Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Proc Natl Acad Sci U S A ; 110(26): 10842-7, 2013 Jun 25.
Artículo en Inglés | MEDLINE | ID: mdl-23754382

RESUMEN

The selectivity filter of K(+) channels is conserved throughout all kingdoms of life. Carbonyl groups of highly conserved amino acids point toward the lumen to act as surrogates for the water molecules of K(+) hydration. Ion conductivity is abrogated if some of these carbonyl groups flip out of the lumen, which happens (i) in the process of C-type inactivation or (ii) during filter collapse in the absence of K(+). Here, we show that K(+) channels remain permeable to water, even after entering such an electrically silent conformation. We reconstituted fluorescently labeled and constitutively open mutants of the bacterial K(+) channel KcsA into lipid vesicles that were either C-type inactivating or noninactivating. Fluorescence correlation spectroscopy allowed us to count both the number of proteoliposomes and the number of protein-containing micelles after solubilization, providing the number of reconstituted channels per proteoliposome. Quantification of the per-channel increment in proteoliposome water permeability with the aid of stopped-flow experiments yielded a unitary water permeability pf of (6.9 ± 0.6) × 10(-13) cm(3)⋅s(-1) for both mutants. "Collapse" of the selectivity filter upon K(+) removal did not alter pf and was fully reversible, as demonstrated by current measurements through planar bilayers in a K(+)-containing medium to which K(+)-free proteoliposomes were fused. Water flow through KcsA is halved by 200 mM K(+) in the aqueous solution, which indicates an effective K(+) dissociation constant in that range for a singly occupied channel. This questions the widely accepted hypothesis that multiple K(+) ions in the selectivity filter act to mutually destabilize binding.


Asunto(s)
Proteínas Bacterianas/metabolismo , Canales de Potasio/metabolismo , Streptomyces lividans/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Permeabilidad de la Membrana Celular , Activación del Canal Iónico , Transporte Iónico , Modelos Moleculares , Mutagénesis Sitio-Dirigida , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Canales de Potasio/química , Canales de Potasio/genética , Conformación Proteica , Proteolípidos/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Streptomyces lividans/química , Streptomyces lividans/genética , Agua/metabolismo
2.
Anal Chem ; 86(1): 920-7, 2014 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-24354292

RESUMEN

Phase diagrams offer a wealth of thermodynamic information on aqueous mixtures of bilayer-forming lipids and micelle-forming detergents, providing a straightforward means of monitoring and adjusting the supramolecular state of such systems. However, equilibrium phase diagrams are of very limited use for the reconstitution of membrane proteins because of the occurrence of irreversible, unproductive processes such as aggregation and precipitation that compete with productive reconstitution. Here, we exemplify this by dissecting the effects of the K(+) channel KcsA on the process of bilayer self-assembly in a mixture of Escherichia coli polar lipid extract and the nonionic detergent octyl-ß-d-glucopyranoside. Even at starting concentrations in the low micromolar range, KcsA has a tremendous impact on the supramolecular organization of the system, shifting the critical lipid/detergent ratios at the onset and completion of vesicle formation by more than 2-fold. Thus, equilibrium phase diagrams obtained for protein-free lipid/detergent mixtures would be misleading when used to guide the reconstitution process. To address this issue, we demonstrate that, even under such nonequilibrium conditions, high-sensitivity isothermal titration calorimetry can be exploited to monitor the progress of membrane-protein reconstitution in real time, in a noninvasive manner, and at high resolution to yield functional proteoliposomes with a narrow size distribution for further downstream applications.


Asunto(s)
Calorimetría/métodos , Sistemas de Computación , Proteínas de Escherichia coli/análisis , Proteínas de la Membrana/análisis , Conductometría/métodos
3.
Nat Chem ; 15(9): 1306-1316, 2023 09.
Artículo en Inglés | MEDLINE | ID: mdl-37337111

RESUMEN

Protein liquid-liquid phase separation can lead to disease-related amyloid fibril formation. The mechanisms of conversion of monomeric protein into condensate droplets and of the latter into fibrils remain elusive. Here, using mass photometry, we demonstrate that the Parkinson's disease-related protein, α-synuclein, can form dynamic nanoscale clusters at physiologically relevant, sub-saturated concentrations. Nanoclusters nucleate in bulk solution and promote amyloid fibril formation of the dilute-phase monomers upon ageing. Their formation is instantaneous, even under conditions where macroscopic assemblies appear only after several days. The slow growth of the nanoclusters can be attributed to a kinetic barrier, probably due to an interfacial penalty from the charged C terminus of α-synuclein. Our findings reveal that α-synuclein phase separation occurs at much wider ranges of solution conditions than reported so far. Importantly, we establish mass photometry as a promising methodology to detect and quantify nanoscale precursors of phase separation. We also demonstrate its general applicability by probing the existence of nanoclusters of a non-amyloidogenic protein, Ddx4n1.


Asunto(s)
Enfermedad de Parkinson , alfa-Sinucleína , Humanos , alfa-Sinucleína/metabolismo , Amiloide/metabolismo , Enfermedad de Parkinson/metabolismo
4.
Mol Cell Proteomics ; 8(11): 2474-86, 2009 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19542561

RESUMEN

The tumor maintenance protein Tsg101 has recently gained much attention because of its involvement in endosomal sorting, virus release, cytokinesis, and cancerogenesis. The ubiquitin-E2-like variant (UEV) domain of the protein interacts with proline-rich sequences of target proteins that contain P(S/T)AP amino acid motifs and weakly binds to the ubiquitin moiety of proteins committed to sorting or degradation. Here we performed peptide spot analysis and phage display to refine the peptide binding specificity of the Tsg101 UEV domain. A mass spectrometric proteomics approach that combines domain-based pulldown experiments, binding site inactivation, and stable isotope labeling by amino acids in cell culture (SILAC) was then used to delineate the relative importance of the peptide and ubiquitin binding sites. Clearly "PTAP" interactions dominate target recognition, and we identified several novel binders as for example the poly(A)-binding protein 1 (PABP1), Sec24b, NFkappaB2, and eIF4b. For PABP1 and eIF4b the interactions were confirmed in the context of the corresponding full-length proteins in cellular lysates. Therefore, our results strongly suggest additional roles of Tsg101 in cellular regulation of mRNA translation. Regulation of Tsg101 itself by the ubiquitin ligase TAL (Tsg101-associated ligase) is most likely conferred by a single PSAP binding motif that enables the interaction with Tsg101 UEV. Together with the results from the accompanying article (Kofler, M., Schuemann, M., Merz, C., Kosslick, D., Schlundt, A., Tannert, A., Schaefer, M., Lührmann, R., Krause, E., and Freund, C. (2009) Proline-rich sequence recognition: I. Marking GYF and WW domain assembly sites in early spliceosomal complexes. Mol. Cell. Proteomics 8, 2461-2473) on GYF and WW domain pathways our work defines major proline-rich sequence-mediated interaction networks that contribute to the modular assembly of physiologically relevant protein complexes.


Asunto(s)
Proteínas de Unión al ADN/química , Complejos de Clasificación Endosomal Requeridos para el Transporte/química , Prolina/química , Proteómica/métodos , Factores de Transcripción/química , Enzimas Ubiquitina-Conjugadoras/química , Secuencias de Aminoácidos , Sitios de Unión , Clonación Molecular , Células HeLa , Humanos , Espectrometría de Masas/métodos , Biblioteca de Péptidos , Estructura Terciaria de Proteína , Proteoma , ARN Mensajero/metabolismo
5.
Biophys Chem ; 150(1-3): 105-11, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20392557

RESUMEN

We have studied the solubilisation and reconstitution of lipid membranes composed of either synthetic phosphatidylcholine or Escherichia. coli polar lipid extract by the non-ionic detergent octylglucoside. For both lipid systems, composition-dependent transformations of unilamellar vesicles into micelles or vice versa were followed by high-sensitivity isothermal titration calorimetry. Data obtained over a range of detergent and lipid concentrations could be rationalised in terms of a three-stage phase separation model involving bilayer, bilayer/micelle coexistence, and micellar ranges, yielding the detergent/lipid phase diagrams and the bilayer-to-micelle partition coefficients of both detergent and lipid. The most notable difference between the lipids investigated was a substantial widening of the bilayer/micelle coexistence range for E. coli lipid, which was due to an increased preference of the detergent and a decreased affinity of the lipid for the micellar phase as compared with the bilayer phase. These effects on the bilayer-to-micelle partition coefficients could be explained by the high proportion in E. coli membranes of lipids possessing negative spontaneous curvature, which hampers both their transfer into strongly curved micellar structures as well as the insertion of detergent into condensed bilayers.


Asunto(s)
Escherichia coli/química , Glucósidos/química , Lípidos de la Membrana/química , Fosfatidilcolinas/química , Calorimetría , Liposomas/química , Lípidos de la Membrana/aislamiento & purificación , Transición de Fase , Solubilidad , Temperatura
6.
Biophys J ; 90(12): 4509-21, 2006 Jun 15.
Artículo en Inglés | MEDLINE | ID: mdl-16581838

RESUMEN

We provide a comprehensive thermodynamic description of lipid membrane dissolution by a charged detergent. To this end, we have studied the interactions between the anionic detergent sodium dodecyl sulfate (SDS) and the zwitterionic phospholipid 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) in dilute aqueous solution (10 mM phosphate buffer, 154 mM NaCl, pH 7.4). Thermodynamic parameters of vesicle solubilization and reconstitution, membrane partitioning, and micelle formation were assessed by right-angle light scattering and isothermal titration calorimetry. Membrane translocation and dissolution proceed very slowly at 25 degrees C but are considerably accelerated at 65 degrees C. At this temperature, a simple SDS/POPC phase diagram (comprising vesicular, coexistence, and micellar ranges) and a complete set of partition coefficients and transfer enthalpies were obtained. Electrostatic repulsion effects at the membrane surface were implemented by combining Gouy-Chapman theory with a Langmuir adsorption isotherm to account for Na+ binding to membrane-incorporated DS-. This approach offered a quantitative understanding of solubilization and reconstitution processes, which were interpreted in terms of partition equilibria between and ideal mixing in all phases. More than any other property, the transbilayer flip-flop rate under given experimental conditions hence appears to dictate a detergent's suitability for thermodynamically controlled lipid membrane solubilization and reconstitution.


Asunto(s)
Membrana Dobles de Lípidos/química , Liposomas/química , Fluidez de la Membrana , Fosfatidilcolinas/química , Dodecil Sulfato de Sodio/química , Membranas Artificiales , Conformación Molecular , Transición de Fase , Solubilidad , Temperatura , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA