Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Plant Mol Biol ; 112(1-2): 33-45, 2023 May.
Artículo en Inglés | MEDLINE | ID: mdl-37014509

RESUMEN

The primary transcript structure provides critical insights into protein diversity, transcriptional modification, and functions. Cassava transcript structures are highly diverse because of alternative splicing (AS) events and high heterozygosity. To precisely determine and characterize transcript structures, fully sequencing cloned transcripts is the most reliable method. However, cassava annotations were mainly determined according to fragmentation-based sequencing analyses (e.g., EST and short-read RNA-seq). In this study, we sequenced the cassava full-length cDNA library, which included rare transcripts. We obtained 8,628 non-redundant fully sequenced transcripts and detected 615 unannotated AS events and 421 unannotated loci. The different protein sequences resulting from the unannotated AS events tended to have diverse functional domains, implying that unannotated AS contributes to the truncation of functional domains. The unannotated loci tended to be derived from orphan genes, implying that the loci may be associated with cassava-specific traits. Unexpectedly, individual cassava transcripts were more likely to have multiple AS events than Arabidopsis transcripts, suggestive of the regulated interactions between cassava splicing-related complexes. We also observed that the unannotated loci and/or AS events were commonly in regions with abundant single nucleotide variations, insertions-deletions, and heterozygous sequences. These findings reflect the utility of completely sequenced FLcDNA clones for overcoming cassava-specific annotation-related problems to elucidate transcript structures. Our work provides researchers with transcript structural details that are useful for annotating highly diverse and unique transcripts and alternative splicing events.


Asunto(s)
Empalme Alternativo , Manihot , Empalme Alternativo/genética , Manihot/genética , Manihot/metabolismo , Nucleótidos , Biblioteca de Genes , Secuencia de Bases
2.
Plant Cell Physiol ; 63(3): 296-304, 2022 Mar 11.
Artículo en Inglés | MEDLINE | ID: mdl-34865144

RESUMEN

Plants are often exposed not only to short-term (S) heat stress but also to long-term (L) heat stress over several consecutive days. A few Arabidopsis mutants defective in L-heat tolerance have been identified, but the molecular mechanisms involved are less well understood than those involved in S-heat tolerance. To elucidate the mechanisms, we isolated the new sensitive to long-term heat5 (sloh5) mutant from EMS-mutagenized seeds of L-heat-tolerant Col-0. The sloh5 mutant was hypersensitive to L-heat but not to S-heat, osmo-shock, salt-shock or oxidative stress. The causal gene, SLOH5, is identical to elongatedmitochondria1 (ELM1), which plays an important role in mitochondrial fission in conjunction with dynamin-related proteins DRP3A and DRP3B. Transcript levels of ELM1, DRP3A and DRP3B were time-dependently increased by L-heat stress, and drp3a drp3b double mutants were hypersensitive to L-heat stress. The sloh5 mutant contained massively elongated mitochondria. L-heat stress caused mitochondrial dysfunction and cell death in sloh5. Furthermore, WT plants treated with a mitochondrial myosin ATPase inhibitor were hypersensitive to L-heat stress. These findings suggest that mitochondrial fission and function are important in L-heat tolerance of Arabidopsis.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Termotolerancia , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Mitocondrias/metabolismo , Dinámicas Mitocondriales/genética
3.
Plant Cell Physiol ; 62(2): 272-279, 2021 May 11.
Artículo en Inglés | MEDLINE | ID: mdl-33367686

RESUMEN

Plants are often exposed not only to short-term (S-) heat stress but also to diurnal long-term (L-) heat stress over several consecutive days. To reveal the mechanisms underlying L-heat stress tolerance, we here used a forward genetic screen for sensitive to long-term heat (sloh) mutants and isolated sloh4. The mutant was hypersensitive to L-heat stress but not to S-heat stress. The causal gene of sloh4 was identical to MIP3 encoding a member of the MAIGO2 (MAG2) tethering complex, which is composed of the MAG2, MIP1, MIP2 and MIP3 subunits and is localized at the endoplasmic reticulum (ER) membrane. Although sloh4/mip3 was hypersensitive to L-heat stress, the sensitivity of the mag2-3 and mip1-1 mutants was similar to that of the wild type (WT). Under L-heat stress, the ER stress and the following unfolded protein response (UPR) were more pronounced in sloh4 than in the WT. Transcript levels of bZIP60-regulated UPR genes were strongly increased in sloh4 under L-heat stress. Two processes known to be mediated by INOSITOL REQUIRING ENZYME1 (IRE1) - accumulation of the spliced bZIP60 transcript and a decrease in the transcript levels of PR4 and PRX34, encoding secretory proteins - were observed in sloh4 in response to L-heat stress. These findings suggest that misfolded proteins generated in sloh4 under L-heat stress may be recognized by IRE1 but not by bZIP28, resulting in the initiation of the UPR via activated bZIP60. Therefore, it would be possible that only MIP3 in the MAG2 complex has an additional function in L-heat tolerance, which is not related to the ER-Golgi vesicle tethering.


Asunto(s)
Proteínas de Arabidopsis/fisiología , Arabidopsis/fisiología , Retículo Endoplásmico/fisiología , Aparato de Golgi/metabolismo , Termotolerancia , Proteínas de Transporte Vesicular/fisiología , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Estrés del Retículo Endoplásmico , Genes de Plantas/fisiología , Proteínas de Transporte Vesicular/genética
4.
J Exp Bot ; 72(7): 2769-2789, 2021 03 29.
Artículo en Inglés | MEDLINE | ID: mdl-33481007

RESUMEN

Malate efflux from roots, which is regulated by the transcription factor STOP1 (SENSITIVE-TO-PROTON-RHIZOTOXICITY1) and mediates aluminum-induced expression of ALUMINUM-ACTIVATED-MALATE-TRANSPORTER1 (AtALMT1), is critical for aluminum resistance in Arabidopsis thaliana. Several studies showed that AtALMT1 expression in roots is rapidly observed in response to aluminum; this early induction is an important mechanism to immediately protect roots from aluminum toxicity. Identifying the molecular mechanisms that underlie rapid aluminum resistance responses should lead to a better understanding of plant aluminum sensing and signal transduction mechanisms. In this study, we observed that GFP-tagged STOP1 proteins accumulated in the nucleus soon after aluminum treatment. The rapid aluminum-induced STOP1-nuclear localization and AtALMT1 induction were detected in the presence of a protein synthesis inhibitor, suggesting that post-translational regulation is involved in these events. STOP1 also regulated rapid aluminum-induced expression for other genes that carry a functional/high-affinity STOP1-binding site in their promoter, including STOP2, GLUTAMATE-DEHYDROGENASE1 and 2 (GDH1 and 2). However STOP1 did not regulate Al resistance genes which have no functional STOP1-binding site such as ALUMINUM-SENSITIVE3, suggesting that the binding of STOP1 in the promoter is essential for early induction. Finally, we report that GDH1 and 2 which are targets of STOP1, are novel aluminum-resistance genes in Arabidopsis.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis , Arabidopsis , Aluminio/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulación de la Expresión Génica de las Plantas , Glutamato Deshidrogenasa , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo
5.
Proc Natl Acad Sci U S A ; 115(47): E11178-E11187, 2018 11 20.
Artículo en Inglés | MEDLINE | ID: mdl-30397148

RESUMEN

The plant hormone abscisic acid (ABA) is accumulated after drought stress and plays critical roles in the responses to drought stress in plants, such as gene regulation, stomatal closure, seed maturation, and dormancy. Although previous reports revealed detailed molecular roles of ABA in stress responses, the factors that contribute to the drought-stress responses-in particular, regulation of ABA accumulation-remain unclear. The enzyme NINE-CIS-EPOXYCAROTENOID DIOXYGENASE 3 (NCED3) is essential for ABA biosynthesis during drought stress, and the NCED3 gene is highly induced by drought stress. In the present study, we isolated NGATHAs (NGAs) as candidate transcriptional regulators of NCED3 through a screen of a plant library harboring the transcription factors fused to a chimeric repressor domain, SRDX. The NGA proteins were directly bound to a cis-element NGA-binding element (NBE) in the 5' untranslated region (5' UTR) of the NCED3 promoter and were suggested to be transcriptional activators of NCED3 Among the single-knockout mutants of four NGA family genes, we found that the NGATHA1 (NGA1) knockout mutant was drought-stress-sensitive with a decreased expression level of NCED3 during dehydration stress. These results suggested that NGA1 essentially functions as a transcriptional activator of NCED3 among the NGA family proteins. Moreover, the NGA1 protein was degraded under nonstressed conditions, and dehydration stress enhanced the accumulation of NGA1 proteins, even in ABA-deficient mutant plants, indicating that there should be ABA-independent posttranslational regulations. These findings emphasize the regulatory mechanisms of ABA biosynthesis during early drought stress.


Asunto(s)
Ácido Abscísico/biosíntesis , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Dioxigenasas/metabolismo , Regulación de la Expresión Génica de las Plantas/genética , Proteínas de Plantas/metabolismo , Estrés Fisiológico/genética , Factores de Transcripción/metabolismo , Regiones no Traducidas 5'/genética , Ácido Abscísico/genética , Proteínas de Arabidopsis/genética , Dioxigenasas/genética , Sequías , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente/genética , Regiones Promotoras Genéticas/genética , Estrés Fisiológico/fisiología , Factores de Transcripción/genética , Activación Transcripcional/genética
6.
Plant Cell Physiol ; 60(9): 2113-2126, 2019 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-31241160

RESUMEN

The transcription factor sensitive to proton rhizotoxicity 1 (STOP1) regulates multiple stress tolerances. In this study, we confirmed its involvement in NaCl and drought tolerance. The root growth of the T-DNA insertion mutant of STOP1 (stop1) was sensitive to NaCl-containing solidified MS media. Transcriptome analysis of stop1 under NaCl stress revealed that STOP1 regulates several genes related to salt tolerance, including CIPK23. Among all available homozygous T-DNA insertion mutants of the genes suppressed in stop1, only cipk23 showed a NaCl-sensitive root growth phenotype comparable to stop1. The CIPK23 promoter had a functional STOP1-binding site, suggesting a strong CIPK23 suppression led to NaCl sensitivity of stop1. This possibility was supported by in planta complementation of CIPK23 in the stop1 background, which rescued the short root phenotype under NaCl. Both stop1 and cipk23 exhibited a drought tolerant phenotype and increased abscisic acid-regulated stomatal closure, while the complementation of CIPK23 in stop1 reversed these traits. Our findings uncover additional pleiotropic roles of STOP1 mediated by CIPK23, which regulates various ion transporters including those regulating K+-homeostasis, which may induce a trade-off between drought tolerance and other traits.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas , Reguladores del Crecimiento de las Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/metabolismo , Protones/efectos adversos , Factores de Transcripción/metabolismo , Ácido Abscísico/metabolismo , Arabidopsis/fisiología , Proteínas de Arabidopsis/genética , Sequías , Proteínas Serina-Treonina Quinasas/genética , Tolerancia a la Sal , Estrés Fisiológico , Factores de Transcripción/genética
7.
J Exp Bot ; 70(12): 3297-3311, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30882866

RESUMEN

The SENSITIVE TO PROTON RHIZOTOXICITY 1 (STOP1) transcription factor regulates gene expression associated with multiple stress tolerances in plant roots. In this study, we investigated the mechanism responsible for the sensitivity of the stop1 mutant to low-oxygen stress in Arabidopsis. Transcriptomic analyses revealed that two genes involved in low-oxygen tolerance, namely GLUTAMATE DEHYDROGENASE 1 (GDH1) and GDH2, showed lower expression levels in the stop1 mutant than in the wild-type. Sensitivity of the gdh1gdh2 double-mutant to low-oxygen conditions was partly attributable to the low-oxygen sensitivity of the stop1 mutant. Two transcription factors, STOP2 and HEAT SHOCK FACTOR A2 (HsfA2), were expressed at lower levels in the stop1 mutant. An in planta complementation assay indicated that CaMV35S::STOP2 or CaMV35S::HsfA2 partially rescued the low-oxygen tolerance of the stop1 mutant, which was concomitant with recovered expression of genes regulating low-pH tolerance and genes encoding molecular chaperones. Prediction of cis-elements and in planta promoter assays revealed that STOP1 directly activated the expression of HsfA2. Similar STOP1-dependent low-oxygen sensitivity was detected in tobacco. Suppression of NtSTOP1 induced low-oxygen sensitivity, which was associated with lower expression levels of NtHsfA2 and NtGDHs compared with the wild-type. Our results indicated that STOP1 pleiotropically regulates low-oxygen tolerance by transcriptional regulation.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/genética , Factores de Transcripción del Choque Térmico/genética , Oxígeno/metabolismo , Factores de Transcripción/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción del Choque Térmico/metabolismo , Factores de Transcripción/metabolismo
8.
J Exp Bot ; 70(12): 3329-3342, 2019 06 28.
Artículo en Inglés | MEDLINE | ID: mdl-30977815

RESUMEN

To identify the upstream signaling of aluminum-induced malate secretion through aluminum-activated malate transporter 1 (AtALMT1), a pharmacological assay using inhibitors of human signal transduction pathways was performed. Early aluminum-induced transcription of AtALMT1 and other aluminum-responsive genes was significantly suppressed by phosphatidylinositol 4-kinase (PI4K) and phospholipase C (PLC) inhibitors, indicating that the PI4K-PLC metabolic pathway activates early aluminum signaling. Inhibitors of phosphatidylinositol 3-kinase (PI3K) and PI4K reduced aluminum-activated malate transport by AtALMT1, suggesting that both the PI3K and PI4K metabolic pathways regulate this process. These results were validated using T-DNA insertion mutants of PI4K and PI3K-RNAi lines. A human protein kinase inhibitor, putatively inhibiting homologous calcineurin B-like protein-interacting protein kinase and/or Ca-dependent protein kinase in Arabidopsis, suppressed late-phase aluminum-induced expression of AtALMT1, which was concomitant with the induction of an AtALMT1 repressor, WRKY46, and suppression of an AtALMT1 activator, Calmodulin-binding transcription activator 2 (CAMTA2). In addition, a human deubiquitinase inhibitor suppressed aluminum-activated malate transport, suggesting that deubiquitinases can regulate this process. We also found a reduction of aluminum-induced citrate secretion in tobacco by applying inhibitors of PI3K and PI4K. Taken together, our results indicated that phosphatidylinositol metabolism regulates organic acid secretion in plants under aluminum stress.


Asunto(s)
Aluminio/metabolismo , Proteínas de Arabidopsis/genética , Arabidopsis/metabolismo , Malatos/metabolismo , Transportadores de Anión Orgánico/genética , Fosfatidilinositoles/metabolismo , Proteínas de Arabidopsis/metabolismo , Transportadores de Anión Orgánico/metabolismo
9.
Plant J ; 89(4): 671-680, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27862521

RESUMEN

Interactions between heat shock (HS) factors (HSFs) and heat shock response elements (HSEs) are important during the heat shock response (HSR) of flora and fauna. Moreover, plant HSFs that are involved in heat stress are also involved in abiotic stresses such as dehydration and cold as well as development, cell differentiation and proliferation. Because the specific combination of HSFs and HSEs involved in plants under heat stress remains unclear, the mechanism of their interaction has not yet been utilized in molecular breeding of plants for climate change. For the study reported herein, we compared the sequences of HS-inducible genes and their promoters in Arabidopsis, soybean, rice and maize and then designed an optimal HS-inducible promoter. Our analyses suggest that, for the four species, the abscisic acid-independent, HSE/HSF-dependent transcriptional pathway plays a major role in HS-inducible gene expression. We found that an 18-bp sequence that includes the HSE has an important role in the HSR, and that those sequences could be classified as representative of monocotyledons or dicotyledons. With the HS-inducible promoter designed based on our bioinformatic predictions, we were able to develop an optimal HS-specific inducible promoter for seedlings or single cells in roots. These findings demonstrate the utility of our HS-specific inducible promoter, which we expect will contribute to molecular breeding efforts and cell-targeted gene expression in specific plant tissues.


Asunto(s)
Arabidopsis/genética , Glycine max/genética , Oryza/genética , Regiones Promotoras Genéticas/genética , Zea mays/genética , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Respuesta al Choque Térmico/genética , Respuesta al Choque Térmico/fisiología , Calor , Proteínas de Plantas/genética , Regiones Promotoras Genéticas/fisiología , Factores de Transcripción/genética , Transcripción Genética/genética
10.
Development ; 142(3): 444-53, 2015 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-25605779

RESUMEN

The root meristem (RM) is a fundamental structure that is responsible for postembryonic root growth. The RM contains the quiescent center (QC), stem cells and frequently dividing meristematic cells, in which the timing and the frequency of cell division are tightly regulated. In Arabidopsis thaliana, several gain-of-function analyses have demonstrated that peptide ligands of the Clavata3 (CLV3)/embryo surrounding region-related (CLE) family are important for maintaining RM size. Here, we demonstrate that a plant U-box E3 ubiquitin ligase, PUB4, is a novel downstream component of CLV3/CLE signaling in the RM. Mutations in PUB4 reduced the inhibitory effect of exogenous CLV3/CLE peptide on root cell proliferation and columella stem cell maintenance. Moreover, pub4 mutants grown without exogenous CLV3/CLE peptide exhibited characteristic phenotypes in the RM, such as enhanced root growth, increased number of cortex/endodermis stem cells and decreased number of columella layers. Our phenotypic and gene expression analyses indicated that PUB4 promotes expression of a cell cycle regulatory gene, CYCD6;1, and regulates formative periclinal asymmetric cell divisions in endodermis and cortex/endodermis initial daughters. These data suggest that PUB4 functions as a global regulator of cell proliferation and the timing of asymmetric cell division that are important for final root architecture.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/crecimiento & desarrollo , División Celular Asimétrica/fisiología , Proliferación Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Meristema/citología , Transducción de Señal/fisiología , Ubiquitina-Proteína Ligasas/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/genética , División Celular Asimétrica/genética , Proteínas de Ciclo Celular/metabolismo , Proliferación Celular/genética , Clonación Molecular , Ciclinas/metabolismo , Perfilación de la Expresión Génica , Microscopía Confocal , Plantas Modificadas Genéticamente , Transducción de Señal/genética , Técnicas del Sistema de Dos Híbridos , Ubiquitina-Proteína Ligasas/genética
11.
Planta ; 247(1): 201-214, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28921050

RESUMEN

MAIN CONCLUSION: Al-responsive citrate-transporting CcMATE1 function and its regulation by CcSTOP1 were analyzed using NtSTOP1 -KD tobacco- and pigeonpea hairy roots, respectively, CcSTOP1 binding sequence of CcMATE1 showed similarity with AtALMT1 promoter. The molecular mechanisms of Aluminum (Al) tolerance in pigeonpea (Cajanus cajan) were characterized to provide information for molecular breeding. Al-inducible citrate excretion was associated with the expression of MULTIDRUGS AND TOXIC COMPOUNDS EXCLUSION (CcMATE1), which encodes a citrate transporter. Ectopic expression of CcMATE1-conferred Al tolerance to hairy roots of transgenic tobacco with the STOP1 regulation system knocked down. This gain-of-function approach clearly showed CcMATE1 was involved in Al detoxification. The expression of CcMATE1 and another Al-tolerance gene, ALUMINUM SENSITIVE 3 (CcALS3), was regulated by SENSITIVE TO PROTON RHIZOTOXICITY1 (CcSTOP1) according to loss-of-function analysis of pigeonpea hairy roots in which CcSTOP1 was suppressed. An in vitro binding assay showed that the Al-responsive CcMATE1 promoter contained the GGNVS consensus bound by CcSTOP1. Mutation of GGNVS inactivated the Al-inducible expression of CcMATE1 in pigeonpea hairy roots. This indicated that CcSTOP1 binding to the promoter is critical for CcMATE1 expression. The STOP1 binding sites of both the CcMATE1 and AtALMT1 promoters contained GGNVS and a flanking 3' sequence. The GGNVS region was identical in both CcMATE1 and AtALMT1. By contrast, the 3' flanking sequence with binding affinity to STOP1 did not show similarity. Putative STOP1 binding sites with similar structures were also found in Al-inducible MATE and ALMT1 promoters in other plant species. The characterized Al-responsive CcSTOP1 and CcMATE1 genes will help in pigeonpea breeding in acid soil tolerance.


Asunto(s)
Aluminio/toxicidad , Cajanus/fisiología , Proteínas Portadoras/metabolismo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo , Dedos de Zinc CYS2-HIS2 , Cajanus/efectos de los fármacos , Cajanus/genética , Ácidos Carboxílicos/metabolismo , Proteínas Portadoras/genética , Ácido Cítrico/metabolismo , Resistencia a Medicamentos/genética , Genes Reporteros , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Nicotiana/efectos de los fármacos , Nicotiana/genética , Nicotiana/fisiología , Factores de Transcripción/genética
12.
Biosci Biotechnol Biochem ; 82(10): 1770-1779, 2018 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-29912637

RESUMEN

We previously found a chemical, designated as NJ15, which inhibited both auxin and brassinosteroid responses in dark-grown Arabidopsis. To study its mode of action, we performed a phenotypic screening of NJ15-low-sensitive lines among mutant pools of Arabidopsis. One line (f127) showed clear NJ15-low-sensitivity in terms of hypocotyl elongation and shoot gravitropism. After further testing, it was determined that DCR, an enzyme involved in cutin polymerization, had lost its function in the mutant, which caused its low sensitivity to NJ15. Fatty acids are the base materials for polymers such as cutin and cuticular wax. We confirmed that NJ15 affects fatty acid biosynthesis, and that it does differently from cafenstrole, a known inhibitor of cuticular wax formation. Based on these results, we propose that the target of NJ15 is likely located within the cutin polymer formation pathway. ABBREVIATIONS: Caf: cafenstrole; DEG: differentially expressed gene; FDR: false discovery rate; FOX: full length cDNA-overexpressor; VLCFA: very-long-chain fatty acid.


Asunto(s)
Arabidopsis/efectos de los fármacos , Gravitropismo/efectos de los fármacos , Hipocótilo/efectos de los fármacos , Lípidos de la Membrana/metabolismo , Brotes de la Planta/efectos de los fármacos , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Hipocótilo/crecimiento & desarrollo , Mutación , Brotes de la Planta/crecimiento & desarrollo , Polimerizacion , Reacción en Cadena en Tiempo Real de la Polimerasa , Análisis de Secuencia de ARN , Sulfonas/farmacología , Transcriptoma , Triazoles/farmacología
13.
Plant Physiol ; 167(3): 991-1003, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25627216

RESUMEN

In Arabidopsis (Arabidopsis thaliana) the root apex is protected from aluminum (Al) rhizotoxicity by excretion of malate, an Al chelator, by ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1). AtALMT1 expression is fundamentally regulated by the SENSITIVE TO PROTON RHIZOTOXICITY1 (STOP1) zinc finger protein, but other transcription factors have roles that enable Al-inducible expression with a broad dynamic range. In this study, we characterized multiple cis-elements in the AtALMT1 promoter that interact with transcription factors. In planta complementation assays of AtALMT1 driven by 5' truncated promoters of different lengths showed that the promoter region between -540 and 0 (the first ATG) restored the Al-sensitive phenotype of atalm1 and thus contains cis-elements essential for AtALMT1 expression for Al tolerance. Computation of overrepresented octamers showed that eight regions in this promoter region contained potential cis-elements involved in Al induction and STOP1 regulation. Mutation in a position around -297 from the first ATG completely inactivated AtALMT1 expression and Al response. In vitro binding assays showed that this region contained the STOP1 binding site, which accounted for the recognition by four zinc finger domains of the protein. Other positions were characterized as cis-elements that regulated expression by repressors and activators and a transcription factor that determines root tip expression of AtALMT1. From the consensus of known cis-elements, we identified CALMODULIN-BINDING TRANSCRIPTION ACTIVATOR2 to be an activator of AtALMT1 expression. Al-inducible expression of AtALMT1 changed transcription starting sites, which increased the abundance of transcripts with a shortened 5' untranslated region. The present analyses identified multiple mechanisms that regulate AtALMT1 expression.


Asunto(s)
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Transportadores de Anión Orgánico/metabolismo , Factores de Transcripción/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Aluminio/toxicidad , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Secuencia de Bases , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Prueba de Complementación Genética , Glucuronidasa/metabolismo , Modelos Biológicos , Datos de Secuencia Molecular , Mutación/genética , Transportadores de Anión Orgánico/genética , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Unión Proteica/efectos de los fármacos , Estructura Terciaria de Proteína , ARN Mensajero/genética , ARN Mensajero/metabolismo , Coloración y Etiquetado , Factores de Transcripción/química , Factores de Transcripción/genética , Sitio de Iniciación de la Transcripción , Transcripción Genética/efectos de los fármacos , Dedos de Zinc
14.
Plant Physiol ; 169(1): 840-55, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26175515

RESUMEN

The Arabidopsis (Arabidopsis thaliana) Early Light-Induced Protein (ELIP) is thought to act as a photoprotectant, reducing the damaging effects of high light (HL). Expression of ELIP2 is activated by multiple environmental stresses related to photoinhibition. We have identified putative regulatory elements in an ELIP2 promoter using an octamer-based frequency comparison method, analyzed the role of these elements using synthetic promoters, and revealed a key transcriptional regulatory unit for ultraviolet B (UV-B) radiation, HL, and cold stress responses. The unit is composed of two elements, designated as Elements A (TACACACC) and B (GGCCACGCCA), and shows functionality only when paired. Our genome-wide correlation analysis between possession of these elements in the promoter region and expression profiles in response to UV-B, HL, and cold suggests that Element B receives and integrates these multiple stress signals. In vitro protein-DNA binding assays revealed that LONG HYPOCOTYL5 (HY5), a basic domain-Leucine zipper transcription factor, directly binds to Element B. In addition, mutant analysis of HY5 showed partial involvement in the UV-B and HL responses but not in the cold stress response. These results suggest that signals for UV-B, HL, and cold stress join at Element B, which recognizes the signals of multiple transcription factors, including HY5.


Asunto(s)
Proteínas de Arabidopsis/genética , Frío , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Regiones Promotoras Genéticas , Estrés Fisiológico/efectos de la radiación , Transcripción Genética , Rayos Ultravioleta , Arabidopsis/genética , Arabidopsis/efectos de la radiación , Proteínas de Arabidopsis/metabolismo , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Ritmo Circadiano/efectos de la radiación , Perfilación de la Expresión Génica , Luciferasas/metabolismo , Modelos Genéticos , Proteínas Nucleares/metabolismo , Análisis de Secuencia por Matrices de Oligonucleótidos , Especificidad de Órganos/genética , Unión Proteica , Transcripción Genética/efectos de la radiación
15.
Plant Cell Environ ; 39(4): 918-34, 2016 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-26667381

RESUMEN

Plants have evolved a series of tolerance mechanisms to saline stress, which perturbs physiological processes throughout the plant. To identify genetic mechanisms associated with salinity tolerance, we performed linkage analysis and genome-wide association study (GWAS) on maintenance of root growth of Arabidopsis thaliana in hydroponic culture with weak and severe NaCl toxicity. The top 200 single-nucleotide polymorphisms (SNPs) determined by GWAS could cumulatively explain approximately 70% of the variation observed at each stress level. The most significant SNPs were linked to the genes of ATP-binding cassette B10 and vacuolar proton ATPase A2. Several known salinity tolerance genes such as potassium channel KAT1 and calcium sensor SOS3 were also linked to SNPs in the top 200. In parallel, we constructed a gene co-expression network to independently verify that particular groups of genes work together to a common purpose. We identify molecular mechanisms to confer salt tolerance from both predictable and novel physiological sources and validate the utility of combined genetic and network analysis. Additionally, our study indicates that the genetic architecture of salt tolerance is responsive to the severity of stress. These gene datasets are a significant information resource for a following exploration of gene function.


Asunto(s)
Arabidopsis/genética , Redes Reguladoras de Genes/efectos de los fármacos , Sitios Genéticos , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/genética , Cloruro de Sodio/farmacología , Estrés Fisiológico/efectos de los fármacos , Arabidopsis/efectos de los fármacos , Arabidopsis/crecimiento & desarrollo , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , Genes de Plantas , Ligamiento Genético , Variación Genética/efectos de los fármacos , Estudio de Asociación del Genoma Completo , Endogamia , Raíces de Plantas/efectos de los fármacos , Plantas Modificadas Genéticamente , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Recombinación Genética/genética , Estrés Fisiológico/genética , Transcriptoma/genética
16.
Proc Natl Acad Sci U S A ; 109(16): 6343-7, 2012 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-22492932

RESUMEN

Polyamines (PAs) are ubiquitous, polycationic compounds that are essential for the growth and survival of all organisms. Although the PA-uptake system plays a key role in mammalian cancer and in plant survival, the underlying molecular mechanisms are not well understood. Here, we identified an Arabidopsis L-type amino acid transporter (LAT) family transporter, named RMV1 (resistant to methyl viologen 1), responsible for uptake of PA and its analog paraquat (PQ). The natural variation in PQ tolerance was determined in 22 Arabidopsis thaliana accessions based on the polymorphic variation of RMV1. An RMV1-GFP fusion protein localized to the plasma membrane in transformed cells. The Arabidopsis rmv1 mutant was highly resistant to PQ because of the reduction of PQ uptake activity. Uptake studies indicated that RMV1 mediates proton gradient-driven PQ transport. RMV1 overexpressing plants were hypersensitive to PA and PQ and showed elevated PA/PQ uptake activity, supporting the notion that PQ enters plant cells via a carrier system that inherently functions in PA transport. Furthermore, we demonstrated that polymorphic variation in RMV1 controls PA/PQ uptake activity. Our identification of a molecular entity for PA/PQ uptake and sensitivity provides an important clue for our understanding of the mechanism and biological significance of PA uptake.


Asunto(s)
Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Membrana/genética , Paraquat/metabolismo , Poliaminas/metabolismo , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Secuencia de Aminoácidos , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Proteínas de Transporte de Catión/metabolismo , Membrana Celular/metabolismo , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Proteínas de Transporte de Membrana/metabolismo , Datos de Secuencia Molecular , Mutación , Paraquat/farmacología , Plantas Modificadas Genéticamente , Poliaminas/farmacología , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Homología de Secuencia de Aminoácido
17.
Planta ; 240(3): 645-64, 2014 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-25030652

RESUMEN

MAIN CONCLUSION: VuDREB2A exists in cowpea as a canonical DREB2-type transcription factor, having the ability to bind dehydration-responsive elements in vitro and confer enhanced drought resistance in transgenic Arabidopsis. Cowpea (Vigna unguiculata L. Walp) is an important cultivated legume that can survive better in arid conditions than other crops. But the molecular mechanisms involved in the drought tolerance of this species remain elusive with very few reported candidate genes. The Dehydration-Responsive Element-Binding Protein2 (DREB2) group of transcription factors plays key roles in plant responses to drought. However, no DREB2 ortholog has been reported from cowpea so far. In this study, we isolated and characterized a gene from cowpea, namely VuDREB2A, encoding a protein of 377 amino acids exhibiting features of reported DREB2-type proteins. In cowpea, VuDREB2A transcript accumulation was highly induced by desiccation, heat and salt, but slightly by exogenous abscisic acid (ABA) treatment. We also isolated the VuDREB2A promoter and predicted stress-responsive cis-elements in it using Arabidopsis microarray data. The E. coli-expressed VuDREB2A protein showed binding to synthetic oligonucleotides with Dehydration-Responsive Elements (DREs) from Arabidopsis, in electrophoretic mobility shift assays. Heterologous expression of VuDREB2A in Arabidopsis significantly improved plant survival under drought. In addition, overexpression of a truncated version of VuDREB2A, after removal of a putative negative regulatory domain (between amino acids 132-182) led to a dwarf phenotype in the transgenic plants. Microarray and quantitative PCR analyses of VuDREB2A overexpressing Arabidopsis revealed up-regulation of stress-responsive genes having DRE overrepresented in their promoters. In summary, our results indicate that VuDREB2A conserves the basic functionality and mode of regulation of DREB2A in Arabidopsis and could be a potent candidate gene for the genetic improvement of drought resistance in cowpea.


Asunto(s)
Adaptación Fisiológica , Fabaceae/genética , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/metabolismo , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Arabidopsis , Clonación Molecular , Sequías , Fabaceae/química , Datos de Secuencia Molecular , Proteínas de Plantas/genética , Proteínas de Plantas/aislamiento & purificación , Plantas Modificadas Genéticamente , Reacción en Cadena de la Polimerasa , Regiones Promotoras Genéticas , Factores de Transcripción/genética , Factores de Transcripción/aislamiento & purificación , Agua/fisiología
18.
Plant Physiol ; 162(2): 732-40, 2013 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-23624855

RESUMEN

In Arabidopsis (Arabidopsis thaliana), malate released into the rhizosphere has various roles, such as detoxifying rhizotoxic aluminum (Al) and recruiting beneficial rhizobacteria that induce plant immunity. ALUMINUM-ACTIVATED MALATE TRANSPORTER1 (AtALMT1) is a critical gene in these responses, but its regulatory mechanisms remain unclear. To explore the mechanism of the multiple responses of AtALMT1, we profiled its expression patterns in wild-type plants, in transgenic plants harboring various deleted promoter constructs, and in mutant plants with defects in signal transduction in response to various inducers. AtALMT1 transcription was clearly induced by indole-3-acetic acid (IAA), abscisic acid (ABA), low pH, and hydrogen peroxide, indicating that it was able to respond to multiple signals, while it was not induced by methyl jasmonate and salicylic acid. The IAA-signaling double mutant nonphototropic hypocotyls4-1; auxin-responsive factor19-1 and the ABA-signaling mutant aba insensitive1-1 did not respond to auxin and ABA, respectively, but both showed an Al response comparable to that of the wild type. A synthetic microbe-associated molecular pattern peptide, flagellin22 (flg22), induced AtALMT1 transcription but did not induce the transcription of IAA- and ABA-responsive biomarker genes, indicating that both Al and flg22 responses of AtALMT1 were independent of IAA and ABA signaling. An in planta ß-glucuronidase reporter assay identified that the ABA response was regulated by a region upstream (-317 bp) from the first ATG codon, but other stress responses may share critical regulatory element(s) located between -292 and -317 bp. These results illustrate the complex regulation of AtALMT1 expression during the adaptation to abiotic and biotic stresses.


Asunto(s)
Proteínas de Arabidopsis/genética , Arabidopsis/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Transportadores de Anión Orgánico/genética , Reguladores del Crecimiento de las Plantas/farmacología , Transportadoras de Casetes de Unión a ATP/genética , Ácido Abscísico/metabolismo , Ácido Abscísico/farmacología , Acetatos/farmacología , Adaptación Fisiológica , Arabidopsis/efectos de los fármacos , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/farmacología , Peróxido de Hidrógeno/farmacología , Ácidos Indolacéticos/metabolismo , Ácidos Indolacéticos/farmacología , Macrólidos/farmacología , Mutación , Transportadores de Anión Orgánico/metabolismo , Oxilipinas/farmacología , Reguladores del Crecimiento de las Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Regiones Promotoras Genéticas , Secuencias Reguladoras de Ácidos Nucleicos/efectos de los fármacos , Ácido Salicílico/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética
19.
Plant Physiol ; 162(4): 1937-46, 2013 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-23749850

RESUMEN

Aluminum (Al) and proton (H⁺) tolerances are essential traits for plants to adapt to acid soil environments. In Arabidopsis (Arabidopsis thaliana), these tolerances are mediated by a zinc-finger transcription factor, SENSITIVE TO PROTON RHIZOTOXICITY1 (AtSTOP1), which regulates the transcription of multiple genes critical for tolerance to both stressors. Here, the functions of orthologous proteins (STOP1-like proteins) in other plant species were characterized by reverse genetics analyses and in planta complementation assays. RNA interference of a gene for NtSTOP1 repressed Al and H⁺ tolerances of tobacco (Nicotiana tabacum) roots. Tobacco roots released citrate in response to Al, concomitant with the up-regulated transcription of an ortholog of an Al tolerance gene encoding a citrate-transporting multidrug and toxic compound extrusion protein. The RNA interference repression of NtSTOP1 blocked this process and also repressed the transcription of another orthologous gene for Al tolerance, ALUMINUM SENSITIVE3, which encodes a prokaryote-type transporter. These results demonstrated that NtSTOP1 regulates Al tolerance in tobacco through the transcriptional regulation of these genes. The in planta complementation assays revealed that other plant species, including woody plants, a legume, and a moss (Physcomitrella patens), possess functional STOP1-like proteins that can activate several H⁺ and Al-tolerance genes in Arabidopsis. Knocking out the gene encoding the STOP1-like protein decreased the Al tolerance of P. patens. Together, our results strongly suggest that transcriptional regulation by STOP1-like proteins is evolutionarily conserved among land plants and that it confers the ability to survive in acid soils through the transcriptional regulation of Al- and H⁺-tolerance genes.


Asunto(s)
Proteínas de Arabidopsis/genética , Nicotiana/genética , Proteínas de Plantas/genética , Factores de Transcripción/genética , Aluminio/toxicidad , Secuencia de Aminoácidos , Proteínas de Arabidopsis/metabolismo , Bryopsida/genética , Bryopsida/crecimiento & desarrollo , Citratos/metabolismo , Evolución Molecular , Regulación de la Expresión Génica de las Plantas , Técnicas de Inactivación de Genes , Prueba de Complementación Genética , Hidroponía , Malatos/metabolismo , Datos de Secuencia Molecular , Proteínas de Plantas/aislamiento & purificación , Proteínas de Plantas/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Plantas Modificadas Genéticamente , Interferencia de ARN , Suelo , Nicotiana/efectos de los fármacos , Nicotiana/fisiología , Factores de Transcripción/metabolismo , Dedos de Zinc/genética
20.
Front Plant Sci ; 15: 1304366, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38318497

RESUMEN

We have previously reported a wide variation in salt tolerance among Arabidopsis thaliana accessions and identified ACQOS, encoding a nucleotide-binding leucine-rich repeat (NLR) protein, as the causal gene responsible for the disturbance of acquired osmotolerance induced after mild salt stress. ACQOS is conserved among Arabidopsis osmosensitive accessions, including Col-0. In response to osmotic stress, it induces detrimental autoimmunity, resulting in suppression of osmotolerance, but how ACQOS triggers autoimmunity remains unclear. Here, we screened acquired osmotolerance (aot) mutants from EMS-mutagenized Col-0 seeds and isolated the aot19 mutant. In comparison with the wild type (WT), this mutant had acquired osmotolerance and decreased expression levels of pathogenesis-related genes. It had a mutation in a splicing acceptor site in NUCLEOPORIN 85 (NUP85), which encodes a component of the nuclear pore complex. A mutant with a T-DNA insertion in NUP85 acquired osmotolerance similar to aot19. The WT gene complemented the osmotolerant phenotype of aot19. We evaluated the acquired osmotolerance of five nup mutants of outer-ring NUPs and found that nup96, nup107, and aot19/nup85, but not nup43 or nup133, showed acquired osmotolerance. We examined the subcellular localization of the GFP-ACQOS protein and found that its nuclear translocation in response to osmotic stress was suppressed in aot19. We suggest that NUP85 is essential for the nuclear translocation of ACQOS, and the loss-of-function mutation of NUP85 results in acquired osmotolerance by suppressing ACQOS-induced autoimmunity in response to osmotic stress.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA