Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 151(2): 289-303, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-23021777

RESUMEN

Th17 cells have critical roles in mucosal defense and are major contributors to inflammatory disease. Their differentiation requires the nuclear hormone receptor RORγt working with multiple other essential transcription factors (TFs). We have used an iterative systems approach, combining genome-wide TF occupancy, expression profiling of TF mutants, and expression time series to delineate the Th17 global transcriptional regulatory network. We find that cooperatively bound BATF and IRF4 contribute to initial chromatin accessibility and, with STAT3, initiate a transcriptional program that is then globally tuned by the lineage-specifying TF RORγt, which plays a focal deterministic role at key loci. Integration of multiple data sets allowed inference of an accurate predictive model that we computationally and experimentally validated, identifying multiple new Th17 regulators, including Fosl2, a key determinant of cellular plasticity. This interconnected network can be used to investigate new therapeutic approaches to manipulate Th17 functions in the setting of inflammatory disease.


Asunto(s)
Redes Reguladoras de Genes , Células Th17/citología , Células Th17/metabolismo , Animales , Factores de Transcripción con Cremalleras de Leucina de Carácter Básico/metabolismo , Diferenciación Celular , Encefalomielitis Autoinmune Experimental/inmunología , Antígeno 2 Relacionado con Fos/inmunología , Antígeno 2 Relacionado con Fos/metabolismo , Estudio de Asociación del Genoma Completo , Humanos , Factores Reguladores del Interferón/metabolismo , Ratones , Ratones Noqueados , Datos de Secuencia Molecular , Miembro 3 del Grupo F de la Subfamilia 1 de Receptores Nucleares/metabolismo , Células Th17/inmunología
2.
Am J Med Genet A ; 188(1): 357-363, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34623748

RESUMEN

D-bifunctional protein (DBP) deficiency is a rare, autosomal recessive peroxisomal enzyme deficiency resulting in a high burden of morbidity and early mortality. Patients with DBP deficiency resemble those with a severe Zellweger phenotype, with neonatal hypotonia, seizures, craniofacial dysmorphisms, psychomotor delay, deafness, blindness, and death typically within the first 2 years of life, although patients with residual enzyme function can survive longer. The clinical severity of the disease depends on the degree of enzyme deficiency. Loss-of-function variants typically result in no residual enzyme activity; however, splice variants may result in protein with residual function. We describe a full-term newborn presenting with hypotonia, seizures, and unexplained hypoglycemia, who was later found to have rickets at follow up. Rapid whole genome sequencing identified two HSD17B4 variants in trans; one likely pathogenic variant and one variant of uncertain significance (VUS) located in the polypyrimidine tract of intron 13. To determine the functional consequence of the VUS, we analyzed RNA from the patient's father with RNA-seq which showed skipping of Exon 14, resulting in a frameshift mutation three amino acids from the new reading frame. This RNA-seq analysis was correlated with virtually absent enzyme activity, elevated very-long-chain fatty acids in fibroblasts, and a clinically severe phenotype. Both variants are reclassified as pathogenic. Due to the clinical spectrum of DBP deficiency, this provides important prognostic information, including early mortality. Furthermore, we add persistent hypoglycemia to the clinical spectrum of the disease, and advocate for the early management of fat-soluble vitamin deficiencies to reduce complications.


Asunto(s)
Pérdida Auditiva Sensorineural , Hipoglucemia , Deficiencia de Proteína , Exones , Pérdida Auditiva Sensorineural/genética , Humanos , Hipoglucemia/genética , Recién Nacido , Proteína-2 Multifuncional Peroxisomal/genética , Deficiencia de Proteína/genética
3.
Mol Cell ; 52(1): 25-36, 2013 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-24076218

RESUMEN

Most human transcription factors bind a small subset of potential genomic sites and often use different subsets in different cell types. To identify mechanisms that govern cell-type-specific transcription factor binding, we used an integrative approach to study estrogen receptor α (ER). We found that ER exhibits two distinct modes of binding. Shared sites, bound in multiple cell types, are characterized by high-affinity estrogen response elements (EREs), inaccessible chromatin, and a lack of DNA methylation, while cell-specific sites are characterized by a lack of EREs, co-occurrence with other transcription factors, and cell-type-specific chromatin accessibility and DNA methylation. These observations enabled accurate quantitative models of ER binding that suggest tethering of ER to one-third of cell-specific sites. The distinct properties of cell-specific binding were also observed with glucocorticoid receptor and for ER in primary mouse tissues, representing an elegant genomic encoding scheme for generating cell-type-specific gene regulation.


Asunto(s)
Receptor alfa de Estrógeno/metabolismo , Regiones Promotoras Genéticas , Factores de Transcripción/metabolismo , Secuencia de Aminoácidos , Animales , Sitios de Unión , Línea Celular , Secuencia Conservada , Metilación de ADN , Estradiol/farmacología , Receptor alfa de Estrógeno/efectos de los fármacos , Receptor alfa de Estrógeno/genética , Estrógenos/farmacología , Evolución Molecular , Regulación de la Expresión Génica , Humanos , Ratones , Modelos Biológicos , Regiones Promotoras Genéticas/efectos de los fármacos , Interferencia de ARN , Receptores de Glucocorticoides/genética , Receptores de Glucocorticoides/metabolismo , Elementos de Respuesta , Termodinámica , Factores de Transcripción/genética , Transfección
4.
Nature ; 489(7414): 91-100, 2012 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-22955619

RESUMEN

Transcription factors bind in a combinatorial fashion to specify the on-and-off states of genes; the ensemble of these binding events forms a regulatory network, constituting the wiring diagram for a cell. To examine the principles of the human transcriptional regulatory network, we determined the genomic binding information of 119 transcription-related factors in over 450 distinct experiments. We found the combinatorial, co-association of transcription factors to be highly context specific: distinct combinations of factors bind at specific genomic locations. In particular, there are significant differences in the binding proximal and distal to genes. We organized all the transcription factor binding into a hierarchy and integrated it with other genomic information (for example, microRNA regulation), forming a dense meta-network. Factors at different levels have different properties; for instance, top-level transcription factors more strongly influence expression and middle-level ones co-regulate targets to mitigate information-flow bottlenecks. Moreover, these co-regulations give rise to many enriched network motifs (for example, noise-buffering feed-forward loops). Finally, more connected network components are under stronger selection and exhibit a greater degree of allele-specific activity (that is, differential binding to the two parental alleles). The regulatory information obtained in this study will be crucial for interpreting personal genome sequences and understanding basic principles of human biology and disease.


Asunto(s)
ADN/genética , Enciclopedias como Asunto , Redes Reguladoras de Genes/genética , Genoma Humano/genética , Anotación de Secuencia Molecular , Secuencias Reguladoras de Ácidos Nucleicos/genética , Factores de Transcripción/metabolismo , Alelos , Línea Celular , Factor de Transcripción GATA1/metabolismo , Perfilación de la Expresión Génica , Genómica , Humanos , Células K562 , Especificidad de Órganos , Fosforilación/genética , Polimorfismo de Nucleótido Simple/genética , Mapas de Interacción de Proteínas , ARN no Traducido/genética , ARN no Traducido/metabolismo , Selección Genética/genética , Sitio de Iniciación de la Transcripción
5.
J Pediatr Hematol Oncol ; 38(7): e243-7, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27571123

RESUMEN

Severe congenital neutropenia type IV (SCN IV) is a syndrome of severe neutropenia, cardiac and urogenital defects, prominent superficial veins, facial dysmorphism, failure to thrive (FTT), and intermittent thrombocytopenia, caused by a glucose-6-phosphatase catalytic subunit 3 (G6PC3) gene mutation. SCN IV has been linked to glycogen storage disease type 1b as both disorders involve disruption of the glucose-6-phosphatase/glucose-6-phosphate transporter complex, leading to arrested neutrophil maturation. Emerging evidence suggests that neutrophil function plays an important role in intestinal integrity, evidenced by inflammatory bowel disease in certain neutropenic patients. Here, we report 3 unrelated Hispanic males from the Dominican Republic with classic features of SCN IV found to share an identical inherited canonical splice-site mutation of the G6PC3 gene (c.218+1G>A). All 3 patients presented with severe FTT and gastrointestinal manifestations. Two of the patients had significant improvement in growth and resolution of gastrointestional symptoms with initiation of granulocyte colony-stimulating factor. We hypothesize that the gene variant described represents a founder mutation in the Dominican Republic, the first to be described in this geographical region. We discuss the potential associations between neutropenia and gastrointestinal disease with FTT and the role of granulocyte colony-stimulating factor in improving neutrophil count and intestinal integrity and growth.


Asunto(s)
Enfermedades Gastrointestinales/genética , Glucosa-6-Fosfatasa/genética , Mutación , Neutropenia/congénito , Adolescente , Niño , Preescolar , Síndromes Congénitos de Insuficiencia de la Médula Ósea , Insuficiencia de Crecimiento/etiología , Factor Estimulante de Colonias de Granulocitos/uso terapéutico , Humanos , Masculino , Neutropenia/tratamiento farmacológico , Neutropenia/genética , Fenotipo
7.
JCEM Case Rep ; 1(5): luad082, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37908207

RESUMEN

X-linked hypophosphatemia (XLH), the most common form of hereditary rickets, is due to inactivation of PHEX, resulting in increased circulating fibroblast growth factor 23. Consequent renal phosphate loss leads to hypophosphatemia, rickets, and progressive bow deformity. Inheritance is X-linked dominant, such that heterozygous females are affected, as well as hemizygous males. A 10-month-old girl was referred for potential treatment for presumed XLH. Amniocentesis, performed following prenatal identification of duodenal atresia, polyhydramnios, and intrauterine growth restriction, revealed a de novo X-chromosomal deletion encompassing 10 genes, including PHEX. Postnatal genetic testing confirmed presence of the deletion in the baby. She demonstrated no phenotypic, biochemical, or radiographic features of XLH. Neither parent had features of XLH, nor carried the deletion. Given the discordance between genotype and phenotype, evaluation for skewed X-inactivation was pursued. Methylation analysis via the androgen receptor locus was inconclusive, thus RNA sequencing was pursued. Analysis of 12 high-quality single nucleotide polymorphisms (SNPs) that are expressed in mRNA revealed skewed X-inactivation. Heterozygous disruption of PHEX typically confers a diagnosis of XLH. Skewed X-inactivation, whereby one X chromosome is preferentially silenced, appears to have protected this patient from the expected expression of an X-linked dominant disorder.

8.
J Crohns Colitis ; 15(11): 1908-1919, 2021 Nov 08.
Artículo en Inglés | MEDLINE | ID: mdl-33891011

RESUMEN

BACKGROUND AND AIMS: Very early onset inflammatory bowel disease [VEOIBD] is characterized by intestinal inflammation affecting infants and children less than 6 years of age. To date, over 60 monogenic aetiologies of VEOIBD have been identified, many characterized by highly penetrant recessive or dominant variants in underlying immune and/or epithelial pathways. We sought to identify the genetic cause of VEOIBD in a subset of patients with a unique clinical presentation. METHODS: Whole exome sequencing was performed on five families with ten patients who presented with a similar constellation of symptoms including medically refractory infantile-onset IBD, bilateral sensorineural hearing loss and, in the majority, recurrent infections. Genetic aetiologies of VEOIBD were assessed and Sanger sequencing was performed to confirm novel genetic findings. Western analysis on peripheral blood mononuclear cells and functional studies with epithelial cell lines were employed. RESULTS: In each of the ten patients, we identified damaging heterozygous or biallelic variants in the Syntaxin-Binding Protein 3 gene [STXBP3], a protein known to regulate intracellular vesicular trafficking in the syntaxin-binding protein family of molecules, but not associated to date with either VEOIBD or sensorineural hearing loss. These mutations interfere with either intron splicing or protein stability and lead to reduced STXBP3 protein expression. Knock-down of STXBP3 in CaCo2 cells resulted in defects in cell polarity. CONCLUSION: Overall, we describe a novel genetic syndrome and identify a critical role for STXBP3 in VEOIBD, sensorineural hearing loss and immune dysregulation.


Asunto(s)
Pérdida Auditiva Sensorineural/genética , Enfermedades del Sistema Inmune/genética , Enfermedades Inflamatorias del Intestino/genética , Proteínas Qa-SNARE/análisis , Edad de Inicio , Femenino , Variación Genética/genética , Pérdida Auditiva Sensorineural/epidemiología , Humanos , Enfermedades del Sistema Inmune/epidemiología , Recién Nacido , Enfermedades Inflamatorias del Intestino/epidemiología , Masculino , Proteínas Qa-SNARE/genética , Secuenciación del Exoma
9.
Sci Rep ; 7(1): 17477, 2017 12 12.
Artículo en Inglés | MEDLINE | ID: mdl-29234067

RESUMEN

The blood-nerve barrier (BNB), formed by tight junction-forming microvessels within peripheral nerve endoneurium, exists to regulate its internal microenvironment essential for effective axonal signal transduction. Relatively little is known about the unique human BNB molecular composition. Such knowledge is crucial to comprehend the relationships between the systemic circulation and peripheral nerves in health, adaptations to intrinsic or extrinsic perturbations and alterations that may result in disease. We performed RNA-sequencing on cultured early- and late-passage adult primary human endoneurial endothelial cells and laser-capture microdissected endoneurial microvessels from four cryopreserved normal adult human sural nerves referenced to the Genome Reference Consortium Human Reference 37 genome browser, using predefined criteria guided by known transcript or protein expression in vitro and in situ. We identified 12881 common transcripts associated by 125 independent biological networks, defined as the normal adult BNB transcriptome, including a comprehensive array of transporters and specialized intercellular junctional complex components. These identified transcripts and their interacting networks provide insights into peripheral nerve microvascular morphogenesis, restrictive barrier formation, influx and efflux transporters with relevance to understanding peripheral nerve homeostasis and pharmacology, including targeted drug delivery and the mediators of leukocyte trafficking in peripheral nerves during normal immunosurveillance.


Asunto(s)
Barrera Hematonerviosa/metabolismo , Transcriptoma , Adulto , Células Cultivadas , Células Endoteliales/metabolismo , Femenino , Perfilación de la Expresión Génica , Humanos , Captura por Microdisección con Láser , Masculino , Persona de Mediana Edad , Cultivo Primario de Células , Nervio Ciático/metabolismo , Análisis de Secuencia de ARN , Nervio Sural/metabolismo
10.
Oncotarget ; 7(25): 37636-37648, 2016 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-27203213

RESUMEN

Post-transplant lymphoproliferative disorders of T- or NK-cell origin (T/NK-PTLD) are rare entities and their genetic basis is unclear. We performed targeted sequencing of 465 cancer-related genes and high-resolution copy number analysis in 17 T-PTLD and 2 NK-PTLD cases. Overall, 377 variants were detected, with an average of 20 variants per case. Mutations of epigenetic modifier genes (TET2, KMT2C, KMT2D, DNMT3A, ARID1B, ARID2, KDM6B, n=11). and inactivation of TP53 by mutation and/or deletion(n=6) were the most frequent alterations, seen across disease subtypes, followed by mutations of JAK/STAT pathway genes (n=5). Novel variants, including mutations in TBX3 (n=3), MED12 (n=3) and MTOR (n=1), were observed as well. High-level microsatellite instability was seen in 1 of 14 (7%) cases, which had a heterozygous PMS2 mutation. Complex copy number changes were detected in 8 of 16 (50%) cases and disease subtype-specific aberrations were also identified. In contrast to B-cell PTLDs, the molecular and genomic alterations observed in T/NK-PTLD appear similar to those reported for peripheral T-cell lymphomas occurring in immunocompetent hosts, which may suggest common genetic mechanisms of lymphoma development.


Asunto(s)
Células Asesinas Naturales/fisiología , Trastornos Linfoproliferativos/genética , Linfocitos T/fisiología , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Células Asesinas Naturales/metabolismo , Células Asesinas Naturales/patología , Trastornos Linfoproliferativos/metabolismo , Masculino , Persona de Mediana Edad , Linfocitos T/metabolismo , Linfocitos T/patología
11.
Oncotarget ; 7(28): 43052-43061, 2016 Jul 12.
Artículo en Inglés | MEDLINE | ID: mdl-27248180

RESUMEN

The dura is a rare site of involvement by marginal zone lymphoma (MZL) and the biology of dural MZL is not well understood. We performed genome-wide DNA copy number and targeted mutational analysis of 14 dural MZL to determine the genetic landscape of this entity. Monoallelic and biallelic inactivation of TNFAIP3 by mutation (n=5) or loss (n=1) was observed in 6/9 (67%) dural MZL exhibiting plasmacytic differentiation, including 3 IgG4+ cases. In contrast, activating NOTCH2 mutations were detected in 4/5 (80%) dural MZL displaying variable monocytoid morphology. Inactivating TBL1XR1 mutations were identified in all NOTCH2 mutated cases. Recurrent mutations in KLHL6 (n=2) and MLL2 (n=2) were also detected. Gains at 6p25.3 (n=2) and losses at 1p36.32 (n=3) were common chromosomal imbalances, with loss of heterozygosity (LOH) of these loci observed in a subset of cases. Translocations involving the IGH or MALT1 genes were not identified. Our results indicate genetic similarities between dural MZL and other MZL subtypes. However, recurrent and mutually exclusive genetic alterations of TNFAIP3 and NOTCH2 appear to be associated with distinct disease phenotypes in dural MZL.


Asunto(s)
Duramadre/metabolismo , Variación Genética , Linfoma de Células B de la Zona Marginal/genética , Neoplasias Meníngeas/genética , Adulto , Aberraciones Cromosómicas , Análisis Mutacional de ADN , Duramadre/patología , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Hibridación Fluorescente in Situ , Linfoma de Células B de la Zona Marginal/patología , Linfoma de Células B de la Zona Marginal/terapia , Masculino , Neoplasias Meníngeas/patología , Neoplasias Meníngeas/terapia , Persona de Mediana Edad , Mutación
12.
JAMA Neurol ; 73(1): 68-75, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26595808

RESUMEN

IMPORTANCE: Parkinson disease (PD) is a progressive neurodegenerative disease for which susceptibility is linked to genetic and environmental risk factors. OBJECTIVE: To identify genetic variants contributing to disease risk in familial PD. DESIGN, SETTING, AND PARTICIPANTS: A 2-stage study design that included a discovery cohort of families with PD and a replication cohort of familial probands was used. In the discovery cohort, rare exonic variants that segregated in multiple affected individuals in a family and were predicted to be conserved or damaging were retained. Genes with retained variants were prioritized if expressed in the brain and located within PD-relevant pathways. Genes in which prioritized variants were observed in at least 4 families were selected as candidate genes for replication in the replication cohort. The setting was among individuals with familial PD enrolled from academic movement disorder specialty clinics across the United States. All participants had a family history of PD. MAIN OUTCOMES AND MEASURES: Identification of genes containing rare, likely deleterious, genetic variants in individuals with familial PD using a 2-stage exome sequencing study design. RESULTS: The 93 individuals from 32 families in the discovery cohort (49.5% [46 of 93] female) had a mean (SD) age at onset of 61.8 (10.0) years. The 49 individuals with familial PD in the replication cohort (32.6% [16 of 49] female) had a mean (SD) age at onset of 50.1 (15.7) years. Discovery cohort recruitment dates were 1999 to 2009, and replication cohort recruitment dates were 2003 to 2014. Data analysis dates were 2011 to 2015. Three genes containing a total of 13 rare and potentially damaging variants were prioritized in the discovery cohort. Two of these genes (TNK2 and TNR) also had rare variants that were predicted to be damaging in the replication cohort. All 9 variants identified in the 2 replicated genes in 12 families across the discovery and replication cohorts were confirmed via Sanger sequencing. CONCLUSIONS AND RELEVANCE: TNK2 and TNR harbored rare, likely deleterious, variants in individuals having familial PD, with similar findings in an independent cohort. To our knowledge, these genes have not been previously associated with PD, although they have been linked to critical neuronal functions. Further studies are required to confirm a potential role for these genes in the pathogenesis of PD.


Asunto(s)
Exoma/genética , Trastornos Parkinsonianos/diagnóstico , Trastornos Parkinsonianos/genética , Proteínas Tirosina Quinasas/genética , Análisis de Secuencia de ADN/métodos , Tenascina/genética , Adulto , Anciano , Estudios de Cohortes , Femenino , Predisposición Genética a la Enfermedad/genética , Variación Genética/genética , Humanos , Masculino , Persona de Mediana Edad
13.
Neuron ; 88(3): 499-513, 2015 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-26539891

RESUMEN

Development of the human nervous system involves complex interactions among fundamental cellular processes and requires a multitude of genes, many of which remain to be associated with human disease. We applied whole exome sequencing to 128 mostly consanguineous families with neurogenetic disorders that often included brain malformations. Rare variant analyses for both single nucleotide variant (SNV) and copy number variant (CNV) alleles allowed for identification of 45 novel variants in 43 known disease genes, 41 candidate genes, and CNVs in 10 families, with an overall potential molecular cause identified in >85% of families studied. Among the candidate genes identified, we found PRUNE, VARS, and DHX37 in multiple families and homozygous loss-of-function variants in AGBL2, SLC18A2, SMARCA1, UBQLN1, and CPLX1. Neuroimaging and in silico analysis of functional and expression proximity between candidate and known disease genes allowed for further understanding of genetic networks underlying specific types of brain malformations.


Asunto(s)
Encéfalo/patología , Redes Reguladoras de Genes/genética , Variación Genética/genética , Análisis de la Aleatorización Mendeliana/métodos , Enfermedades del Sistema Nervioso/diagnóstico , Enfermedades del Sistema Nervioso/genética , Encéfalo/anomalías , Estudios de Cohortes , Bases de Datos Genéticas , Femenino , Estudios de Asociación Genética/métodos , Humanos , Masculino , Linaje
14.
Nat Genet ; 46(3): 310-5, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487276

RESUMEN

Current methods for annotating and interpreting human genetic variation tend to exploit a single information type (for example, conservation) and/or are restricted in scope (for example, to missense changes). Here we describe Combined Annotation-Dependent Depletion (CADD), a method for objectively integrating many diverse annotations into a single measure (C score) for each variant. We implement CADD as a support vector machine trained to differentiate 14.7 million high-frequency human-derived alleles from 14.7 million simulated variants. We precompute C scores for all 8.6 billion possible human single-nucleotide variants and enable scoring of short insertions-deletions. C scores correlate with allelic diversity, annotations of functionality, pathogenicity, disease severity, experimentally measured regulatory effects and complex trait associations, and they highly rank known pathogenic variants within individual genomes. The ability of CADD to prioritize functional, deleterious and pathogenic variants across many functional categories, effect sizes and genetic architectures is unmatched by any current single-annotation method.


Asunto(s)
Variación Genética , Genoma Humano , Modelos Genéticos , Estudio de Asociación del Genoma Completo , Humanos , Mutación INDEL , Anotación de Secuencia Molecular , Polimorfismo de Nucleótido Simple , Selección Genética , Máquina de Vectores de Soporte
15.
Epigenetics Chromatin ; 6(1): 30, 2013 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-24279905

RESUMEN

BACKGROUND: Genome-wide maps of transcription factor binding sites in primary tissues can expand our understanding of genome function, transcriptional regulation, and genetic alterations that contribute to disease risk. However, almost all genome-wide studies of transcription factors have been in cell lines, and performing these experiments in tissues has been technically challenging and limited in throughput. RESULTS: Here we outline a simple strategy for mapping transcription factor binding sites in frozen tissues that utilizes dry pulverization of samples and is scalable for high-throughput analyses. We show that the method leads to accurate and reproducible chromatin immunoprecipitation next-generation sequencing (ChIP-seq) data, and is highly sensitive, identifying high-quality transcription factor binding sites from chromatin corresponding to only 5 mg of liver tissue. CONCLUSIONS: The enhanced reproducibility, robustness, and sensitivity of the dry pulverization method, in addition to the ease of implementation and scalability, makes ChIP-seq in primary tissues a widely accessible assay.

16.
Mol Genet Genomics ; 281(2): 135-46, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19011901

RESUMEN

Botrytis cinerea is a necrotrophic fungal plant pathogen that can survive, grow and infect crops under cold stress. In an attempt to understand the molecular mechanisms leading to cold tolerance of this phytopathogen, we identified an enolase, BcEnol-1. BcEnol-1 encodes a 48 kDa protein that shows high identity to yeast, Arabidopsis and human enolases (72, 63 and 63%, respectively). Northern analysis confirms that an increase in transcript abundance of BcEnol-1 was observed when B. cinerea mycelium was shifted from 22 to 4 degrees C. In order to understand its regulation during cold stress, BcEnol-1 expression was studied in B. cinerea mutants viz Deltabcg1 (mutant of B. cinerea for bcg1), Deltabcg3 (mutant of B. cinerea for bcg3) and Deltabac (mutant of B. cinerea for adenylate cyclase). A decrease in enolase expression in these mutants was observed during cold stress suggesting enolase activation by a cAMP mediated cascade. Expression of enolase was restored with the exogenous addition of cAMP to the Deltabac mutant. Recombinant enolase protein was also found to bind to the promoter elements of transcripts belonging to the Zinc-C(6) protein family and calpain like proteases. Based on these results we conclude that enolase from Botrytis is cold responsive, influenced by cAMP and acts putatively as a transcriptional regulator.


Asunto(s)
Botrytis/enzimología , Frío , AMP Cíclico/fisiología , Regulación Enzimológica de la Expresión Génica/fisiología , Fosfopiruvato Hidratasa/fisiología , Transcripción Genética/fisiología , Secuencia de Aminoácidos , Secuencia de Bases , Cartilla de ADN , ADN Complementario , Ensayo de Cambio de Movilidad Electroforética , Inducción Enzimática , Humanos , Datos de Secuencia Molecular , Fosfopiruvato Hidratasa/biosíntesis , Fosfopiruvato Hidratasa/química , Reacción en Cadena de la Polimerasa , Homología de Secuencia de Aminoácido
17.
In Silico Biol ; 8(2): 141-55, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-18928202

RESUMEN

Heterotrimeric G proteins interact with G protein-coupled receptors in response to stimulation by hormones, neurotransmitters, chemokines, and sensory signals to intracellular signaling cascades. Recently reported studies indicate that G protein subunits play a significant role in different eukaryotic diseases including inflammation, neurological diseases, cardiovascular diseases, endocrine disorders as well as plant pathogen response, infectious hyphae growth, differentiation and virulence of pathogenic fungi. Thus a study of their functions, signaling pathways, and protein interactions may lead to the development of various preventive approaches. The diversity of alpha, beta and gamma subunits of G proteins necessitates a prediction algorithm that helps in the identification of new proteins such as Gbeta where WD-40 repeats are not well characterized. The currently available techniques for finding G proteins are homology based search analyses and wet lab experiments, which are not very effective in finding new classes of proteins. We present here a robust computational method for finding new G proteins and their homologs using a SVM based pattern recognition algorithm. Several physicochemical and compositional properties including dipeptide, tripeptide and hydrophobicity composition are used for generating the SVM classifiers. This method has 96.17%, 95.38%, 97.6% sensitivity and 99.45%, 100%, 100% specificity on test sets for G protein alpha, beta, and gamma subunits, respectively. This algorithm correctly predicts the known alpha, beta and gamma subunits reported in literature. One important contribution of this algorithm is that it helps in improving genome annotation of several proteins as G proteins and serves as a useful tool for comparative genomic analysis of G proteins. Using this method, novel G protein subunits are predicted in 31 genomes covering plant, fungi and animal kingdom. The software is available at the website http://biomine.cs.uah.edu/bioinformatics/svm_prog/scripts/GProteins/vectorg.html. Supplementary files: The supplementary files are available on http://www.bioinfo.de/isb/2008/08/0013/supplementary_ material/.


Asunto(s)
Algoritmos , Proteínas de Unión al GTP Heterotriméricas/química , Reconocimiento de Normas Patrones Automatizadas/métodos , Análisis de Secuencia de Proteína/métodos , Animales , Biología Computacional/métodos , Bases de Datos de Proteínas , Proteínas de Unión al GTP Heterotriméricas/genética , Humanos , Internet , Sensibilidad y Especificidad , Programas Informáticos
18.
Bioinformatics ; 21(4): 483-91, 2005 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-15374866

RESUMEN

MOTIVATION: The adhesion of microbial pathogens to host cells is mediated by adhesins. Experimental methods used for characterizing adhesins are time-consuming and demand large resources. The availability of specialized software can rapidly aid experimenters in simplifying this problem. We have employed 105 compositional properties and artificial neural networks to develop SPAAN, which predicts the probability of a protein being an adhesin (Pad). RESULTS: SPAAN had optimal sensitivity of 89% and specificity of 100% on a defined test set and could identify 97.4% of known adhesins at high Pad value from a wide range of bacteria. Furthermore, SPAAN facilitated improved annotation of several proteins as adhesins. Novel adhesins were identified in 17 pathogenic organisms causing diseases in humans and plants. In the severe acute respiratory syndrome (SARS) associated human corona virus, the spike glycoprotein and nsps (nsp2, nsp5, nsp6 and nsp7) were identified as having adhesin-like characteristics. These results offer new lead for rapid experimental testing. AVAILABILITY: SPAAN is freely available through ftp://203.195.151.45 CONTACT: ramu@igib.res.in.


Asunto(s)
Adhesinas Bacterianas/química , Adhesinas Bacterianas/metabolismo , Algoritmos , Redes Neurales de la Computación , Alineación de Secuencia/métodos , Análisis de Secuencia de Proteína/métodos , Programas Informáticos , Animales , Humanos , Modelos Biológicos , Modelos Químicos , Modelos Estadísticos , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Homología de Secuencia de Aminoácido , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA