Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Banco de datos
País/Región como asunto
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Environ Pollut ; 288: 117593, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34245983

RESUMEN

Metallurgical industries remain a considerable source of trace element contamination and potential human health risk. Determination of sources is a key challenge. With respect to the South Pacific's largest and longest operating metallurgic smelter in Nouméa, New Caledonia, determining the environmental impact and subsequent human health risk associated with local ferronickel smelting is complicated by natural geological enrichment of Ni and Cr. This study applies a multi-method and multi-matrix approach to disentangle smelter emissions from geogenic sources and model the consequent health risk from industrial activity. Dust wipes (n = 108), roadside soil (n = 91), garden soil (n = 15) and household vacuum dust (n = 39) were assessed to explore geospatial trace element (As, Cr, Cu, Fe, Mn, Ni, Pb, S, V and Zn) variations across outdoor and indoor environments. Enrichment factors (EF) identified elevated levels of smelter-related trace elements: S (EF = 7), Ni (EF = 6) and Cr (EF = 4), as well as Zn (EF = 4). Smelter-related elements in soil and dust deposits were negatively correlated with distance from the facility. Similarity of Pb isotopic compositions between dust wipes, surface soil and vacuum dust indicated that potentially toxic trace elements are being tracked into homes. Non-carcinogenic health risk modelling (Hazard Index, HI) based on 15 spatial nodes across Nouméa revealed widespread exceedance of tolerable risk for children (0-2 years) for Ni (HI 1.3-15.8) and Mn (HI 0.6-1.8). Risk was greatest near the smelter and to the north-west, in the direction of prevailing wind. Given the elevated cancer risk documented in New Caledonia, disentanglement of environmental from industrial sources warrants further attention to ensure community health protection. Our analysis illustrates how the confounding effects from complex environmental factors can be distilled to improve the accuracy of point source apportionment to direct future mitigation strategies.


Asunto(s)
Metales Pesados , Oligoelementos , Niño , Polvo/análisis , Monitoreo del Ambiente , Humanos , Hierro , Metalurgia , Metales Pesados/análisis , Níquel , Medición de Riesgo , Suelo , Oligoelementos/análisis
2.
Sci Total Environ ; 643: 183-192, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-29936161

RESUMEN

Combustion emissions are of growing concern across all Pacific Island Countries, which account for >10,000 km2 of the earth's surface area; as for many other small island states globally. Apportioning emissions inputs for Suva, the largest Pacific Island city, will aid in development of emission reduction strategies. Total suspended particulate (TSP) and fine particulate (PM2.5) samples were collected for Suva City, a residential area (Kinoya, TSP) and a mainly ocean-influenced site (Suva Point, TSP) from 2014 to 2015. Percentages of contemporary and fossil carbon were determined by radiocarbon analysis (accelerator mass spectrometry); for non­carbonate carbon (NCC), elemental carbon (EC) and organic carbon (OC). Source contributions to particulate matter were identified and the accuracy of previous emissions inventory and source apportionment studies was evaluated. Suva Point NCC concentrations (2.7 ±â€¯0.4 µg/m3) were four times lower than for City (13 ±â€¯2 µg/m3 in TSP) and Kinoya (13 ±â€¯1 µg/m3 in TSP); demonstrating the contribution of land-based emissions activities in city and residential areas. In Suva City, total NCC in air was 81% (79%-83%) fossil carbon, from vehicles, shipping, power generation and industry; whilst in the residential area, 48% (46%-50%) of total NCC was contemporary carbon; reflecting the higher incidence of biomass and waste burning and of cooking activities. Secondary organic fossil carbon sources contributed >36% of NCC mass at the city and >29% at Kinoya; with biogenic carbon being Kinoya's most significant source (approx. 30% of NCC mass). These results support the previous source apportionment studies for the city area; yet show that, in line with emissions inventory studies, biomass combustion contributes more PM2.5 mass in residential areas. Hence air quality management strategies need to target open burning activities as well as fossil fuel combustion.

3.
Sci Total Environ ; 612: 450-461, 2018 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-28863376

RESUMEN

Health implications of air pollution vary dependent upon pollutant sources. This work determines the value, in terms of reduced mortality, of reducing ambient particulate matter (PM2.5: effective aerodynamic diameter 2.5µm or less) concentration due to different emission sources. Suva, a Pacific Island city with substantial input from combustion sources, is used as a case-study. Elemental concentration was determined, by ion beam analysis, for PM2.5 samples from Suva, spanning one year. Sources of PM2.5 have been quantified by positive matrix factorisation. A review of recent literature has been carried out to delineate the mortality risk associated with these sources. Risk factors have then been applied for Suva, to calculate the possible mortality reduction that may be achieved through reduction in pollutant levels. Higher risk ratios for black carbon and sulphur resulted in mortality predictions for PM2.5 from fossil fuel combustion, road vehicle emissions and waste burning that surpass predictions for these sources based on health risk of PM2.5 mass alone. Predicted mortality for Suva from fossil fuel smoke exceeds the national toll from road accidents in Fiji. The greatest benefit for Suva, in terms of reduced mortality, is likely to be accomplished by reducing emissions from fossil fuel combustion (diesel), vehicles and waste burning.


Asunto(s)
Contaminantes Atmosféricos/efectos adversos , Contaminación del Aire/prevención & control , Monitoreo del Ambiente , Mortalidad , Material Particulado/efectos adversos , Emisiones de Vehículos , Ciudades , Fiji
4.
Environ Pollut ; 231(Pt 1): 367-378, 2017 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-28818812

RESUMEN

The Pacific Islands carry a perception of having clean air, yet emissions from transport and burning activities are of concern in regard to air quality and health. Ultrafine particle number concentrations (PNCs), one of the best metrics to demonstrate combustion emissions, have not been measured either in Suva or elsewhere in the Islands. This work provides insight into PNC variation across Suva and its relationship with particle mass (PM) concentration and composition. Measurements over a short monitoring campaign provide a vignette of conditions in Suva. Ambient PNCs were monitored for 8 day at a fixed location, and mobile PNC sampling for two days. These were compared with PM concentration (TSP, PM10, PM2.5, PM1) and are discussed in relation to black carbon (BC) content and PM2.5 sources, determined from elemental concentrations; for the October 2015 period and longer-term data. Whilst Suva City PM levels remained fairly low, PM2.5 = 10-12 µg m-3, mean PNC (1.64 ± 0.02 × 104 cm-3) was high compared to global data. PNCs were greater during mobile sampling, with means of 10.3 ± 1.4 × 104 cm-3 and 3.51 ± 0.07 × 104 cm-3 when travelling by bus and taxi, respectively. Emissions from road vehicles, shipping, diesel and open burning were identified as PM sources for the October 2015 period. Transport related ultrafine particle emissions had a significant impact on microscale ambient concentrations, with PNCs near roads being 1.5 to 2 times higher than nearby outdoor locations and peak PNCs occurring during peak traffic times. Further data, particularly on transport and wet-season exposures, are required to confirm results. Understanding PNC in Suva will assist in formulating effective air emissions control strategies, potentially reducing population exposure across the Islands and in developing countries with similar emission characteristics. Suva's PNC was high in comparison to global data; high exposures were related to transport and combustion emissions, which were also identified as significant PM2.5 sources.


Asunto(s)
Contaminantes Atmosféricos/análisis , Exposición a Riesgos Ambientales/estadística & datos numéricos , Material Particulado/análisis , Contaminación del Aire/análisis , Ciudades , Monitoreo del Ambiente/métodos , Humanos , Islas del Pacífico , Tamaño de la Partícula , Hollín , Emisiones de Vehículos/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA