiotemporal regulation is not known. We have now identified the RSPO-LGR4/5-ZNRF3/RNF43 module as a master regulator of Wnt/ß-catenin-mediated metabolic liver zonation. Liver-specific LGR4/5 loss of function (LOF) or RSPO blockade disrupted hepatic Wnt/ß-catenin signalling and zonation. Conversely, pathway activation in ZNRF3/RNF43 LOF mice or with recombinant RSPO1 protein expanded the hepatic Wnt/ß-catenin signalling gradient in a reversible and LGR4/5-dependent manner. Recombinant RSPO1 protein increased liver size and improved liver regeneration, whereas LGR4/5 LOF caused the opposite effects, resulting in hypoplastic livers. Furthermore, we show that LGR4(+) hepatocytes throughout the lobule contribute to liver homeostasis without zonal dominance. Taken together, our results indicate that the RSPO-LGR4/5-ZNRF3/RNF43 module controls metabolic liver zonation and is a hepatic growth/size rheostat during development, homeostasis and regeneration.


Asunto(s)
Hígado/citología , Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Animales , Animales Recién Nacidos , Linaje de la Célula , Proliferación Celular , Citocromo P-450 CYP2E1/metabolismo , Eliminación de Gen , Hepatocitos/citología , Hepatocitos/metabolismo , Homeostasis , Antígeno Ki-67/metabolismo , Hígado/crecimiento & desarrollo , Hígado/metabolismo , Regeneración Hepática , Tamaño de los Órganos , Transducción de Señal , beta-Galactosidasa/metabolismo
6.
PLoS One ; 8(3): e59630, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23544080

RESUMEN

BACKGROUND: Sphingosine-1-phosphate (S1P) regulates the egress of T cells from lymphoid organs; levels of S1P in the tissues are controlled by S1P lyase (Sgpl1). Hence, Sgpl1 offers a target to block T cell-dependent inflammatory processes. However, the involvement of Sgpl1 in models of disease has not been fully elucidated yet, since Sgpl1 KO mice have a short life-span. METHODOLOGY: We generated inducible Sgpl1 KO mice featuring partial reduction of Sgpl1 activity and analyzed them with respect to sphingolipid levels, T-cell distribution, and response in models of inflammation. PRINCIPAL FINDINGS: The partially Sgpl1 deficient mice are viable but feature profound reduction of peripheral T cells, similar to the constitutive KO mice. While thymic T cell development in these mice appears normal, mature T cells are retained in thymus and lymph nodes, leading to reduced T cell numbers in spleen and blood, with a skewing towards increased proportions of memory T cells and T regulatory cells. The therapeutic relevance of Sgpl1 is demonstrated by the fact that the inducible KO mice are protected in experimental autoimmune encephalomyelitis (EAE). T cell immigration into the CNS was found to be profoundly reduced. Since S1P levels in the brain of the animals are unchanged, we conclude that protection in EAE is due to the peripheral effect on T cells, leading to reduced CNS immigration, rather than on local effects in the CNS. SIGNIFICANCE: The data suggest Sgpl1 as a novel therapeutic target for the treatment of multiple sclerosis.


Asunto(s)
Aldehído-Liasas/deficiencia , Encefalomielitis Autoinmune Experimental/enzimología , Encefalomielitis Autoinmune Experimental/prevención & control , Aldehído-Liasas/metabolismo , Animales , Encéfalo/metabolismo , Linfocitos T CD4-Positivos/inmunología , Encefalomielitis Autoinmune Experimental/sangre , Encefalomielitis Autoinmune Experimental/complicaciones , Factores de Transcripción Forkhead/metabolismo , Hipersensibilidad Tardía/sangre , Hipersensibilidad Tardía/complicaciones , Hipersensibilidad Tardía/inmunología , Hipersensibilidad Tardía/patología , Memoria Inmunológica/inmunología , Integrasas/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/patología , Recuento de Linfocitos , Ratones , Ratones Noqueados , Ovinos , Esfingolípidos/metabolismo , Bazo/inmunología , Bazo/patología , Análisis de Supervivencia , Timo/inmunología , Timo/patología
7.
PLoS One ; 7(1): e30011, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22253858

RESUMEN

Generation of gain-of-function transgenic mice by targeting the Rosa26 locus has been established as an alternative to classical transgenic mice produced by pronuclear microinjection. However, targeting transgenes to the endogenous Rosa26 promoter results in moderate ubiquitous expression and is not suitable for high expression levels. Therefore, we now generated a modified Rosa26 (modRosa26) locus that combines efficient targeted transgenesis using recombinase-mediated cassette exchange (RMCE) by Flipase (Flp-RMCE) or Cre recombinase (Cre-RMCE) with transgene expression from exogenous promoters. We silenced the endogenous Rosa26 promoter and characterized several ubiquitous (pCAG, EF1α and CMV) and tissue-specific (VeCad, αSMA) promoters in the modRosa26 locus in vivo. We demonstrate that the ubiquitous pCAG promoter in the modRosa26 locus now offers high transgene expression. While tissue-specific promoters were all active in their cognate tissues they additionally led to rare ectopic expression. To achieve high expression levels in a tissue-specific manner, we therefore combined Flp-RMCE for rapid ES cell targeting, the pCAG promoter for high transgene levels and Cre/LoxP conditional transgene activation using well-characterized Cre lines. Using this approach we generated a Cre/LoxP-inducible reporter mouse line with high EGFP expression levels that enables cell tracing in live cells. A second reporter line expressing luciferase permits efficient monitoring of Cre activity in live animals. Thus, targeting the modRosa26 locus by RMCE minimizes the effort required to target ES cells and generates a tool for the use exogenous promoters in combination with single-copy transgenes for predictable expression in mice.


Asunto(s)
Sitios Genéticos/genética , Integrasas/metabolismo , Mutagénesis Insercional/métodos , Regiones Promotoras Genéticas/genética , Proteínas/genética , Transgenes/genética , Animales , Sitios de Ligazón Microbiológica/genética , Células Madre Embrionarias/metabolismo , Genes Reporteros/genética , Proteínas Fluorescentes Verdes/metabolismo , Luciferasas/metabolismo , Ratones , Ratones Endogámicos BALB C , Ratones Transgénicos , Especificidad de Órganos/genética , ARN no Traducido
8.
PLoS One ; 7(7): e40976, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22815884

RESUMEN

The Wnt/ß-catenin signaling pathbway controls many important biological processes. R-Spondin (RSPO) proteins are a family of secreted molecules that strongly potentiate Wnt/ß-catenin signaling, however, the molecular mechanism of RSPO action is not yet fully understood. We performed an unbiased siRNA screen to identify molecules specifically required for RSPO, but not Wnt, induced ß-catenin signaling. From this screen, we identified LGR4, then an orphan G protein-coupled receptor (GPCR), as the cognate receptor of RSPO. Depletion of LGR4 completely abolished RSPO-induced ß-catenin signaling. The loss of LGR4 could be compensated by overexpression of LGR5, suggesting that LGR4 and LGR5 are functional homologs. We further demonstrated that RSPO binds to the extracellular domain of LGR4 and LGR5, and that overexpression of LGR4 strongly sensitizes cells to RSPO-activated ß-catenin signaling. Supporting the physiological significance of RSPO-LGR4 interaction, Lgr4-/- crypt cultures failed to grow in RSPO-containing intestinal crypt culture medium. No coupling between LGR4 and heterotrimeric G proteins could be detected in RSPO-treated cells, suggesting that LGR4 mediates RSPO signaling through a novel mechanism. Identification of LGR4 and its relative LGR5, an adult stem cell marker, as the receptors of RSPO will facilitate the further characterization of these receptor/ligand pairs in regenerative medicine applications.


Asunto(s)
Receptores Acoplados a Proteínas G/metabolismo , Trombospondinas/fisiología , Proteínas Wnt/metabolismo , beta Catenina/metabolismo , ADN Complementario/metabolismo , Proteínas de Unión al GTP/metabolismo , Células HEK293 , Humanos , Mucosa Intestinal/metabolismo , Ligandos , Modelos Biológicos , Sistemas de Lectura Abierta , Estructura Terciaria de Proteína , Interferencia de ARN , ARN Interferente Pequeño/metabolismo , Transducción de Señal , Células Madre/citología
10.
J Biol Chem ; 282(2): 1144-51, 2007 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-17098734

RESUMEN

For vertebrate development, vitamin A (all-trans retinol) is required in quantitative different amounts and spatiotemporal distribution for the production of retinoic acid, a nuclear hormone receptor ligand, and 11-cis retinal, the chromophore of visual pigments. We show here for zebrafish that embryonic retinoid homeostasis essentially depends on the activity of a leci-thin:retinol acyltransferase (Lratb). During embryogenesis, lratb is expressed in mostly non-overlapping domains opposite to retinal dehydrogenase 2 (raldh2), the key enzyme for retinoic acid synthesis. Blocking retinyl ester formation by a targeted knock down of Lratb results in significantly increased retinoic acid levels, which lead to severe embryonic patterning defects. Thus, we provide evidence that a balanced competition between Lratb and Raldh2 for yolk vitamin A defines embryonic compartments either for retinyl ester or retinoic acid synthesis. This homeostatic mechanism dynamically adjusts embryonic retinoic acid levels for gene regulation, concomitantly sequestering excess yolk vitamin A in the form of retinyl esters for the establishment of larval vision later during development.


Asunto(s)
Ojo/embriología , Ojo/metabolismo , Retinoides/metabolismo , Transducción de Señal/fisiología , Pez Cebra/embriología , Pez Cebra/metabolismo , Aciltransferasas/genética , Aciltransferasas/metabolismo , Aldehído Oxidorreductasas/genética , Aldehído Oxidorreductasas/metabolismo , Secuencia de Aminoácidos , Animales , Línea Celular , Drosophila , Yema de Huevo/metabolismo , Embrión no Mamífero/embriología , Embrión no Mamífero/metabolismo , Ésteres/metabolismo , Regulación del Desarrollo de la Expresión Génica , Homeostasis/fisiología , Datos de Secuencia Molecular , Retinaldehído/metabolismo , Tretinoina/metabolismo , Vitamina A/metabolismo
11.
Biochemistry ; 46(7): 1811-20, 2007 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-17253779

RESUMEN

Metabolism of vitamin A, all-trans-retinol, leads to the formation of 11-cis-retinaldehyde, the visual chromophore, and all-trans-retinoic acid, which is involved in the regulation of gene expression through the retinoic acid receptor. Enzymes and binding proteins involved in retinoid metabolism are highly conserved across species. We previously described a novel mammalian enzyme that saturates the 13-14 double bond of all-trans-retinol to produce all-trans-13,14-dihydroretinol, which then follows the same metabolic fate as that of all-trans-retinol. Specifically, all-trans-13,14-dihydroretinol is transiently oxidized to all-trans-13,14-dihydroretinoic acid before being oxidized further by Cyp26 enzymes. Here, we report the identification of two putative RetSat homologues in zebrafish, one of which, zebrafish RetSat A (zRetSat A), also had retinol saturase activity, whereas zebrafish RetSat B (zRetSat B) was inactive under similar conditions. Unlike mouse RetSat (mRetSat), zRetSat A had an altered bond specificity saturating either the 13-14 or 7-8 double bonds of all-trans-retinol to produce either all-trans-13,14-dihydroretinol or all-trans-7,8-dihydroretinol, respectively. zRetSat A also saturated the 13-14 or 7-8 double bonds of all-trans-3,4-didehydroretinol (vitamin A2), a second endogenous form of vitamin A in zebrafish. The dual enzymatic activity of zRetSat A displays a newly acquired specificity for the 13-14 double bond retained in higher vertebrates and also the evolutionarily preserved activity of bacterial phytoene desaturases and plant carotenoid isomerases. Expression of zRetSat A was restricted to the liver and intestine of hatchlings and adult zebrafish, whereas zRetSat B was expressed in the same tissues but at earlier developmental stages. Exogenous all-trans-retinol, all-trans-13,14-dihydroretinol, or all-trans-7,8-dihydroretinol led to the strong induction of the expression of the retinoic acid-metabolizing enzyme, Cyp26A1, arguing for an active signaling function of dihydroretinoid metabolites in zebrafish. These findings point to a conserved function but altered specificity of RetSat in vertebrates, leading to the generation of various dihydroretinoid compounds, some of which could have signaling functions.


Asunto(s)
Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Vitamina A/análogos & derivados , Proteínas de Pez Cebra/metabolismo , Pez Cebra/metabolismo , Secuencia de Aminoácidos , Animales , Catálisis , Datos de Secuencia Molecular , Especificidad de Órganos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/biosíntesis , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/genética , Estereoisomerismo , Especificidad por Sustrato , Vitamina A/metabolismo , Pez Cebra/genética , Proteínas de Pez Cebra/biosíntesis , Proteínas de Pez Cebra/genética
12.
Eur J Neurosci ; 26(7): 1940-9, 2007 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17868371

RESUMEN

An enzyme-based cyclic pathway for trans to cis isomerization of the chromophore of visual pigments (11-cis-retinal) is intrinsic to vertebrate cone and rod vision. This process, called the visual cycle, is mostly characterized in rod-dominated retinas and essentially depends on RPE65, an all-trans to 11-cis-retinoid isomerase. Here we analysed the role of RPE65 in zebrafish, a species with a cone-dominated retina. We cloned zebrafish RPE65 and showed that its expression coincided with photoreceptor development. Targeted gene knockdown of RPE65 resulted in morphologically altered rod outer segments and overall reduced 11-cis-retinal levels. Cone vision of RPE65-deficient larvae remained functional as demonstrated by behavioural tests and by metabolite profiling for retinoids. Furthermore, all-trans retinylamine, a potent inhibitor of the rod visual cycle, reduced 11-cis-retinal levels of control larvae to a similar extent but showed no additive effects in RPE65-deficient larvae. Thus, our study of zebrafish provides in vivo evidence for the existence of an RPE65-independent pathway for the regeneration of 11-cis-retinal for cone vision.


Asunto(s)
Regulación del Desarrollo de la Expresión Génica/fisiología , Retina/citología , Retina/enzimología , Células Fotorreceptoras Retinianas Conos/fisiología , Visión Ocular/fisiología , cis-trans-Isomerasas/fisiología , Animales , Animales Modificados Genéticamente , Línea Celular Transformada , Diterpenos/farmacología , Embrión no Mamífero , Inmunohistoquímica/métodos , Hibridación in Situ/métodos , Luz , Ratones , Retinaldehído/metabolismo , Pez Cebra , cis-trans-Isomerasas/genética
13.
J Biol Chem ; 282(46): 33553-33561, 2007 Nov 16.
Artículo en Inglés | MEDLINE | ID: mdl-17855355

RESUMEN

Carotenoids are currently investigated regarding their potential to lower the risk of chronic disease and to combat vitamin A deficiency in humans. These plant-derived compounds must be cleaved and metabolically converted by intrinsic carotenoid oxygenases to support the panoply of vitamin A-dependent physiological processes. Two different carotenoid-cleaving enzymes were identified in mammals, the classical carotenoid-15,15'-oxygenase (CMO1) and a putative carotenoid-9',10'-oxygenase (CMO2). To analyze the role of CMO1 in mammalian physiology, here we disrupted the corresponding gene by targeted homologous recombination in mice. On a diet providing beta-carotene as major vitamin A precursor, vitamin A levels fell dramatically in several tissues examined. Instead, this mouse mutant accumulated the provitamin in large quantities (e.g. as seen by an orange coloring of adipose tissues). Besides impairments in beta-carotene metabolism, CMO1 deficiency more generally interfered with lipid homeostasis. Even on a vitamin A-sufficient chow, CMO1(-/-) mice developed a fatty liver and displayed altered serum lipid levels with elevated serum unesterified fatty acids. Additionally, this mouse mutant was more susceptible to high fat diet-induced impairments in fatty acid metabolism. Quantitative reverse transcription-PCR analysis revealed that the expression of peroxisome proliferator-activated receptor gamma-regulated marker genes related to adipogenesis was elevated in visceral adipose tissues. Thus, our study identifies CMO1 as the key enzyme for vitamin A production and provides evidence for a role of carotenoids as more general regulators of lipid metabolism.


Asunto(s)
Oxigenasas/química , Oxigenasas/fisiología , Vitamina A/metabolismo , Tejido Adiposo/metabolismo , Animales , Ácidos Grasos/metabolismo , Prueba de Tolerancia a la Glucosa , Homeostasis , Humanos , Lípidos/química , Hígado/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Modelos Genéticos , Oxigenasas/deficiencia , PPAR gamma/metabolismo , Recombinación Genética , beta Caroteno/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA