Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Banco de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 602(7895): 106-111, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34883497

RESUMEN

Host genetic factors can confer resistance against malaria1, raising the question of whether this has led to evolutionary adaptation of parasite populations. Here we searched for association between candidate host and parasite genetic variants in 3,346 Gambian and Kenyan children with severe malaria caused by Plasmodium falciparum. We identified a strong association between sickle haemoglobin (HbS) in the host and three regions of the parasite genome, which is not explained by population structure or other covariates, and which is replicated in additional samples. The HbS-associated alleles include nonsynonymous variants in the gene for the acyl-CoA synthetase family member2-4 PfACS8 on chromosome 2, in a second region of chromosome 2, and in a region containing structural variation on chromosome 11. The alleles are in strong linkage disequilibrium and have frequencies that covary with the frequency of HbS across populations, in particular being much more common in Africa than other parts of the world. The estimated protective effect of HbS against severe malaria, as determined by comparison of cases with population controls, varies greatly according to the parasite genotype at these three loci. These findings open up a new avenue of enquiry into the biological and epidemiological significance of the HbS-associated polymorphisms in the parasite genome and the evolutionary forces that have led to their high frequency and strong linkage disequilibrium in African P. falciparum populations.


Asunto(s)
Genotipo , Hemoglobina Falciforme/genética , Adaptación al Huésped/genética , Malaria Falciparum/sangre , Malaria Falciparum/parasitología , Parásitos/genética , Plasmodium falciparum/genética , Alelos , Animales , Niño , Femenino , Gambia/epidemiología , Genes Protozoarios/genética , Humanos , Kenia/epidemiología , Desequilibrio de Ligamiento , Malaria Falciparum/epidemiología , Masculino , Polimorfismo Genético
2.
Nature ; 517(7534): 327-32, 2015 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-25470054

RESUMEN

Given the importance of Africa to studies of human origins and disease susceptibility, detailed characterization of African genetic diversity is needed. The African Genome Variation Project provides a resource with which to design, implement and interpret genomic studies in sub-Saharan Africa and worldwide. The African Genome Variation Project represents dense genotypes from 1,481 individuals and whole-genome sequences from 320 individuals across sub-Saharan Africa. Using this resource, we find novel evidence of complex, regionally distinct hunter-gatherer and Eurasian admixture across sub-Saharan Africa. We identify new loci under selection, including loci related to malaria susceptibility and hypertension. We show that modern imputation panels (sets of reference genotypes from which unobserved or missing genotypes in study sets can be inferred) can identify association signals at highly differentiated loci across populations in sub-Saharan Africa. Using whole-genome sequencing, we demonstrate further improvements in imputation accuracy, strengthening the case for large-scale sequencing efforts of diverse African haplotypes. Finally, we present an efficient genotype array design capturing common genetic variation in Africa.


Asunto(s)
Variación Genética/genética , Genética Médica/tendencias , Genoma Humano/genética , Genómica/tendencias , África , África del Sur del Sahara , Asia/etnología , Europa (Continente)/etnología , Humanos , Factores de Riesgo , Selección Genética/genética
3.
Malar J ; 17(1): 337, 2018 Sep 24.
Artículo en Inglés | MEDLINE | ID: mdl-30249265

RESUMEN

BACKGROUND: Cerebral malaria (CM) is a severe neurological complication of Plasmodium falciparum infection. A number of pathological findings have been correlated with pediatric CM including sequestration, platelet accumulation, petechial haemorrhage and retinopathy. However, the molecular mechanisms leading to death in CM are not yet fully understood. METHODS: A shotgun plasma proteomic study was conducted using samples form 52 Gambian children with CM admitted to hospital. Based on clinical outcome, children were assigned to two groups: reversible and fatal CM. Label-free liquid chromatography-tandem mass spectrometry was used to identify and compare plasma proteins that were differentially regulated in children who recovered from CM and those who died. Candidate biomarkers were validated using enzyme immunoassays. RESULTS: The plasma proteomic signature of children with CM identified 266 proteins differentially regulated in children with fatal CM. Proteins from the coagulation cascade were consistently decreased in fatal CM, whereas the plasma proteomic signature associated with fatal CM underscored the importance of endothelial activation, tissue damage, inflammation, haemolysis and glucose metabolism. The concentration of circulating proteasomes or PSMB9 in plasma was not significantly different in fatal CM when compared with survivors. Plasma PSMB9 concentration was higher in patients who presented with seizures and was significantly correlated with the number of seizures observed in patients with CM during admission. CONCLUSIONS: The results indicate that increased tissue damage and hypercoagulability may play an important role in fatal CM. The diagnostic value of this molecular signature to identify children at high risk of dying to optimize patient referral practices should be validated prospectively.


Asunto(s)
Proteínas Sanguíneas/análisis , Malaria Cerebral/genética , Malaria Falciparum/genética , Plasmodium falciparum/fisiología , Proteoma/análisis , Adolescente , Biomarcadores/sangre , Niño , Preescolar , Femenino , Gambia/epidemiología , Humanos , Lactante , Malaria Cerebral/mortalidad , Malaria Falciparum/mortalidad , Masculino , Proteómica
4.
Malar J ; 15: 13, 2016 Jan 07.
Artículo en Inglés | MEDLINE | ID: mdl-26738565

RESUMEN

BACKGROUND: Glucose-6-phosphate dehydrogenase (G6PD) deficiency exhibits considerable allelic heterogeneity which manifests with variable biochemical and clinical penetrance. It has long been thought that G6PD deficiency confers partial protection against severe malaria, however prior genetic association studies have disagreed with regard to the strength and specificity of a protective effect, which might reflect differences in the host genetic background, environmental influences, or in the specific clinical phenotypes considered. METHODS: A case-control association study of severe malaria was conducted in The Gambia, a region in West Africa where there is considerable allelic heterogeneity underlying expression of G6PD deficiency trait, evaluating the three major nonsynonymous polymorphisms known to be associated with enzyme deficiency (A968G, T542A, and C202T) in a cohort of 3836 controls and 2379 severe malaria cases. RESULTS: Each deficiency allele exhibited a similar trend toward protection against severe malaria overall (15-26% reduced risk); however, in stratifying severe malaria to two of its constituent clinical subphenotypes, severe malarial anaemia (SMA) and cerebral malaria (CM), the three deficiency alleles exhibited trends of opposing effect, with risk conferred to SMA and protection with respect to CM. To assess the overall effect of G6PD deficiency trait, deficiency alleles found across all three loci were pooled. G6PD deficiency trait was found to be significantly associated with protection from severe malaria overall (OR 0.83 [0.75-0.92], P = 0.0006), but this was limited to CM (OR 0.73 [0.61-0.87], P = 0.0005), with a trend toward increased risk for SMA, especially in fully-deficient individuals (OR 1.43 [0.99-2.08], P = 0.056). Sex-stratified testing largely comported with these results, with evidence suggesting that protection by G6PD deficiency trait is conferred to both males and females, though susceptibility to SMA may be restricted to fully-deficient male hemizygotes. CONCLUSIONS: In a part of Africa where multiple alleles contribute to expression of G6PD deficiency trait, these findings clarify and extend previous work done in populations where a single variant predominates, and taken together suggest a causal role for G6PD deficiency trait itself with respect to severe malaria, with opposing effects seen on two major clinical subphenotypes.


Asunto(s)
Glucosafosfato Deshidrogenasa/genética , Malaria/diagnóstico , Malaria/enzimología , Adulto , África Occidental , Alelos , Estudios de Casos y Controles , Femenino , Estudios de Asociación Genética , Humanos , Masculino , Persona de Mediana Edad , Polimorfismo Genético/genética
5.
PLoS Genet ; 9(5): e1003509, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23717212

RESUMEN

Combining data from genome-wide association studies (GWAS) conducted at different locations, using genotype imputation and fixed-effects meta-analysis, has been a powerful approach for dissecting complex disease genetics in populations of European ancestry. Here we investigate the feasibility of applying the same approach in Africa, where genetic diversity, both within and between populations, is far more extensive. We analyse genome-wide data from approximately 5,000 individuals with severe malaria and 7,000 population controls from three different locations in Africa. Our results show that the standard approach is well powered to detect known malaria susceptibility loci when sample sizes are large, and that modern methods for association analysis can control the potential confounding effects of population structure. We show that pattern of association around the haemoglobin S allele differs substantially across populations due to differences in haplotype structure. Motivated by these observations we consider new approaches to association analysis that might prove valuable for multicentre GWAS in Africa: we relax the assumptions of SNP-based fixed effect analysis; we apply Bayesian approaches to allow for heterogeneity in the effect of an allele on risk across studies; and we introduce a region-based test to allow for heterogeneity in the location of causal alleles.


Asunto(s)
Población Negra/genética , Estudio de Asociación del Genoma Completo , Hemoglobina Falciforme/genética , Malaria/genética , África , Teorema de Bayes , Mapeo Cromosómico , Heterogeneidad Genética , Predisposición Genética a la Enfermedad , Variación Genética , Genética de Población , Genoma Humano , Haplotipos , Humanos , Desequilibrio de Ligamiento , Malaria/epidemiología , Malaria/patología , Polimorfismo de Nucleótido Simple
6.
PLoS Genet ; 8(11): e1002992, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-23133397

RESUMEN

Acquired immunity in vertebrates maintains polymorphisms in endemic pathogens, leading to identifiable signatures of balancing selection. To comprehensively survey for genes under such selection in the human malaria parasite Plasmodium falciparum, we generated paired-end short-read sequences of parasites in clinical isolates from an endemic Gambian population, which were mapped to the 3D7 strain reference genome to yield high-quality genome-wide coding sequence data for 65 isolates. A minority of genes did not map reliably, including the hypervariable var, rifin, and stevor families, but 5,056 genes (90.9% of all in the genome) had >70% sequence coverage with minimum read depth of 5 for at least 50 isolates, of which 2,853 genes contained 3 or more single nucleotide polymorphisms (SNPs) for analysis of polymorphic site frequency spectra. Against an overall background of negatively skewed frequencies, as expected from historical population expansion combined with purifying selection, the outlying minority of genes with signatures indicating exceptionally intermediate frequencies were identified. Comparing genes with different stage-specificity, such signatures were most common in those with peak expression at the merozoite stage that invades erythrocytes. Members of clag, PfMC-2TM, surfin, and msp3-like gene families were highly represented, the strongest signature being in the msp3-like gene PF10_0355. Analysis of msp3-like transcripts in 45 clinical and 11 laboratory adapted isolates grown to merozoite-containing schizont stages revealed surprisingly low expression of PF10_0355. In diverse clonal parasite lines the protein product was expressed in a minority of mature schizonts (<1% in most lines and ∼10% in clone HB3), and eight sub-clones of HB3 cultured separately had an intermediate spectrum of positive frequencies (0.9 to 7.5%), indicating phase variable expression of this polymorphic antigen. This and other identified targets of balancing selection are now prioritized for functional study.


Asunto(s)
Antígenos de Protozoos , Malaria , Plasmodium falciparum , Selección Genética/genética , Inmunidad Adaptativa , Antígenos , Antígenos de Protozoos/genética , Antígenos de Protozoos/inmunología , Eritrocitos/inmunología , Gambia , Genética de Población , Genoma , Humanos , Malaria/genética , Malaria/inmunología , Malaria/parasitología , Plasmodium falciparum/genética , Plasmodium falciparum/inmunología , Plasmodium falciparum/patogenicidad , Polimorfismo de Nucleótido Simple , Análisis de Secuencia de ADN
7.
Clin Infect Dis ; 58(12): 1707-15, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24696240

RESUMEN

BACKGROUND: Pneumonia is the leading cause of death in children globally. Clinical algorithms remain suboptimal for distinguishing severe pneumonia from other causes of respiratory distress such as malaria or distinguishing bacterial pneumonia and pneumonia from others causes, such as viruses. Molecular tools could improve diagnosis and management. METHODS: We conducted a mass spectrometry-based proteomic study to identify and validate markers of severity in 390 Gambian children with pneumonia (n = 204) and age-, sex-, and neighborhood-matched controls (n = 186). Independent validation was conducted in 293 Kenyan children with respiratory distress (238 with pneumonia, 41 with Plasmodium falciparum malaria, and 14 with both). Predictive value was estimated by the area under the receiver operating characteristic curve (AUC). RESULTS: Lipocalin 2 (Lpc-2) was the best protein biomarker of severe pneumonia (AUC, 0.71 [95% confidence interval, .64-.79]) and highly predictive of bacteremia (78% [64%-92%]), pneumococcal bacteremia (84% [71%-98%]), and "probable bacterial etiology" (91% [84%-98%]). These results were validated in Kenyan children with severe malaria and respiratory distress who also met the World Health Organization definition of pneumonia. The combination of Lpc-2 and haptoglobin distinguished bacterial versus malaria origin of respiratory distress with high sensitivity and specificity in Gambian children (AUC, 99% [95% confidence interval, 99%-100%]) and Kenyan children (82% [74%-91%]). CONCLUSIONS: Lpc-2 and haptoglobin can help discriminate the etiology of clinically defined pneumonia and could be used to improve clinical management. These biomarkers should be further evaluated in prospective clinical studies.


Asunto(s)
Lipocalinas/sangre , Neumonía Bacteriana/sangre , Proteínas Proto-Oncogénicas/sangre , Insuficiencia Respiratoria/sangre , Índice de Severidad de la Enfermedad , Proteínas de Fase Aguda , Área Bajo la Curva , Biomarcadores/sangre , Proteína C-Reactiva/metabolismo , Estudios de Casos y Controles , Preescolar , Femenino , Gambia , Haptoglobinas/metabolismo , Humanos , Lactante , Kenia , Lipocalina 2 , Malaria Falciparum/complicaciones , Masculino , Espectrometría de Masas , Neumonía Bacteriana/diagnóstico , Neumonía Bacteriana/terapia , Valor Predictivo de las Pruebas , Proteómica , Curva ROC , Insuficiencia Respiratoria/diagnóstico , Insuficiencia Respiratoria/parasitología , Factor de von Willebrand/metabolismo
8.
Hum Mol Genet ; 18(14): 2683-92, 2009 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-19403559

RESUMEN

The prevalence of CD36 deficiency in East Asian and African populations suggests that the causal variants are under selection by severe malaria. Previous analysis of data from the International HapMap Project indicated that a CD36 haplotype bearing a nonsense mutation (T1264G; rs3211938) had undergone recent positive selection in the Yoruba of Nigeria. To investigate the global distribution of this putative selection event, we genotyped T1264G in 3420 individuals from 66 populations. We confirmed the high frequency of 1264G in the Yoruba (26%). However, the 1264G allele is less common in other African populations and absent from all non-African populations without recent African admixture. Using long-range linkage disequilibrium, we studied two West African groups in depth. Evidence for recent positive selection at the locus was demonstrable in the Yoruba, although not in Gambians. We screened 70 variants from across CD36 for an association with severe malaria phenotypes, employing a case-control study of 1350 subjects and a family study of 1288 parent-offspring trios. No marker was significantly associated with severe malaria. We focused on T1264G, genotyping 10,922 samples from four African populations. The nonsense allele was not associated with severe malaria (pooled allelic odds ratio 1.0; 95% confidence interval 0.89-1.12; P = 0.98). These results suggest a range of possible explanations including the existence of alternative selection pressures on CD36, co-evolution between host and parasite or confounding caused by allelic heterogeneity of CD36 deficiency.


Asunto(s)
Población Negra/genética , Antígenos CD36/genética , Codón sin Sentido , Variación Genética , Malaria/genética , Selección Genética , África del Sur del Sahara/epidemiología , África del Sur del Sahara/etnología , Población Negra/etnología , Estudios de Casos y Controles , Femenino , Genotipo , Haplotipos , Humanos , Desequilibrio de Ligamiento , Malaria/epidemiología , Malaria/etnología , Malaria/patología , Masculino , Linaje , Índice de Severidad de la Enfermedad
9.
Hum Mol Genet ; 17(4): 567-76, 2008 Feb 15.
Artículo en Inglés | MEDLINE | ID: mdl-18003641

RESUMEN

There is growing epidemiological and molecular evidence that ABO blood group affects host susceptibility to severe Plasmodium falciparum infection. The high frequency of common ABO alleles means that even modest differences in susceptibility could have a significant impact on the health of people living in malaria endemic regions. We performed an association study, the first to utilize key molecular genetic variation underlying the ABO system, genotyping >9000 individuals across three African populations. Using population- and family-based tests, we demonstrated that alleles producing functional ABO enzymes are associated with greater risk of severe malaria phenotypes (particularly malarial anemia) in comparison with the frameshift deletion underlying blood group O: case-control allelic odds ratio (OR), 1.2; 95% confidence interval (CI), 1.09-1.32; P = 0.0003; family-studies allelic OR, 1.19; 95% CI, 1.08-1.32; P = 0.001; pooled across all studies allelic OR, 1.18; 95% CI, 1.11-1.26; P = 2 x 10(-7). We found suggestive evidence of a parent-of-origin effect at the ABO locus by analyzing the family trios. Non-O haplotypes inherited from mothers, but not fathers, are significantly associated with severe malaria (likelihood ratio test of Weinberg, P = 0.046). Finally, we used HapMap data to demonstrate a region of low F(ST) (-0.001) between the three main HapMap population groups across the ABO locus, an outlier in the empirical distribution of F(ST) across chromosome 9 (approximately 99.5-99.9th centile). This low F(ST) region may be a signal of long-standing balancing selection at the ABO locus, caused by multiple infectious pathogens including P. falciparum.


Asunto(s)
Sistema del Grupo Sanguíneo ABO/genética , Glicosiltransferasas/genética , Malaria Falciparum/sangre , Malaria Falciparum/genética , África , Alelos , Animales , Femenino , Mutación del Sistema de Lectura , Variación Genética , Genotipo , Glicosiltransferasas/metabolismo , Humanos , Desequilibrio de Ligamiento , Malaria Falciparum/enzimología , Masculino , Fenotipo , Polimorfismo de Nucleótido Simple , Factores de Riesgo
10.
Lancet Haematol ; 7(11): e789-e797, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-33091354

RESUMEN

BACKGROUND: Infection with Plasmodium falciparum leads to severe malaria and death in approximately 400 000 children each year in sub-Saharan Africa. Blood transfusion might benefit some patients with malaria but could potentially harm others. The aim of this study was to estimate the association between transfusion and death among children admitted to hospital with P falciparum malaria. METHODS: In this prospective, multicentre observational study, we analysed admissions to six tertiary care hospitals in The Gambia, Malawi, Gabon, Kenya, and Ghana that participated in the Severe Malaria in African Children network. Patients were enrolled if they were younger than 180 months and had a Giemsa-stained thick blood smear that was positive for P falciparum. Blood transfusion (whole blood at a target volume of 20 mL per kg) was administered at the discretion of the responsible physicians who were aware of local and international transfusion guidelines. The primary endpoint was death associated with transfusion, which was estimated using models adjusted for site and disease severity. We also aimed to identify factors associated with the decision to transfuse. The exploratory objective was to estimate optimal haemoglobin transfusion thresholds using generalised additive models. FINDINGS: Between Dec 19, 2000, and March 8, 2005, 26 106 patients were enrolled in the study, 25 893 of whom had their transfusion status recorded and were included in the primary analysis. 8513 (32·8%) patients received a blood transfusion. Patients were followed-up until discharge from hospital for a median of 2 days (IQR 1-4). 405 (4·8%) of 8513 patients who received a transfusion died compared with 689 (4·0%) of 17 380 patients who did not receive a transfusion. Transfusion was associated with decreased odds of death in site-adjusted analysis (odds ratio [OR] 0·82 [95% CI 0·71-0·94]) and after adjusting for the increased disease severity of patients who received a transfusion (0·50 [0·42-0·60]). Severe anaemia, elevated lactate concentration, respiratory distress, and parasite density were associated with greater odds of receiving a transfusion. Among all study participants, transfusion was associated with improved survival when the admission haemoglobin concentration was up to 77 g/L (95% CI 65-110). Among those with impaired consciousness (Blantyre Coma Score ≤4), transfusion was associated with improved survival at haemoglobin concentrations up to 105 g/L (95% CI 71-115). Among those with hyperlactataemia (blood lactate ≥5·0 mmol/L), transfusion was not significantly associated with harm at any haemoglobin concentration-ie, the OR of death comparing transfused versus not transfused was less than 1 at all haemoglobin concentrations (lower bound of the 95% CI for the haemoglobin concentration at which the OR of death equals 1: 90 g/L; no upper bound). INTERPRETATION: Our findings suggest that whole blood transfusion was associated with improved survival among children hospitalised with P falciparum malaria. Among those with impaired consciousness or hyperlactataemia, transfusion was associated with improved survival at haemoglobin concentrations above the currently recommended transfusion threshold. These findings highlight the need to do randomised controlled trials to test higher transfusion thresholds among African children with severe malaria complicated by these factors. FUNDING: US National Institute of Allergy and Infectious Diseases.


Asunto(s)
Transfusión Sanguínea , Malaria Falciparum/mortalidad , Anemia/complicaciones , Antimaláricos/uso terapéutico , Preescolar , Estado de Conciencia , Hemoglobinas/análisis , Hospitalización , Humanos , Hiperlactatemia/complicaciones , Lactante , Kenia , Malaria Falciparum/complicaciones , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/patología , Oportunidad Relativa , Estudios Prospectivos , Quinina/uso terapéutico , Índice de Severidad de la Enfermedad , Tasa de Supervivencia , Centros de Atención Terciaria , Resultado del Tratamiento
11.
Hum Genet ; 125(1): 105-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19039607

RESUMEN

The tumour necrosis factor (TNF) gene and other genes flanking it in the major histocompatibility complex (MHC) class III region are potentially important mediators of both immunity and pathogenesis of malaria. We investigated the association of severe malaria with 11 haplotype tagging-polymorphisms for 11 MHC class III candidate genes, including TNF, lymphotoxin alpha (LTA), allograft inflammatory factor 1 (AIF1), and HLA-B associated transcript 2 (BAT2). An analysis of 2,162 case-controls demonstrated the first evidence of association between a BAT2 polymorphism (rs1046089) and severe malaria.


Asunto(s)
Predisposición Genética a la Enfermedad , Malaria/genética , Proteínas/genética , Estudios de Casos y Controles , Niño , Preescolar , Femenino , Humanos , Lactante , Recién Nacido , Masculino
12.
Malar J ; 8: 44, 2009 Mar 13.
Artículo en Inglés | MEDLINE | ID: mdl-19284650

RESUMEN

BACKGROUND: During malaria infection the Toll-like receptor 9 (TLR9) is activated through induction with plasmodium DNA or another malaria motif not yet identified. Although TLR9 activation by malaria parasites is well reported, the implication to the susceptibility to severe malaria is not clear. The aim of this study was to assess the contribution of genetic variation at TLR9 to severe malaria. METHODS: This study explores the contribution of TLR9 genetic variants to severe malaria using two approaches. First, an association study of four common single nucleotide polymorphisms was performed on both family- and population-based studies from Malawian and Gambian populations (n>6000 individual). Subsequently, it was assessed whether TLR9 expression is affected by cis-acting variants and if these variants could be mapped. For this work, an allele specific expression (ASE) assay on a panel of HapMap cell lines was carried out. RESULTS: No convincing association was found with polymorphisms in TLR9 for malaria severity, in either Gambian or Malawian populations, using both case-control and family based study designs. Using an allele specific expression assay it was observed that TLR9 expression is affected by cis-acting variants, these results were replicated in a second experiment using biological replicates. CONCLUSION: By using the largest cohorts analysed to date, as well as a standardized phenotype definition and study design, no association of TLR9 genetic variants with severe malaria was found. This analysis considered all common variants in the region, but it is remains possible that there are rare variants with association signals. This report also shows that TLR9 expression is potentially modulated through cis-regulatory variants, which may lead to differential inflammatory responses to infection between individuals.


Asunto(s)
Mapeo Cromosómico/métodos , Expresión Génica/genética , Malaria Falciparum/genética , Plasmodium falciparum/genética , Polimorfismo de Nucleótido Simple/genética , Receptor Toll-Like 9/genética , Animales , Estudios de Casos y Controles , Gambia , Predisposición Genética a la Enfermedad , Genotipo , Haplotipos , Humanos , Modelos Logísticos , Malaria Falciparum/parasitología , Malaui , Fenotipo , Plasmodium falciparum/aislamiento & purificación
13.
NPJ Digit Med ; 2: 63, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31312723

RESUMEN

More than 400,000 deaths from severe malaria (SM) are reported every year, mainly in African children. The diversity of clinical presentations associated with SM indicates important differences in disease pathogenesis that require specific treatment, and this clinical heterogeneity of SM remains poorly understood. Here, we apply tools from machine learning and model-based inference to harness large-scale data and dissect the heterogeneity in patterns of clinical features associated with SM in 2904 Gambian children admitted to hospital with malaria. This quantitative analysis reveals features predicting the severity of individual patient outcomes, and the dynamic pathways of SM progression, notably inferred without requiring longitudinal observations. Bayesian inference of these pathways allows us assign quantitative mortality risks to individual patients. By independently surveying expert practitioners, we show that this data-driven approach agrees with and expands the current state of knowledge on malaria progression, while simultaneously providing a data-supported framework for predicting clinical risk.

14.
Hum Genet ; 124(5): 499-506, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-18951142

RESUMEN

Functional studies have demonstrated an interaction between the stimulatory G protein alpha subunit (G-alpha-s) and the malaria parasite at a cellular level. Obstruction of signal transduction via the erythrocyte G-alpha-s subunit reduced invasion by Plasmodium falciparum parasites. We sought to determine whether this signal pathway had an impact at the disease level by testing polymorphisms in the gene encoding G-alpha-s (GNAS) for association with severe malaria in a large multi-centre study encompassing family and case-control studies from The Gambia, Kenya and Malawi, and a case-control study from Ghana. We gained power to detect association using meta-analysis across the seven studies, with an overall sample size approximating 4,000 cases and 4,000 controls. Out of 12 SNPs investigated in the 19 kb GNAS region, four presented signals of association (P < 0.05) with severe malaria. The strongest single-locus association demonstrated an odds ratio of 1.13 (1.05-1.21), P = 0.001. Three of the loci presenting significant associations were clustered at the 5-prime end of the GNAS gene. Accordingly, haplotypes constructed from these loci demonstrated significant associations with severe malaria [OR = 0.88 (0.81-0.96), P = 0.005 and OR = 1.12 (1.03-1.20), P = 0.005]. The evidence presented here indicates that the influence of G-alpha-s on erythrocyte invasion efficacy may, indeed, alter individual susceptibility to disease.


Asunto(s)
Subunidades alfa de la Proteína de Unión al GTP Gs/genética , Malaria/genética , Polimorfismo de Nucleótido Simple , África , Alelos , Animales , Estudios de Casos y Controles , Niño , Preescolar , Cromograninas , Eritrocitos/metabolismo , Eritrocitos/parasitología , Subunidades alfa de la Proteína de Unión al GTP Gs/sangre , Frecuencia de los Genes , Haplotipos , Humanos , Lactante , Recién Nacido , Desequilibrio de Ligamiento , Malaria/sangre , Malaria/parasitología , Transducción de Señal
16.
Sci Rep ; 8(1): 12849, 2018 08 27.
Artículo en Inglés | MEDLINE | ID: mdl-30150696

RESUMEN

The parasite Plasmodium falciparum is the main cause of severe malaria (SM). Despite treatment with antimalarial drugs, more than 400,000 deaths are reported every year, mainly in African children. The diversity of clinical presentations associated with SM highlights important differences in disease pathogenesis that often require specific therapeutic options. The clinical heterogeneity of SM is largely unresolved. Here we report a network-based analysis of clinical phenotypes associated with SM in 2,915 Gambian children admitted to hospital with Plasmodium falciparum malaria. We used a network-based clustering method which revealed a strong correlation between disease heterogeneity and mortality. The analysis identified four distinct clusters of SM and respiratory distress that departed from the WHO definition. Patients in these clusters characteristically presented with liver enlargement and high concentrations of brain natriuretic peptide (BNP), giving support to the potential role of circulatory overload and/or right-sided heart failure as a mechanism of disease. The role of heart failure is controversial in SM and our work suggests that standard clinical management may not be appropriate. We find that our clustering can be a powerful data exploration tool to identify novel disease phenotypes and therapeutic options to reduce malaria-associated mortality.


Asunto(s)
Malaria/diagnóstico , Malaria/parasitología , Redes Neurales de la Computación , Fenotipo , Anemia/etiología , Biomarcadores , Niño , Preescolar , Femenino , Humanos , Malaria/complicaciones , Malaria/mortalidad , Malaria Falciparum/diagnóstico , Malaria Falciparum/mortalidad , Malaria Falciparum/parasitología , Masculino , Plasmodium falciparum , Índice de Severidad de la Enfermedad
17.
BMC Genet ; 8: 52, 2007 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-17688704

RESUMEN

BACKGROUND: The sickle (betas) mutation in the beta-globin gene (HBB) occurs on five "classical" betas haplotype backgrounds in ethnic groups of African ancestry. Strong selection in favour of the betas allele - a consequence of protection from severe malarial infection afforded by heterozygotes - has been associated with a high degree of extended haplotype similarity. The relationship between classical betas haplotypes and long-range haplotype similarity may have both anthropological and clinical implications, but to date has not been explored. Here we evaluate the haplotype similarity of classical betas haplotypes over 400 kb in population samples from Jamaica, The Gambia, and among the Yoruba of Nigeria (Hapmap YRI). RESULTS: The most common betas sub-haplotype among Jamaicans and the Yoruba was the Benin haplotype, while in The Gambia the Senegal haplotype was observed most commonly. Both subtypes exhibited a high degree of long-range haplotype similarity extending across approximately 400 kb in all three populations. This long-range similarity was significantly greater than that seen for other haplotypes sampled in these populations (P < 0.001), and was independent of marker choice and marker density. Among the Yoruba, Benin haplotypes were highly conserved, with very strong linkage disequilibrium (LD) extending a megabase across the betas mutation. CONCLUSION: Two different classical betas haplotypes, sampled from different populations, exhibit comparable and extensive long-range haplotype similarity and strong LD. This LD extends across the adjacent recombination hotspot, and is discernable at distances in excess of 400 kb. Although the multi-centric geographic distribution of betas haplotypes indicates strong subdivision among early Holocene sub-Saharan populations, we find no evidence that selective pressures imposed by falciparum malaria varied in intensity or timing between these subpopulations. Our observations also suggest that cis-acting loci, which may influence outcomes in sickle cell disease, could lie considerable distances away from beta-globin.


Asunto(s)
Anemia de Células Falciformes/genética , Población Negra/genética , Globinas/genética , Haplotipos , Hemoglobina Falciforme/genética , Adulto , Alelos , Anemia de Células Falciformes/etnología , Gambia/epidemiología , Humanos , Jamaica/epidemiología , Mutación , Nigeria/epidemiología , Polimorfismo de Nucleótido Simple , Rasgo Drepanocítico/etnología , Rasgo Drepanocítico/genética
18.
Science ; 356(6343)2017 06 16.
Artículo en Inglés | MEDLINE | ID: mdl-28522690

RESUMEN

The malaria parasite Plasmodium falciparum invades human red blood cells by a series of interactions between host and parasite surface proteins. By analyzing genome sequence data from human populations, including 1269 individuals from sub-Saharan Africa, we identify a diverse array of large copy-number variants affecting the host invasion receptor genes GYPA and GYPB We find that a nearby association with severe malaria is explained by a complex structural rearrangement involving the loss of GYPB and gain of two GYPB-A hybrid genes, which encode a serologically distinct blood group antigen known as Dantu. This variant reduces the risk of severe malaria by 40% and has recently increased in frequency in parts of Kenya, yet it appears to be absent from west Africa. These findings link structural variation of red blood cell invasion receptors with natural resistance to severe malaria.


Asunto(s)
Resistencia a la Enfermedad/genética , Eritrocitos/parasitología , Glicoforinas , Interacciones Huésped-Parásitos/genética , Malaria Falciparum/genética , Modelos Moleculares , Adulto , África del Sur del Sahara , Niño , Variaciones en el Número de Copia de ADN/genética , Frecuencia de los Genes , Genoma Humano/genética , Glicoforinas/química , Glicoforinas/genética , Glicoforinas/metabolismo , Humanos , Estructura Secundaria de Proteína , Receptores de Superficie Celular/química , Receptores de Superficie Celular/genética
19.
Elife ; 62017 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-28067620

RESUMEN

Glucose-6-phosphate dehydrogenase (G6PD) deficiency is believed to confer protection against Plasmodium falciparum malaria, but the precise nature of the protective effecthas proved difficult to define as G6PD deficiency has multiple allelic variants with different effects in males and females, and it has heterogeneous effects on the clinical outcome of P. falciparum infection. Here we report an analysis of multiple allelic forms of G6PD deficiency in a large multi-centre case-control study of severe malaria, using the WHO classification of G6PD mutations to estimate each individual's level of enzyme activity from their genotype. Aggregated across all genotypes, we find that increasing levels of G6PD deficiency are associated with decreasing risk of cerebral malaria, but with increased risk of severe malarial anaemia. Models of balancing selection based on these findings indicate that an evolutionary trade-off between different clinical outcomes of P. falciparum infection could have been a major cause of the high levels of G6PD polymorphism seen in human populations.


Asunto(s)
Anemia/epidemiología , Deficiencia de Glucosafosfato Deshidrogenasa/complicaciones , Malaria Cerebral/epidemiología , Malaria Falciparum/epidemiología , Alelos , Anemia/patología , Estudios de Casos y Controles , Glucosafosfato Deshidrogenasa/genética , Humanos , Malaria Cerebral/patología , Malaria Falciparum/patología , Medición de Riesgo
20.
Elife ; 52016 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-27324836

RESUMEN

Similarity between two individuals in the combination of genetic markers along their chromosomes indicates shared ancestry and can be used to identify historical connections between different population groups due to admixture. We use a genome-wide, haplotype-based, analysis to characterise the structure of genetic diversity and gene-flow in a collection of 48 sub-Saharan African groups. We show that coastal populations experienced an influx of Eurasian haplotypes over the last 7000 years, and that Eastern and Southern Niger-Congo speaking groups share ancestry with Central West Africans as a result of recent population expansions. In fact, most sub-Saharan populations share ancestry with groups from outside of their current geographic region as a result of gene-flow within the last 4000 years. Our in-depth analysis provides insight into haplotype sharing across different ethno-linguistic groups and the recent movement of alleles into new environments, both of which are relevant to studies of genetic epidemiology.


Asunto(s)
Población Negra , Genoma Humano , Migración Humana , África del Sur del Sahara , Flujo Génico , Variación Genética , Haplotipos , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA