Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
EMBO J ; 40(9): e108164, 2021 05 03.
Artículo en Inglés | MEDLINE | ID: mdl-33880795

RESUMEN

Cellular senescence is considered to be a major driver of aging, yet the mechanisms explaining the accumulation of senescent cells during life time remain unclear. In this issue, Lagnado et al (2021) show that neutrophils can trigger the senescence of neighboring cells by transmitting reactive oxygen species (ROS), which they normally produce to fight pathogens. The main genomic targets of the neutrophil-mediated ROS damage are telomeres, supporting an intimate interplay between telomere homeostasis and oxidative stress in senescence and consequently aging.


Asunto(s)
Senescencia Celular , Neutrófilos , Senescencia Celular/genética , Estrés Oxidativo , Especies Reactivas de Oxígeno , Telómero , Homeostasis del Telómero
2.
Commun Biol ; 6(1): 561, 2023 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-37231173

RESUMEN

Telomeric repeat binding factor 2 (TRF2) binds to telomeres and protects chromosome ends against the DNA damage response and senescence. Although the expression of TRF2 is downregulated upon cellular senescence and in various aging tissues, including skeletal muscle tissues, very little is known about the contribution of this decline to aging. We previously showed that TRF2 loss in myofibers does not trigger telomere deprotection but mitochondrial dysfunction leading to an increased level of reactive oxygen species. We show here that this oxidative stress triggers the binding of FOXO3a to telomeres where it protects against ATM activation, revealing a previously unrecognized telomere protective function of FOXO3a, to the best of our knowledge. We further showed in transformed fibroblasts and myotubes that the telomere properties of FOXO3a are dependent on the C-terminal segment of its CR2 domain (CR2C) but independent of its Forkhead DNA binding domain and of its CR3 transactivation domain. We propose that these non-canonical properties of FOXO3a at telomeres play a role downstream of the mitochondrial signaling induced by TRF2 downregulation to regulate skeletal muscle homeostasis and aging.


Asunto(s)
Telómero , Proteína 2 de Unión a Repeticiones Teloméricas , Humanos , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Senescencia Celular , Envejecimiento/metabolismo , Fibras Musculares Esqueléticas , Músculo Esquelético
3.
Cells ; 10(5)2021 05 11.
Artículo en Inglés | MEDLINE | ID: mdl-34064566

RESUMEN

Adaptative response to stress is a strategy conserved across evolution to promote survival. In this context, the groundbreaking findings of Miroslav Radman on the adaptative value of changing mutation rates opened new avenues in our understanding of stress response. Inspired by this work, we explore here the putative beneficial effects of changing the ends of eukaryotic chromosomes, the telomeres, in response to stress. We first summarize basic principles in telomere biology and then describe how various types of stress can alter telomere structure and functions. Finally, we discuss the hypothesis of stress-induced telomere signaling with hormetic effects.


Asunto(s)
Mutación , Estrés Fisiológico , Telómero/ultraestructura , Adaptación Fisiológica , Animales , ADN , Hormesis , Humanos , Concentración de Iones de Hidrógeno , Inflamación , Cariotipificación , Ratones , Mitocondrias/metabolismo , Transducción de Señal , Estrés Psicológico , Telomerasa/metabolismo , Temperatura
4.
Mech Ageing Dev ; 189: 111256, 2020 07.
Artículo en Inglés | MEDLINE | ID: mdl-32380018

RESUMEN

Senescence is a cellular response to stress for both dividing and post-mitotic cells. Noteworthy, long-lived post-mitotic cells (collectively named LLPMCs), which can live for decades in the organism, can exhibit a distinct type of cellular aging characterized by a progressive functional decline not associated to an overt senescence phenotype. The age-related drivers of senescence and aging in LLPMCs remain largely unknown. There is evidence that an increased production of reactive oxygen species (ROS) due to dysfunctional mitochondria, coupled with an inherent inability of cellular-degradation mechanisms to remove damaged molecules, is responsible for senescence and aging in LLPMC. Although telomeric DNA shortening, by nature linked to cell division, is generally not considered as a driver of LLPMC aging and senescence, we discuss recent reports revealing the existence of age-related telomere changes in LLPMC. These findings reveal unexpected roles for telomeres in LLPMC function and invite us to consider the hypothesis of a complex telomere clock involved in both dividing and non-dividing cell aging.


Asunto(s)
Senescencia Celular , Mitosis , Especies Reactivas de Oxígeno/metabolismo , Acortamiento del Telómero , Telómero/metabolismo , Animales , Humanos
5.
Aging Cell ; 19(3): e13097, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-31991048

RESUMEN

Telomere shortening follows a developmentally regulated process that leads to replicative senescence of dividing cells. However, whether telomere changes are involved in postmitotic cell function and aging remains elusive. In this study, we discovered that the level of the TRF2 protein, a key telomere-capping protein, declines in human skeletal muscle over lifetime. In cultured human myotubes, TRF2 downregulation did not trigger telomere dysfunction, but suppressed expression of the mitochondrial Sirtuin 3 gene (SIRT3) leading to mitochondrial respiration dysfunction and increased levels of reactive oxygen species. Importantly, restoring the Sirt3 level in TRF2-compromised myotubes fully rescued mitochondrial functions. Finally, targeted ablation of the Terf2 gene in mouse skeletal muscle leads to mitochondrial dysfunction and sirt3 downregulation similarly to those of TRF2-compromised human myotubes. Altogether, these results reveal a TRF2-SIRT3 axis controlling muscle mitochondrial function. We propose that this axis connects developmentally regulated telomere changes to muscle redox metabolism.


Asunto(s)
Envejecimiento/metabolismo , Mitocondrias/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Sirtuina 3/metabolismo , Acortamiento del Telómero/genética , Proteína 2 de Unión a Repeticiones Teloméricas/metabolismo , Adolescente , Adulto , Anciano , Animales , Células Cultivadas , Regulación hacia Abajo/genética , Femenino , Técnicas de Silenciamiento del Gen , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/genética , Telómero/metabolismo , Proteína 2 de Unión a Repeticiones Teloméricas/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA