Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nanoscale ; 12(38): 19628-19637, 2020 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-32627791

RESUMEN

Reverse osmosis membranes of aromatic polyamide (PA) reinforced with a crystalline cellulose nanofiber (CNF) were synthesized and their desalination performance was studied. Comparison with plain PA membranes shows that the addition of CNF reduced the matrix mobility resulting in a molecularly stiffer membrane because of the attractive forces between the surface of the CNFs and the PA matrix. Fourier transform-infrared spectroscopy and X-ray photoelectron spectroscopy results showed complex formation between the carboxy groups of the CNF surface and the m- phenylenediamine monomer in the CNF-PA composite. Molecular dynamics simulations showed that the CNF-PA had higher hydrophilicity which was key for the higher water permeability of the synthesized nanocomposite membrane. The CNF-PA reverse osmosis nanocomposite membranes also showed enhanced antifouling performance and improved chlorine resistance. Therefore, CNF shows great potential as a nanoreinforcing material towards the preparation of nanocomposite aromatic PA membranes with longer operation lifetime due to its antifouling and chlorine resistance properties.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA