Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Banco de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Proc Natl Acad Sci U S A ; 117(27): 15837-15845, 2020 07 07.
Artículo en Inglés | MEDLINE | ID: mdl-32571957

RESUMEN

Despite broad appreciation of their clinical utility, it has been unclear how vitamin B12 and folic acid (FA) function at the molecular level to directly prevent their hallmark symptoms of deficiency like anemia or birth defects. To this point, B12 and FA have largely been studied as cofactors for enzymes in the one-carbon (1C) cycle in facilitating the de novo generation of nucleotides and methylation of DNA and protein. Here, we report that B12 and FA function as natural antagonists of aryl hydrocarbon receptor (AhR). Our studies indicate that B12 and FA bind AhR directly as competitive antagonists, blocking AhR nuclear localization, XRE binding, and target gene induction mediated by AhR agonists like 2,3,7,8-tetrachlorodibenzodioxin (TCDD) and 6-formylindolo[3,2-b]carbazole (FICZ). In mice, TCDD treatment replicated many of the hallmark symptoms of B12/FA deficiency and cotreatment with aryl hydrocarbon portions of B12/FA rescued mice from these toxic effects. Moreover, we found that B12/FA deficiency in mice induces AhR transcriptional activity and accumulation of erythroid progenitors and that it may do so in an AhR-dependent fashion. Consistent with these results, we observed that human cancer samples with deficient B12/FA uptake demonstrated higher transcription of AhR target genes and lower transcription of pathways implicated in birth defects. In contrast, there was no significant difference observed between samples with mutated and intact 1C cycle proteins. Thus, we propose a model in which B12 and FA blunt the effect of natural AhR agonists at baseline to prevent the symptoms that arise with AhR overactivation.


Asunto(s)
Ácido Fólico/metabolismo , Desnutrición/metabolismo , Receptores de Hidrocarburo de Aril/antagonistas & inhibidores , Receptores de Hidrocarburo de Aril/metabolismo , Vitamina B 12/metabolismo , Animales , Factores de Transcripción con Motivo Hélice-Asa-Hélice Básico , Carbazoles/farmacología , Anomalías Congénitas , Femenino , Deficiencia de Ácido Fólico/tratamiento farmacológico , Expresión Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Neoplasias , Dibenzodioxinas Policloradas/farmacología , Receptores de Hidrocarburo de Aril/agonistas , Receptores de Hidrocarburo de Aril/genética , Deficiencia de Vitamina B 12/tratamiento farmacológico
2.
J Virol ; 94(22)2020 10 27.
Artículo en Inglés | MEDLINE | ID: mdl-32878886

RESUMEN

Herpes simplex virus 1 (HSV-1) and HSV-2 can efficiently establish lifelong, transcriptionally silent latency states in sensory neurons to escape host detection. While host factors have previously been associated with long-range insulators in the viral genome, it is still unknown whether host transcription factors can repress viral genes more proximately to promote latency in dorsal root ganglion (DRG) neurons. Here, we assessed whether RUNX (runt-related transcription factor) transcription factors, which are critical in the development of sensory neurons, could be binding HSV-1 genome directly to suppress viral gene expression and lytic infection. Using previously published transcriptome sequencing data, we confirmed that mouse DRG neurons highly express Runx1 mRNA. Through computational analysis of HSV-1 and HSV-2 genomes, we observed that putative RUNX consensus binding sites (CBSs) were more enriched and more closely located to viral gene transcription start sites than would be expected by chance. We further found that RUNX CBSs were significantly more enriched among genomes of herpesviruses compared to those of nonherpesviruses. Utilizing an in vitro model of HSV-1 infection, we found that overexpressed RUNX1 could bind putative binding sites in the HSV-1 genome, repress numerous viral genes spanning all three kinetic classes, and suppress productive infection. In contrast, knockdown of RUNX1 in neuroblastoma cells induced viral gene expression and increased HSV-1 infection in vitro In sum, these data support a novel role for RUNX1 in directly binding herpesvirus genome, silencing the transcription of numerous viral genes, and ultimately limiting overall infection.IMPORTANCE Infecting 90% of the global population, HSV-1 and HSV-2 represent some of the most prevalent viruses in the world. Much of their success can be attributed to their ability to establish lifelong latent infections in the dorsal root ganglia (DRG). It is still largely unknown, however, how host transcription factors are involved in establishing this latency. Here, we report that RUNX1, expressed highly in DRG, binds HSV-1 genome, represses transcription of numerous viral genes, and suppresses productive in vitro infection. Our computational work further suggests this strategy may be used by other herpesviruses to reinforce latency in a cell-specific manner.


Asunto(s)
Subunidad alfa 2 del Factor de Unión al Sitio Principal/genética , Subunidad alfa 2 del Factor de Unión al Sitio Principal/metabolismo , Herpesviridae/genética , Herpesviridae/fisiología , Herpesvirus Humano 1/efectos de los fármacos , Animales , Sitios de Unión , Subunidad alfa 2 del Factor de Unión al Sitio Principal/farmacología , Ganglios Espinales/virología , Regulación Viral de la Expresión Génica , Técnicas de Silenciamiento del Gen , Genoma Viral , Células HEK293 , Herpes Simple/virología , Herpesvirus Humano 1/fisiología , Humanos , Ratones , Células Receptoras Sensoriales/virología , Ganglio del Trigémino/virología , Activación Viral/fisiología , Latencia del Virus/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA