Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 465
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 629(8013): 819-823, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38778232

RESUMEN

Lanthanide rare-earth metals are ubiquitous in modern technologies1-5, but we know little about chemistry of the 61st element, promethium (Pm)6, a lanthanide that is highly radioactive and inaccessible. Despite its importance7,8, Pm has been conspicuously absent from the experimental studies of lanthanides, impeding our full comprehension of the so-called lanthanide contraction phenomenon: a fundamental aspect of the periodic table that is quoted in general chemistry textbooks. Here we demonstrate a stable chelation of the 147Pm radionuclide (half-life of 2.62 years) in aqueous solution by the newly synthesized organic diglycolamide ligand. The resulting homoleptic PmIII complex is studied using synchrotron X-ray absorption spectroscopy and quantum chemical calculations to establish the coordination structure and a bond distance of promethium. These fundamental insights allow a complete structural investigation of a full set of isostructural lanthanide complexes, ultimately capturing the lanthanide contraction in solution solely on the basis of experimental observations. Our results show accelerated shortening of bonds at the beginning of the lanthanide series, which can be correlated to the separation trends shown by diglycolamides9-11. The characterization of the radioactive PmIII complex in an aqueous environment deepens our understanding of intra-lanthanide behaviour12-15 and the chemistry and separation of the f-block elements16.

2.
Immunity ; 53(6): 1245-1257.e5, 2020 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-33326767

RESUMEN

Understanding the hallmarks of the immune response to SARS-CoV-2 is critical for fighting the COVID-19 pandemic. We assessed antibody and T cell reactivity in convalescent COVID-19 patients and healthy donors sampled both prior to and during the pandemic. Healthy donors examined during the pandemic exhibited increased numbers of SARS-CoV-2-specific T cells, but no humoral response. Their probable exposure to the virus resulted in either asymptomatic infection without antibody secretion or activation of preexisting immunity. In convalescent patients, we observed a public and diverse T cell response to SARS-CoV-2 epitopes, revealing T cell receptor (TCR) motifs with germline-encoded features. Bulk CD4+ and CD8+ T cell responses to the spike protein were mediated by groups of homologous TCRs, some of them shared across multiple donors. Overall, our results demonstrate that the T cell response to SARS-CoV-2, including the identified set of TCRs, can serve as a useful biomarker for surveying antiviral immunity.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD8-positivos/inmunología , COVID-19/inmunología , Epítopos de Linfocito T/metabolismo , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Adolescente , Adulto , Anticuerpos Antivirales/metabolismo , Infecciones Asintomáticas , Células Cultivadas , Convalecencia , Epítopos de Linfocito T/inmunología , Femenino , Humanos , Inmunidad , Memoria Inmunológica , Activación de Linfocitos , Masculino , Persona de Mediana Edad , Pandemias , Receptores de Antígenos de Linfocitos T/metabolismo , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto Joven
3.
Nature ; 623(7987): 550-554, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914937

RESUMEN

The origin of vertebrate paired appendages is one of the most investigated and debated examples of evolutionary novelty1-7. Paired appendages are widely considered as key innovations that enabled new opportunities for controlled swimming and gill ventilation and were prerequisites for the eventual transition from water to land. The past 150 years of debate8-10 has been shaped by two contentious theories4,5: the ventrolateral fin-fold hypothesis9,10 and the archipterygium hypothesis8. The latter proposes that fins and girdles evolved from an ancestral gill arch. Although studies in animal development have revived interest in this idea11-13, it is apparently unsupported by fossil evidence. Here we present palaeontological support for a pharyngeal basis for the vertebrate shoulder girdle. We use computed tomography scanning to reveal details of the braincase of Kolymaspis sibirica14, an Early Devonian placoderm fish from Siberia, that suggests a pharyngeal component of the shoulder. We combine these findings with refreshed comparative anatomy of placoderms and jawless outgroups to place the origin of the shoulder girdle on the sixth branchial arch. These findings provide a novel framework for understanding the origin of the pectoral girdle. Our evidence clarifies the location of the presumptive head-trunk interface in jawless fishes and explains the constraint on branchial arch number in gnathostomes15. The results revive a key aspect of the archipterygium hypothesis and help reconcile it with the ventrolateral fin-fold model.


Asunto(s)
Aletas de Animales , Evolución Biológica , Peces , Fósiles , Vertebrados , Animales , Aletas de Animales/anatomía & histología , Peces/anatomía & histología , Paleontología , Tomografía Computarizada por Rayos X , Vertebrados/anatomía & histología , Siberia
4.
Nat Methods ; 20(3): 375-386, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36864200

RESUMEN

Analyzing proteins from single cells by tandem mass spectrometry (MS) has recently become technically feasible. While such analysis has the potential to accurately quantify thousands of proteins across thousands of single cells, the accuracy and reproducibility of the results may be undermined by numerous factors affecting experimental design, sample preparation, data acquisition and data analysis. We expect that broadly accepted community guidelines and standardized metrics will enhance rigor, data quality and alignment between laboratories. Here we propose best practices, quality controls and data-reporting recommendations to assist in the broad adoption of reliable quantitative workflows for single-cell proteomics. Resources and discussion forums are available at https://single-cell.net/guidelines .


Asunto(s)
Benchmarking , Proteómica , Benchmarking/métodos , Proteómica/métodos , Reproducibilidad de los Resultados , Proteínas/análisis , Espectrometría de Masas en Tándem/métodos , Proteoma/análisis
5.
J Proteome Res ; 23(6): 2230-2240, 2024 Jun 07.
Artículo en Inglés | MEDLINE | ID: mdl-38690845

RESUMEN

Deep proteomic profiling of complex biological and medical samples available at low nanogram and subnanogram levels is still challenging. Thorough optimization of settings, parameters, and conditions in nanoflow liquid chromatography-tandem mass spectrometry (MS)-based proteomic profiling is crucial for generating informative data using amount-limited samples. This study demonstrates that by adjusting selected instrument parameters, e.g., ion injection time, automated gain control, and minimally altering the conditions for resuspending or storing the sample in solvents of different compositions, up to 15-fold more thorough proteomic profiling can be achieved compared to conventionally used settings. More specifically, the analysis of 1 ng of the HeLa protein digest standard by Q Exactive HF-X Hybrid Quadrupole-Orbitrap and Orbitrap Fusion Lumos Tribrid mass spectrometers yielded an increase from 1758 to 5477 (3-fold) and 281 to 4276 (15-fold) peptides, respectively, demonstrating that higher protein identification results can be obtained using the optimized methods. While the instruments applied in this study do not belong to the latest generation of mass spectrometers, they are broadly used worldwide, which makes the guidelines for improving performance desirable to a wide range of proteomics practitioners.


Asunto(s)
Proteómica , Espectrometría de Masas en Tándem , Proteómica/métodos , Humanos , Espectrometría de Masas en Tándem/métodos , Células HeLa , Cromatografía Liquida/métodos , Proteoma/análisis , Péptidos/análisis , Péptidos/química
6.
Small ; : e2401798, 2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38700074

RESUMEN

The covalent organic frameworks (COFs) possessing high crystallinity and capability to capture low-concentration CO2 (400 ppm) from air are still underdeveloped. The challenge lies in simultaneously incorporating high-density active sites for CO2 insertion and maintaining the ordered structure. Herein, a structure engineering approach is developed to afford an ionic pair-functionalized crystalline and stable fluorinated COF (F-COF) skeleton. The ordered structure of the F-COF is well maintained after the integration of abundant basic fluorinated alcoholate anions, as revealed by synchrotron X-ray scattering experiments. The breakthrough test demonstrates its attractive performance in capturing (400 ppm) CO2 from gas mixtures via O─C bond formation, as indicated by the in situ spectroscopy and operando nuclear magnetic resonance spectroscopy using 13C-labeled CO2 sources. Both theoretical and experimental thermodynamic studies reveal the reaction enthalpy of ≈-40 kJ mol-1 between CO2 and the COF scaffolds. This implies weaker interaction strength compared with state-of-the-art amine-derived sorbents, thus allowing complete CO2 release with less energy input. The structure evolution study from synchrotron X-ray scattering and small-angle neutron scattering confirms the well-maintained crystalline patterns after CO2 insertion. The as-developed proof-of-concept approach provides guidance on anchoring binding sites for direct air capture (DAC) of CO2 in crystalline scaffolds.

7.
Photosynth Res ; 2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38865029

RESUMEN

Photostasis is the light-dependent maintenance of energy balance associated with cellular homeostasis in photoautotrophs. We review evidence that illustrates how photosynthetic adaptation in polar photoautrophs such as aquatic green algae, cyanobacteria, boreal conifers as well as terrestrial angiosperms exhibit an astonishing plasticity in structure and function of the photosynthetic apparatus. This plasticity contributes to the maintenance of photostasis, which is essential for the long-term survival in the seemingly inhospitable Antarctic and Arctic habitats. However, evidence indicates that polar photoautrophic species exhibit different functional solutions for the maintenance of photostasis. We suggest that this reflects, in part, the genetic diversity symbolized by inherent genetic redundancy characteristic of polar photoautotrophs which enhances their survival in a thermodynamically challenging environment.

8.
Ophthalmology ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38986874

RESUMEN

PURPOSE: Vision loss associated with opacification of the cornea is one of the leading causes of blindness globally. However, the epidemiological data pertaining to the demographics, associated etiological causes and reduced vision in corneal opacity patients continue to be sparse. This study assesses the case frequencies, underlying etiologies, and vision outcomes in patients diagnosed with corneal opacity, in the United States. DESIGN: Retrospective cohort study PARTICIPANTS: Patients in the IRIS® Registry (Intelligent Research in Sight) who were diagnosed with corneal opacity between January 1st, 2013, and November 30th, 2020. METHODS: The IRIS Registry contains demographic and clinical data of 79,887,324 patients who presented to eye clinics during the study period. We identified patients with corneal opacity using International Classification of Disease (ICD) codes (ICD-9, and -10) of "371" (corneal scar) and "H17" (corneal opacity), respectively. The analyzed data included demographic parameters included age, sex, race, ethnicity, and geographical location. We evaluated clinical data including laterality, etiology, disease descriptors, and best-corrected visual acuity (VA) up to 1 year before the onset (± 30 days), at the time of diagnosis, and at one year following diagnosis (± 30 days). MAIN OUTCOME MEASURES: Case frequencies, etiology, and vision outcomes in patients diagnosed with corneal opacity. RESULTS: We identified 5,220,382 patients who were diagnosed with corneal opacity and scars using H17 (ICD-10) and 371.0 (ICD-9) codes over seven years. The case frequency of corneal opacity during the study period was 6,535 cases per 100,000 patients (6.5%). The mean age of the patients was 63.36±18.14 years and the majority were female (57.6%). In the cohort, 38.39% and 30.00% of patients had bilateral and unilateral corneal opacity, respectively. Most of the patients were White (69.13%), followed by Black or African American (6.84%), Asian (2.45%), American Indian or Alaska Native(0.34%), Native Hawaii or other Pacific Islander(0.19%). Among the patients with corneal opacity, 7.34% had Hispanic or Latino ethnicity. The primary etiologies associated with corneal opacity included corneal dystrophies (64.66%) followed by edema (18.25%), ulcer (7.78%), keratoconjunctivitis (7.18%), degeneration (5.62%), neovascularization (6.27%), and trauma (5.28%). Visual acuity of the patients significantly worsened due to corneal opacity (0.46±0.74 logMAR; ∼20/58 in Snellen) and did not improve to the baseline (0.37±0.68 logMAR, ∼20/46 in Snellen) post-management (0.43±0.77 logMAR, ∼20/54 in Snellen). The multiple linear regression analysis showed worse vision outcomes in females (compared to males), and Asian, Black or African American, and American Indian or Alaska Native (compared to White) patients. Additionally, worse vision outcomes were observed in patients with opacity associated with corneal malformation, degenerative disorders, edema, injury, and ulcer compared to those with hereditary corneal dystrophy. CONCLUSIONS: Our study shows that the corneal opacity was diagnosed in 6.5% of the patients in the IRIS Registry and it was primarily associated with corneal dystrophies. The final vision outcomes in corneal opacity patients were significantly worse compared to baseline. The worse vision outcomes were associated with sociodemographic differences that might be associated with disparities in access, utilization, and care patterns.

9.
Ophthalmology ; 2024 Jul 19.
Artículo en Inglés | MEDLINE | ID: mdl-39033858

RESUMEN

IRIS (Intelligent Research in Sight) Registry Study showing that acute retinal necrosis cases treated with systemic antivirals alone vs combined with intravitreal antivirals or early vitrectomy had statistically similar outcomes at 6 and 12 months.

10.
Electrophoresis ; 45(5-6): 411-419, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38084469

RESUMEN

We developed a method of sensitive capillary electrophoresis using UV detection for the determination of certain free aminothiols (reduced cysteinylglycine (rCysGly), cysteine (rCys), glutathione (rGln), and cystine (CysS) in human blood plasma. The reduced thiols were derivatized with N-ethylmaleimide. The plasma was purified from proteins via ultrafiltration. Electrophoretic separation was performed using 115 mM Na phosphate with 7.5% (v/v) polyethylene glycol 600, pH 2.3. The in-capillary concentration of the analytes was achieved with a pH gradient created via the preinjection of triethanolamine and postinjection of phosphoric acid. The separation was carried out using a silica capillary (50 µm i.d.; total/effective separation length 42/35 cm) at a 25 kV voltage. The total analysis/regeneration time was 18 min. The quantification limits varied from 1.3 µM (rCysGly) to 5.4 µM (CysS). The accuracy was 95%-99%, and the repeatability and reproducibility were approximately 1.8%-3.8% and 1.9%-5.0%, respectively. An analysis of plasma samples from healthy volunteers (N = 41) showed that the mean levels of rCysGly, rCys, rGln, and CysS were 1.64, 10.6, 2.58, and 46.2 µM, respectively.


Asunto(s)
Cistina , Compuestos de Sulfhidrilo , Humanos , Reproducibilidad de los Resultados , Electroforesis Capilar/métodos , Aminas , Plasma , Concentración de Iones de Hidrógeno
11.
Org Biomol Chem ; 2024 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-38973457

RESUMEN

Conjugates of benzothiophene-fused azacyclononyne BT9N-NH2 with fluorescent dyes were developed to visualise azidoglycans intracellularly. The significance of the cycloalkyne core was demonstrated by comparing new reagents with DBCO- and BCN-dye conjugates. To reduce non-specificity during intracellular bioconjugation using SPAAC, less reactive BT9N-dye reagents are preferred over highly reactive DBCO- and BCN-dye conjugates.

12.
J Nanobiotechnology ; 22(1): 306, 2024 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-38825717

RESUMEN

Targeted alpha therapy (TAT) relies on chemical affinity or active targeting using radioimmunoconjugates as strategies to deliver α-emitting radionuclides to cancerous tissue. These strategies can be affected by transmetalation of the parent radionuclide by competing ions in vivo and the bond-breaking recoil energy of decay daughters. The retention of α-emitting radionuclides and the dose delivered to cancer cells are influenced by these processes. Encapsulating α-emitting radionuclides within nanoparticles can help overcome many of these challenges. Poly(lactic-co-glycolic acid) (PLGA) nanoparticles are a biodegradable and biocompatible delivery platform that has been used for drug delivery. In this study, PLGA nanoparticles are utilized for encapsulation and retention of actinium-225 ([225Ac]Ac3+). Encapsulation of [225Ac]Ac3+ within PLGA nanoparticles (Zave = 155.3 nm) was achieved by adapting a double-emulsion solvent evaporation method. The encapsulation efficiency was affected by both the solvent conditions and the chelation of [225Ac]Ac3+. Chelation of [225Ac]Ac3+ to a lipophilic 2,9-bis-lactam-1,10-phenanthroline ligand ([225Ac]AcBLPhen) significantly decreased its release (< 2%) and that of its decay daughters (< 50%) from PLGA nanoparticles. PLGA nanoparticles encapsulating [225Ac]AcBLPhen significantly increased the delivery of [225Ac]Ac3+ to murine (E0771) and human (MCF-7 and MDA-MB-231) breast cancer cells with a concomitant increase in cell death over free [225Ac]Ac3+ in solution. These results demonstrate that PLGA nanoparticles have potential as radionuclide delivery platforms for TAT to advance precision radiotherapy for cancer. In addition, this technology offers an alternative use for ligands with poor aqueous solubility, low stability, or low affinity, allowing them to be repurposed for TAT by encapsulation within PLGA nanoparticles.


Asunto(s)
Actinio , Nanopartículas , Copolímero de Ácido Poliláctico-Ácido Poliglicólico , Nanopartículas/química , Copolímero de Ácido Poliláctico-Ácido Poliglicólico/química , Actinio/química , Humanos , Línea Celular Tumoral , Animales , Partículas alfa/uso terapéutico , Ratones , Femenino , Materiales Biocompatibles/química , Neoplasias de la Mama/tratamiento farmacológico , Radioinmunoterapia/métodos
13.
Int J Mol Sci ; 25(12)2024 Jun 17.
Artículo en Inglés | MEDLINE | ID: mdl-38928340

RESUMEN

Papain-like protease PLpro, a domain within a large polyfunctional protein, nsp3, plays key roles in the life cycle of SARS-CoV-2, being responsible for the first events of cleavage of a polyprotein into individual proteins (nsp1-4) as well as for the suppression of cellular immunity. Here, we developed a new genetically encoded fluorescent sensor, named PLpro-ERNuc, for detection of PLpro activity in living cells using a translocation-based readout. The sensor was designed as follows. A fragment of nsp3 protein was used to direct the sensor on the cytoplasmic surface of the endoplasmic reticulum (ER) membrane, thus closely mimicking the natural target of PLpro. The fluorescent part included two bright fluorescent proteins-red mScarlet I and green mNeonGreen-separated by a linker with the PLpro cleavage site. A nuclear localization signal (NLS) was attached to ensure accumulation of mNeonGreen into the nucleus upon cleavage. We tested PLpro-ERNuc in a model of recombinant PLpro expressed in HeLa cells. The sensor demonstrated the expected cytoplasmic reticular network in the red and green channels in the absence of protease, and efficient translocation of the green signal into nuclei in the PLpro-expressing cells (14-fold increase in the nucleus/cytoplasm ratio). Then, we used PLpro-ERNuc in a model of Huh7.5 cells infected with the SARS-CoV-2 virus, where it showed robust ER-to-nucleus translocation of the green signal in the infected cells 24 h post infection. We believe that PLpro-ERNuc represents a useful tool for screening PLpro inhibitors as well as for monitoring virus spread in a culture.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/metabolismo , Células HeLa , COVID-19/virología , COVID-19/diagnóstico , COVID-19/metabolismo , Retículo Endoplásmico/metabolismo , Retículo Endoplásmico/virología , Proteasas Similares a la Papaína de Coronavirus/metabolismo , Proteínas Luminiscentes/metabolismo , Proteínas Luminiscentes/genética , Proteasas 3C de Coronavirus/metabolismo , Transporte de Proteínas , Técnicas Biosensibles/métodos
14.
Molecules ; 29(12)2024 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-38930858

RESUMEN

The preparation and application of the composite material "crosslinked polyvinyl alcohol-magnetite" as a sensitive matrix for use in digital colorimetry and optical micrometry methods are discussed. The material was synthesized in the form of spherical granules (for micrometry) and thin films (for digital colorimetry). The obtained composites were characterized by the registration of magnetization curves. It was shown that the amount of grown Fe3O4 particles in the polymer gel is in linear dependence with the iron salt concentrations in the impregnating solutions. The composite granules were applied to determining monosaccharides using optical micrometry. The optimal pH value for the total amount of monosaccharides' determination was 8.6. The study of the analytical response of composite granules and films performed with a low limit of detection (7.9 mmol/dm3) of both glucose and fructose and a possibility of the control of high alcohol contention in water media. The granules were used to determine the total carbohydrate content in samples of natural honey and syrups with high fructose contents, while the films were used to control the alcohol content in hand antiseptics. The results obtained are in good agreement with the data provided by the manufacturers.

15.
J Proteome Res ; 22(8): 2641-2659, 2023 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-37467362

RESUMEN

Repeated measures experimental designs, which quantify proteins in biological subjects repeatedly over multiple experimental conditions or times, are commonly used in mass spectrometry-based proteomics. Such designs distinguish the biological variation within and between the subjects and increase the statistical power of detecting within-subject changes in protein abundance. Meanwhile, proteomics experiments increasingly incorporate tandem mass tag (TMT) labeling, a multiplexing strategy that gains both relative protein quantification accuracy and sample throughput. However, combining repeated measures and TMT multiplexing in a large-scale investigation presents statistical challenges due to unique interplays of between-mixture, within-mixture, between-subject, and within-subject variation. This manuscript proposes a family of linear mixed-effects models for differential analysis of proteomics experiments with repeated measures and TMT multiplexing. These models decompose the variation in the data into the contributions from its sources as appropriate for the specifics of each experiment, enable statistical inference of differential protein abundance, and recognize a difference in the uncertainty of between-subject versus within-subject comparisons. The proposed family of models is implemented in the R/Bioconductor package MSstatsTMT v2.2.0. Evaluations of four simulated datasets and four investigations answering diverse biological questions demonstrated the value of this approach as compared to the existing general-purpose approaches and implementations.


Asunto(s)
Proyectos de Investigación , Espectrometría de Masas en Tándem , Humanos , Proteoma/análisis
16.
Small ; 19(41): e2302708, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37317018

RESUMEN

Direct air capture (DAC) of CO2 has emerged as the most promising "negative carbon emission" technologies. Despite being state-of-the-art, sorbents deploying alkali hydroxides/amine solutions or amine-modified materials still suffer from unsolved high energy consumption and stability issues. In this work, composite sorbents are crafted by hybridizing a robust metal-organic framework (Ni-MOF) with superbase-derived ionic liquid (SIL), possessing well maintained crystallinity and chemical structures. The low-pressure (0.4 mbar) volumetric CO2 capture assessment and a fixed-bed breakthrough examination with 400 ppm CO2 gas flow reveal high-performance DAC of CO2 (CO2 uptake capacity of up to 0.58 mmol g-1 at 298 K) and exceptional cycling stability. Operando spectroscopy analysis reveals the rapid (400 ppm) CO2 capture kinetics and energy-efficient/fast CO2 releasing behaviors. The theoretical calculation and small-angle X-ray scattering demonstrate that the confinement effect of the MOF cavity enhances the interaction strength of reactive sites in SIL with CO2 , indicating great efficacy of the hybridization. The achievements in this study showcase the exceptional capabilities of SIL-derived sorbents in carbon capture from ambient air in terms of rapid carbon capture kinetics, facile CO2 releasing, and good cycling performance.

17.
Trends Analyt Chem ; 1652023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37388554

RESUMEN

Tissues and other cell populations are highly heterogeneous at the cellular level, owing to differences in expression and modifications of proteins, polynucleotides, metabolites, and lipids. The ability to assess this heterogeneity is crucial in understanding numerous biological phenomena, including various pathologies. Traditional analyses apply bulk-cell sampling, which masks the potentially subtle differences between cells that can be important in understanding of biological processes. These limitations due to cell heterogeneity inspired significant efforts and interest toward the analysis of smaller sample sizes, down to the level of individual cells. Among the emerging techniques, the unique capabilities of capillary electrophoresis coupled with mass spectrometry (CE-MS) made it a prominent technique for proteomics and metabolomics analysis at the single-cell level. In this review, we focus on the application of CE-MS in the proteomic and metabolomic profiling of single cells and highlight the recent advances in sample preparation, separation, MS acquisition, and data analysis.

18.
Analyst ; 148(3): 665-674, 2023 Jan 31.
Artículo en Inglés | MEDLINE | ID: mdl-36625279

RESUMEN

Fragmentation of therapeutic proteins is a potential critical quality attribute (CQA) that can occur in vivo or during manufacturing or storage due to enzymatic and non-enzymatic degradation pathways, such as hydrolysis, peroxide mediation, and acid/metal catalysis. Characterization of the fragmentation pattern of a therapeutic protein is traditionally accomplished using capillary gel electrophoresis with UV detection under both non-reducing and reducing conditions (nrCGE and rCGE). However, such methods are incompatible with direct coupling to mass spectrometry (MS) due to the use of anionic surfactants, e.g., sodium dodecyl sulfate (SDS). Here, we present a novel method to characterize size-based fragmentation variants of a new biotherapeutic kind using microfluidic ZipChip® capillary zone electrophoresis (mCZE) system interfaced with mass spectrometry (MS) to determine the molecular masses of fragments. A new modality of immuno-oncology therapy, bispecific antigen-binding biotherapeutic, was chosen to investigate its fragmentation pattern using mCZE-MS for the first time, according to our knowledge. Bispecific antigen-binding biotherapeutic samples from different stages of downstream column purification and forced degradation conditions were analyzed. The results were cross-validated with denaturing size-exclusion chromatography-mass spectrometry and conventional rSDS-CGE. In this study, we demonstrated that mCZE-MS could separate and characterize 12-40 kDa bispecific antigen-binding biotherapeutic fragments rapidly (within ≤12 minutes), with higher resolution and better sensitivity than traditional LC-MS methods.


Asunto(s)
Anticuerpos Monoclonales , Microfluídica , Anticuerpos Monoclonales/química , Espectrometría de Masas/métodos , Cromatografía en Gel , Electroforesis Capilar/métodos
19.
Inorg Chem ; 62(50): 20834-20843, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-37811965

RESUMEN

Targeted α therapy (TAT) of soft-tissue cancers using the α particle-emitting radionuclide 223Ra holds great potential because of its favorable nuclear properties, adequate availability, and established clinical use for treating metastatic prostate cancer of the bone. Despite these advantages, the use of 223Ra has been largely overshadowed by other α emitters due to its challenging chelation chemistry. A key criterion that needs to be met for a radionuclide to be used in TAT is its stable attachment to a targeting vector via a bifunctional chelator. The low charge density of Ra2+ arising from its large ionic radius weakens its electrostatic binding interactions with chelators, leading to insufficient complex stability in vivo. In this study, we synthesized and evaluated macropa-XL as a novel chelator for 223Ra. It bears a large 21-crown-7 macrocyclic core and two picolinate pendent groups, which we hypothesized would effectively saturate the large coordination sphere of the Ra2+ ion. The structural chemistry of macropa-XL was first established with the nonradioactive Ba2+ ion using X-ray diffraction and X-ray absorption spectroscopy, which revealed the formation of an 11-coordinate complex in a rare anti pendent-arm configuration. Subsequently, the stability constant of the [Ra(macropa-XL)] complex was determined via competitive cation exchange with 223Ra and 224Ra radiotracers and compared with that of macropa, the current state-of-the-art chelator for Ra2+. A moderate log KML value of 8.12 was measured for [Ra(macropa-XL)], which is approximately 1.5 log K units lower than the stability constant of [Ra(macropa)]. This relative decrease in Ra2+ complex stability for macropa-XL versus macropa was further probed using density functional theory calculations. Additionally, macropa-XL was radiolabeled with 223Ra, and the kinetic stability of the resulting complex was evaluated in human serum. Although macropa-XL could effectively bind 223Ra under mild conditions, the complex appeared to be unstable to transchelation. Collectively, this study sheds additional light on the chelation chemistry of the exotic Ra2+ ion and contributes to the small, but growing, number of chelator development efforts for 223Ra-based TAT.


Asunto(s)
Medicina Nuclear , Radio (Elemento) , Humanos , Quelantes/química , Radio (Elemento)/química , Radioisótopos/química , Cationes/química
20.
J Sep Sci ; 46(18): e2300440, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37528733

RESUMEN

Ultralow flow LC employs ultra-narrow bore columns and mid-range pL/min to low nL/min flow rates (i.e., ≤20 nL/min). The separation columns that are used under these conditions are typically 2-30 µm in inner diameter. Ultralow flow LC systems allow for exceptionally high sensitivity and frequently high resolution. There has been an increasing interest in the analysis of scarce biological samples, for example, circulating tumor cells, extracellular vesicles, organelles, and single cells, and ultralow flow LC was efficiently applied to such samples. Hence, advances towards dedicated ultralow flow LC instrumentation, technical approaches, and higher throughput (e.g., tens-to-hundreds of single cells analyzed per day) were recently made. Here, we review the types of ultralow flow LC technology, followed by a discussion of selected representative ultralow flow LC applications, focusing on the progress made in bioanalysis of amount-limited samples during the last 10 years. We also discuss several recently reported high-sensitivity applications utilizing flow rates up to 100 nL/min, which are below commonly used nanoLC flow rates. Finally, we discuss the path forward for future developments of ultralow flow LC.


Asunto(s)
Cromatografía Liquida , Cromatografía Liquida/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA